Monatshefle für
 Mathematik

(C) by Springer-Verlag 1990

On Hyperplanes and Polytopes

By

K. Bezdek ${ }^{1}$, Budapest, T. Bisztriczky ${ }^{2}$, Calgary, and R. Connelly ${ }^{3}$, Ithaca, NY

(Received 20 February 1989; in revised form 21 August 1989)

Abstract

We call a convex subset N of a convex d-polytope $P \subset E^{d}$ a k-nucleus of P if N meets every k-face of P, where $0<k<d$. We note that P has disjoint k-nuclei if and only if there exists a hyperplane in E^{d} which bisects the (relative) interior of every k-face of P, and that this is possible only if $\left[\frac{d+2}{2}\right] \leqslant k \leqslant d-1$. Our main results are that any convex d-polytope with at most $2 d-1$ vertices $(d \geqslant 3)$ possesses disjoint $(d-1)$-nuclei and that $2 d-1$ is the largest possible number with this property. Furthermore, every convex d-polytope with at most $2 d$ facets ($d \geqslant 3$) possesses disjoint $(d-1$)-nuclei, $2 d$ cannot be replaced by $2 d+2$, and for $d=3$, six cannot be replaced by seven.

§ 0. Introduction. Let $P \subset E^{d}$ be a convex d-polytope with $f_{j}(P)$ j-dimensional faces, $0 \leqslant j \leqslant d-1$ and $d \geqslant 3$. A convex subset of P is called a k-nucleus of P if it meets every k-face of $P, 0<k<d$. (For the terminology, the reader should consult [3].) It is easy to check (Lemma 2) that P possesses disjoint k-nuclei if and only if there exists a hyperplane which bisects the (relative) interior of every k-face of P. One might expect that there exists a P with a "large" number of j-dimensional faces such that there are no disjoint k-nuclei of P. Nevertheless, we show (Lemma 2) that there exists a convex d-polytope in E^{d} having disjoint k-nuclei if and only if $\left[\frac{d+2}{2}\right] \leqslant k \leqslant d-1, d \geqslant 3$ ([x] means the largest possible integer which is not greater than $x \in \mathbb{R}$.) Thus the following question arises naturally: What is the largest possible integer $F_{j}(d, k)(d \geqslant 3$,

[^0]$\left.0 \leqslant j \leqslant d-1,\left[\frac{d+2}{2}\right] \leqslant k \leqslant d-1\right)$ such that $f_{j}(P) \leqslant F_{j}(d, k)$ implies that $P \subset E^{d}$ possesses disjoint k-nuclei? Lemma 2 shows that $d+1 \leqslant F_{j}\left(d,\left[\frac{d+2}{2}\right]\right) \leqslant F_{j}\left(d,\left[\frac{d+2}{2}\right]+1\right) \leqslant \ldots \leqslant F_{j}(d, d-1)$ for any $0 \leqslant j \leqslant d-1$. We also show that $F_{0}(d, d-1)=2 d-1$, $d \geqslant 3$ (Theorem 1, Remark 1), $2 d \leqslant F_{d-1}(d, d-1) \leqslant 2 d+1, d \geqslant 4$ (Theorem 3, Remark 3) and that $F_{2}(3,2)=6$ (Theorem 3, Remark 2). As an open problem, we ask whether there exists a convex d-polytope in $E^{d}, d \geqslant 4$, with $2 d+1$ facets such that it possesses no disjoint ($d-1$)-nuclei? If such a polytope exists, then it does not have a simple vertex (Theorem 4). Finally, it would be very interesting to determine $F_{j}(d, k)$ in some other cases as well. Since our problem is connected with sections of polytopes, it is worth mentioning that some other problems about convex polytope cross-sections can be found in [1], [2], [4], [5], [6] and [8].

We wish to remark that work on this article was started at the Department of Geometry of Eötvös Lòrànd University (Budapest) in 1986.
§1. We start with the following important observation.
Lemma 1. If P is a convex d-polytope in E^{d} and H is a hyperplane of $E^{d}(d \geqslant 1)$ which does not contain any vertex of P, then on at least one side of H there exists a face of P of dimension at least $\left[\frac{d}{2}\right]$.

Proof. Since the statement has already stimulated many nice generalizations, we omit its simple proof. (See [2] and also [1], [4], and [5].)

Definition. Let $H \subset E^{d}$ be a hyperplane, $d \geqslant 1$. Then H bisects a subset S of E^{d} if there are points p_{1} and p_{2} in $S \backslash H$ which are on opposite sides of H.

As an immediate consequence, we get the following.
Corollary. Let P be a convex d-polytope in $E^{d}(d \geqslant 1)$ and let k be an integer such that $0 \leqslant k \leqslant\left[\frac{d}{2}\right]$. Then there is no hyperplane of E^{d} which bisects the (relative) interior of every k-face of P.

Lemma 2. For the integers $0<k<d$, there exists a convex d-polytope P in E^{d} and a hyperplane (in E^{d}) which bisects the (relative) interior of every k-face of P if and only if $\left[\frac{d+2}{2}\right] \leqslant k \leqslant d-1$. P possesses disjoint k-nuclei if and only if there is a hyperplane in E^{d} which bisects the (relative) interior of every k-face of P.

Proof. If P is a convex d-polytope in E^{d} and H is a hyperplane of $E^{d}(d \geqslant 1)$ which bisects the (relative) interior of every k-face of P, then we may suppose that H does not contain any vertex of P. Thus $k \geqslant\left[\frac{d}{2}\right]+1=\left[\frac{d+2}{2}\right]$ by Lemma 1 . On the other hand, if $\left[\frac{d+2}{2}\right] \leqslant k \leqslant d-1$, then the case of a regular d-simplex of E^{d} shows the existence of a convex d-polytope P in E^{d} and of a hyperplane H (in E^{d}) which bisects the (relative) interior of every k-face of P. (We split the set of the vertices of a regular d-simplex by a hyperplane of E^{d} into two sets of cardinality $\left[\frac{d+1}{2}\right]$ and $\left[\frac{d+2}{2}\right]$. The sets determine simplices of dimension $\left[\frac{d-1}{2}\right]$ and $\left[\frac{d}{2}\right]$. Consequently, any k-face of our regular d-simplex with $\left[\frac{d}{2}\right]+1=\left[\frac{d+2}{2}\right] \leqslant$ $\leqslant k \leqslant d-1$ will contain some vertices from both sets; that is, a hyperplane bisects the (relative) interior of every k-face.)

Finally, any k-nucleus of P contains a compact convex subset of P which is also a k-nucleus. Hence if P possesses two disjoint k-nuclei, then we may suppose that there is a hyperplane H which is disjoint from the k-nuclei and separates them. Since each k-face F of P meets both components of $P \backslash H, H$ bisects the (relative) interior of F. Conversely, let H be a hyperplane which bisects the (relative) interiors of the k-faces of P. Let H^{\prime} be parallel and close to H. Then $H \cap P$ and $H^{\prime} \cap P$ are disjoint k-nuclei of P. \square

Theorem 1. Let P be a convex d-polytope such that $f_{0}(P) \leqslant 2 d-1$, $d \geqslant 3$. Then P possesses disjoint $(d-1)$-nuclei.

Proof. We fix a facet of P, say, F^{*}. Since F^{*} has at least d vertices, there exist $k \geqslant 0$ and $m \geqslant 1$ such $k+m \leqslant d-1$,
$P=\operatorname{conv}\left\{p_{1}, \ldots, p_{d+k}, q_{1}, \ldots, q_{m}\right\}$ and $F^{*}=\operatorname{conv}\left\{p_{1}, \ldots, p_{d+k}\right\}$. Since $m \leqslant d-1$, every facet of P contains a vertex of F^{*}. (But no facet of P contains all the vertices of F^{*}, except F^{*}.) Consequently, since $d \geqslant 3$, there is a vertex, say, p_{1} of F^{*} such $N_{1}=\operatorname{conv}\left\{q_{1}, \ldots, q_{m}, p_{1}\right\}$ is not a facet of P. (This is obvious for $m<d-1$, and for $m=d-1$, it is enough to observe that if N_{1} is a facet then conv $\left\{q_{1}, \ldots, q_{d-1}, p_{1}\right\}$ is a $(d-1)$-simplex. So $\operatorname{conv}\left(q_{1}, \ldots, q_{d-1}\right\}$ is a $(d-2)$-face of P belonging to two facets of P.) We now set $N_{2}=\operatorname{conv}\left\{p_{2}, p_{3}, \ldots, p_{d+k}\right\}$ and observe that $N_{1} \cap N_{2}=0$.

Let F be a facet of P. If $F=F^{*}$, then $p_{1} \in N_{1} \cap F$ and $p_{d+k} \in N_{2} \cap F$. If $F \neq F^{*}$, then of course some $q_{i} \in N_{1} \cap F$. The preceding argument shows that $N_{1} \neq F$ and thus, some $p_{j} \in N_{2} \cap F$ where $2 \leqslant j \leqslant d+k$. Hence N_{1} and N_{2} are disjoint ($d-1$)-nuclei of P.

Remark 1. For any $d \geqslant 3$, there is a convex d-polytope P with $2 d$ vertices such that no hyperplane meets the (relative) interior of every facet of P.

In E^{d}, let p_{i} be the point with 1 in its i 'th coordinate and zero elsewhere and $q_{i}=-p_{i} ; i=1, \ldots, d$ and $d \geqslant 3$. Then the set $P^{d}=\operatorname{conv}\left\{p_{1}, \ldots, p_{d}, q_{1}, \ldots, q_{d}\right\}$ is a d-crosspolytope (cf. [3], p. 55). Suppose that there is a hyperplane H in E^{d} which meets the (relative) interior of every facet of P^{d}. Then we may assume that H contains no vertex of P^{d}. Let H^{+}and H^{-}be two open half-spaces bounded by H. We claim that if $\left\{p_{i}, q_{i}\right\} \subset H^{+}$for some $i=1, \ldots, d$, then $\left\{p_{j}, q_{j}\right\} \cap H^{+} \neq 0$ for all $j=1, \ldots, d$. If not, then for some $j \neq i$, $\left\{p_{j}, q_{j}\right\} \subset H^{-}, \frac{p_{i}+q_{i}}{2}=0 \in H^{-}$and $\frac{p_{i}+q_{i}}{2}=0 \in H^{+}$; a contradiction. Thus by relabelling, we may assume that $\left\{p_{1}, \ldots, p_{d}\right\} \in H^{+}$. Recall that P^{d} has 2^{d} facets, and each facet is a $(d-1)$-simplex which contains either p_{i} or $q_{i}, i=1, \ldots, d$. Therefore $\operatorname{conv}\left\{p_{1}, \ldots, p_{d}\right\}$ is a facet contained in H^{+}. Thus we have shown that H contains a facet of P^{d} on one side, which is a contradiction. Hence P^{d} does not have disjoint $(d-1)$-nuclei (see Lemma 2). We remark that every $(d-1)$-nucleus of P^{d} contains the origin of E^{d}. \square
§2. We now introduce the results which we use for our examination of d-polytopes with a "large" number of facets.

A graph G on a set of vertices V is a subset of unordered pairs $(x, y), x, y \in V$. The elements of G are called edges. G is simple if it has no loops or parallel edges. A 1 -factor of G is a system of independent edges (no two of them have an endpoint in common) covering all the vertices of V. We shall use the following well known fact.

Theorem 2. Let G be a simple graph on $2 n$ vertices with all degrees at least n. Then G has a 1 -factor.

Proof. ([7], p. 51) We suppose that G has no 1-factor. Then there exists a matching F in G, with a maximum number of edges, and two vertices u, v not in F. (A matching in G is a collection of edges of G such that each vertex belongs to at most one of them.) Let the edge $(x, y) \in F$. If there are at least three edges joining $\{x, y\}$ to $\{u, v\}$ then there are two of them which are independent, say, (x, u) and (y, v). But then $(F \backslash\{(x, y)\}) \cup\{(x, u),(y, v)\}$ is a bigger matching then F; a contradiction. So each edge of F is joined to $\{u, v\}$ by at most two edges. Since u and v are not joined to each other or to any point not on the edges of F (otherwise, F would not be maximal), this implies that $\operatorname{deg}(u)+\operatorname{deg}(v) \leqslant 2 \cdot|F| \leqslant 2(n-1)$. This, however, contradicts the hypothesis that $\operatorname{deg}(u)$ and $\operatorname{deg}(v)$ are at least n.

Lemma 3. Let $A_{1}, A_{2}, \ldots, A_{d}$ be d convex sets in E^{d} of dimension at least $d-2, d \geqslant 3$. Then
(2.1) there is a $(d-2)$-flat which contains two of the A_{i}, or
(2.2) there is a hyperplane which contains all the A_{i}, or
(2.3) there is a hyperplane which bisects each A_{i}.

Proof. Assume that (2.1) and (2.2) are not true for $A_{1}, A_{2}, \ldots, A_{d}$ $(d \geqslant 3)$. Let H be a hyperplane containing the points $p_{i} \in \operatorname{relint} A_{i}$, $1 \leqslant i \leqslant d-1$, and $p_{d}^{1} \in \operatorname{relint} A_{d}$. Since (2.2) is not true, at least one of our sets, say, A_{d} contains a point $p_{d}^{2} \in$ relint A_{d} outside H. Since (2.1) is not true, the $(d-2)$-flat $\bar{H} \subset H$, which passes through the points $p_{1}, p_{2}, \ldots, p_{d-1}$, may be chosen so that the sets $A_{1}, A_{2}, \ldots, A_{d-1}$ have points outside \bar{H} with the possible exception of, say, A_{1}. In that case, the dimension of A_{1} is $d-2$. Then there exists a point $p_{d} \in \operatorname{conv}\left\{p_{d}^{1}, p_{d}^{2}\right\} \subset$ relint A_{d} such that the hyperplane spanned by p_{d} and \bar{H} bisects all the sets $A_{1}, A_{2}, \ldots, A_{d}$, except possibly A_{1} and in that
case, A_{1} is a ($d-2$)-dimensional subset of the hyperplane in question. But then, a suitable rotation of the hyperplane yields the hyperplane satisfying (2.3). \square

Lemma 4. Let P be a convex d-polytope which possesses d (d d)-faces $A_{1}, A_{2}, \ldots, A_{d}$ such that any facet of P contains at least one $A_{i}, d \geqslant 3$. Then there is a hyperplane of E^{d} which bisects the (relative) interior of every facet of P.

Proof. Let $1 \leqslant i<j \leqslant d$. Since A_{i} and A_{j} are distinct ($d-2$)-faces of P, it follows that the affine hull of $A_{i} \cup A_{j}$ is either E^{d} or a hyperplane of E^{d}. Thus (2.1) is not true: By (2.2), we may assume that there is a hyperplane H such that $\bigcup_{i=1}^{d} A_{i} \subset H$. Since any facet of P contains at least one $A_{i}, H \cap P$ is determined by d supporting hyperplanes of P. Thus $H \cap P$ is a $(d-1)$-simplex in H. If H is a supporting hyperplane of P, then P is a d-simplex and the assertion follows by Theorem 1. If H does not support P, then P is a bipyramid with base $H \cap P$ and P possesses $d+2$ vertices. Since $d \geqslant 3$ implies that $d+2 \leqslant 2 d-1$, we again apply Theorem 1. Finally, (2.3) immediately yields the Lemma.
§3. Theorem 3. Let P be a convex d-polytope such that $f_{d-1}(P) \leqslant 2 d, d \geqslant 3$. Then there is a hyperplane in E^{d} which bisects the (relative) interior of every facet of P.

Proof. We note that it is sufficient to consider the case $f_{d-1}(P)=2 d$. Let $F_{1}, F_{2}, \ldots, F_{2 d}$ be the $2 d$ facets of P. We observe that each facet contains at least $d(d-2)$-faces and of course, each ($d-2$)-faces is uniquely determined by two facets.

Let G be a graph on $2 d$ vertices, labelled $1,2, \ldots, 2 d$, such that there is an edge between distinct i and j if and only if $F_{i} \cap F_{j}$ is a $(d-2)$-face of P. Thus each vertex of G has degree at least d and G is simple. By Theorem 2, G has a 1 -factor. Thus P possesses d ($d-2$)-faces such that any facet of P contains one of them. Hence the assertion follows from Lemma 4.

Remark 2. In E^{3}, there is a convex 3-polytope with seven facets such that no plane meets that (relative) interior of every facet. As depicted in Fig. 1, let $\mathrm{P}=\operatorname{conv}\{(0,0,0),(1,0,0),(1,1,0),(0,1,0)$, $(0,0,1),(1,0,1),(0,1,1)\}$. Suppose that there is a plane H which
meets the (relative) interior of every facet of P. As in Remark 1, we assume that H contains no vertex of P and introduce H^{+}and H^{-}.

Fig. 1
Since conv $\{(1,1,0),(1,0,1),(0,1,1)\}$ is a facet of P, we may assume that, say, $\{(1,1,0),(1,0,1)\} \subset H^{+}$and $(0,1,1) \in H^{-}$. Thus $(1,0,0) \in H^{-}$as well, and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2}(1,0,0)+\frac{1}{2}(0,1,1) \in H^{-}$. Then $(1,0,1) \in H^{+}$and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2}(1,0,1)+\frac{1}{2}(0,1,0) \notin H^{+}$imply that $(0,1,0) \in H^{-}$. A similar argument yields that $(0,0,0) \in H^{-}$. As conv $\{(0,0,0),(0,1,0),(0,1,1),(0,0,1)\}$ is a facet of P, the preceding implies that $(0,0,1) \in H^{+}$. But then $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2}(0,0,1)+$ $+\frac{1}{2}(1,1,0)=\frac{1}{2}(1,0,0)+\frac{1}{2}(0,1,1) \in H^{+} \cap H^{-} ; \quad$ a contradiction. Thus there is no hyperplane H which bisects every facet.

Lemma 5. Let $P \subset E^{d}, d \geqslant 3$, be a convex d-polytope with $f_{d-1}(P)=2 d+1$. Then for any set of $d+1$ facets $F_{1}, F_{2}, \ldots, F_{d+1}$ of P, there is a hyperplane H in E^{d} such that H bisects the (relative) interior of each $F_{i}, i=1,2, \ldots, d+1$.

We introduce the following notion.
Definition. Two facets of a convex d-polytope are adjacent if their intersection is a $(d-2)$-face of the polytope.

Proof of Lemma 5. We consider first the case when no two of the facets $F_{1}, F_{2}, \ldots, F_{d+1}$ are adjacent. Then $F_{1}, F_{2}, \ldots, F_{d+1}$ are ($d-1$)-simplices and all of them are adjacent to any of the other d facets of P. Say, F is a facet of P which is adjacent to the facets $F_{1}, F_{2}, \ldots, F_{d+1}$. Let H be the supporting hyperplane spanned by F. Then a hyperplane H^{\prime}, close and parallel to H, bisects the relative interior of each facet $F_{i}, i=1,2, \ldots, d+1$. Next we suppose that, say, F_{1} and F_{2} are adjacent. Then we choose points $p_{1} \in \operatorname{relint}\left(F_{1} \cap F_{2}\right)$ $p_{2} \in \operatorname{relint} F_{3}, \ldots, p_{d} \in \operatorname{relint} F_{d+1}$. Thus there is a hyperplane H going
through the points $p_{1}, p_{2}, \ldots, p_{d}$. In addition, we choose the points $p_{1}, p_{2}, \ldots, p_{d}$ such that $p_{1} \in F_{1} \cap F_{2} \notin H$ (since $d \geqslant 3$). Consequently, H bisects the (relative) interior of each $F_{i}, i=1,2, \ldots, d+1$. \square

Lemma 6. Let $P \subset E^{d}, d \geqslant 3$, be a convex d-polytope with a vertex w which lies on exactly d facets $F_{1}, F_{2}, \ldots, F_{d}$ of P. Let H be a hyperplane such that $w \in H$ and $H \cap \operatorname{int} P \neq \emptyset$. Then there is a hyperplane H^{\prime}, close to H and not containing w, which bisects the (relative) interior of each $F_{i}, i=1, \ldots, d$.

Proof. Since w lies on exactly d-facets of P, there is a simplex $Q \subset P$ such that w is a vertex of $Q, H \cap \operatorname{int} Q \neq \emptyset$ and $F_{i} \cap Q$ are facets of $Q, i=1, \ldots, d$. Let F_{w} be the remaining facet of Q. Then $w \notin F_{w}, H \cap$ relint $F_{w} \neq \emptyset$ and H separates in some manner the vertices of F_{w}. If both components of $Q \backslash H$ contain at least two vertices of F_{w}, then any H^{\prime}, close to H and not containing w, bisects each relint F_{i}. If one component of $Q \backslash H$ contains exactly one vertex of F_{w}, then we choose H^{\prime} so that each component of $Q \backslash H^{\prime}$ contains at least two vertices of Q.

Now we are in a position to prove our last theorem.
Theorem 4. Let $P \subset E^{d}$ be a convex d-polytope such that it has a simple vertex (a vertex which belongs to exactly d facets of P) and $f_{d-1}(P)=2 d+1, d \geqslant 4$. Then there is a hyperplane in E^{d} which bisects the (relative) interior of every facet of P.

Proof. Let w be a simple vertex of P. Let $\mathscr{F}=\left\{F_{1}, \ldots, F_{d}\right\}$ u un set of facets which contain w and $\mathscr{F}^{*}=\left\{F_{1}^{*}, \ldots, F_{d}^{*}, F_{d+1}^{*}\right\}$ be the set of facets which do not contain w. We claim that there exist adjacent facets in \mathscr{F}^{*}.

Suppose that $F_{i}^{*} \in \mathscr{F}^{*}$ is not adjacent to any $F_{j}^{*} \in \mathscr{F}^{*}$ for $i \neq j$. Then F_{i}^{*} is necessarily adjacent to each $F_{k} \in \mathscr{F}$ and F_{i}^{*} is a ($d-1$)-simplex. Since $w \notin F_{i}^{*}, Q=\operatorname{conv}\left\{F_{i}^{*}, w\right\} \subset P$ is a d-simplex. Let $\bar{H}_{k}\left(\bar{H}_{i}^{*}\right)$ denote the closed halfspace bounded by the affine hull aff F_{k} (aff F_{i}^{*}) and containing $P, F_{k} \in \mathscr{F}\left(F_{i}^{*} \in \mathscr{F}^{*}\right)$. Since Q is a d-simplex, it follows that $P \subset\left(\bigcap_{k=1}^{d} \bar{H}_{k}\right) \cap \bar{H}_{i}^{*}=Q$ and P is a d-simplex; a contradiction.

As an immediate consequence of the preceding, we observe that
(i) there exist four facets of \mathscr{F}^{*}, say, $F_{1}^{*}, F_{2}^{*}, F_{3}^{*}$ and F_{4}^{*} such that F_{1}^{*} and $F_{2}^{*}\left(F_{3}^{*}\right.$ and $\left.F_{4}^{*}\right)$ are adjacent or
(ii) there is an $F_{i}^{*} \in \mathscr{F}^{*}$ which is adjacent to each $F_{j}^{*} \in \mathscr{F}^{*} \backslash\left\{F_{i}^{*}\right\}$.

If (i), then we choose points $p \in \operatorname{relint}\left(F_{1}^{*} \cap F_{2}^{*}\right), q \in \operatorname{relint}\left(F_{3}^{*} \cap F_{4}^{*}\right)$ and $r_{j} \in \operatorname{relint} F_{j}^{*}, j=5, \ldots, d+1$. Then there is a hyperplane H containing w, p, q and the $(d-3)$ points r_{5}, \ldots, r_{d+1}. Since $d \geqslant 4$ we may choose the r_{j} 's so that H contains neither $F_{1}^{*} \cap F_{2}^{*}$ nor $F_{3}^{*} \cap F_{4}^{*}$. Thus a hyperplane H^{\prime}, close to H, also bisects the (relative) interior of each $F_{k}^{*} \in \mathscr{F}^{*}$. Finally Lemma 6 implies that there is an H^{\prime} which bisects the (relative) interior of every facet of P.

We assume (ii). Let \bar{H} denote supporting hyperplane spanned by F_{i}^{*}. In \bar{H}, F_{i}^{*} is a convex $(d-1)$-polytope whose facets include $F_{i}^{*} \cap F_{j}^{*}$ for $i \neq j, 1 \leqslant j \leqslant d+1$. Obviously, the number of facets of F_{i}^{*} in \bar{H} is at most $2 d$. If this number of facets is at most $2(d-1)$ then by Theorem 3, there exists a hyperplane H^{*} in \bar{H} which bisects the (relative) interior of every facet of F_{i}^{*} in \bar{H}. If the number of facets of F_{i}^{*} in \bar{H} is $2(d-1)+1=2 d-1$ then by Lemma 5 , there exists a hyperplane H^{*} in \bar{H} which bisects the (relative) interiors of the facets $F_{i}^{*} \cap F_{j}^{*}, j \neq i, 1 \leqslant j \leqslant d+1$. In both cases, Lemma 6 yields a hyperplane in E^{d}, close to aff $\left\{H^{*}, w\right\}$, which bisects the relative interior of every facet of P. Finally, if F_{i}^{*} is adjacent to any other facet of P, then a hyperplane H in E^{d}, close and parallel to \bar{H}, bisects the (relative) interiors of the facets of P (except possibly that of F_{i}^{*}). But then, after a little rotation of H, the resulting hyperplane bisects the relative interior of every facet of P. \square

Remark 3. Let $d \geqslant 4$. Then there is a convex polytope $P \subset E^{d}$ with $f_{d-1}(P)=2 d+2$ such that no hyperplane in E^{d} meets the (relative) interior of every facet of P.

Let $Q=\operatorname{conv}\left\{q_{1}, \ldots, q_{d}, q_{d+1}\right\}$ be a d-simplex in E^{d}. As the vertices of Q are in general position, it follows that $Q^{*}=\operatorname{conv}\left\{q_{1}^{*}, \ldots, q_{d}^{*}, q_{d+1}^{*}\right\}$ is a d-simplex whenever q_{i}^{*} is sufficiently close to $q_{i}, i=1, \ldots, d+1$. Now let P be a convex d-polytope obtained by slicing off each q_{i} of Q by a hyperplane arbitrarily close to $q_{i}, i=1, \ldots, d+1$. Then each q_{i} is replaced by a facet of P, the points of which are arbitrarily close to q_{i}. Thus P has $2 d+2$ facets and any nucleus of P contains $d+1$ points q_{i}^{*} as described above.

References

[1] Bezdek, A., Bezdek, K., Odor, T.: On a Caratheodory-type theorem. Preprint (1988).
[2] Goodman, J. E., Pach, J.: Cell decomposition of polytopes by bending. Israel J. Math. 64, 129-138 (1988).
[3] Grünbaum, B.: Convex Polytopes. New York: Interscience. 1967.
[4] Hovanski, A. G.: Hyperplane sections of polytopes, toric varieties and discrete groups in Lobachevsky space. Functional Anal. Appl. 20, 50-61 (1986).
[5] Kincses, J.: Convex hull representation of cut polytopes. Preprint (1988).
[6] Kleinschmidt, P., Pachner, U.: Shadow-boundaries and cuts of convex polytopes. Mathematika 27, 58-63 (1980).
[7] Lovász, L.: Combinatorial Problems and Exercises. Amsterdam-New YorkOxford: North-Holland. p. 51, problem 7.22.
[8] Shephard, G. C.: Sections and projections of convex polytopes. Mathematika 19, 144-162 (1972).

K. Bezdek	T. BiszTRICZKY	R. Connelly
Dept. of Geometry	Dept. of Mathematics \&	Dept. of Mathematics
Eötvös L. University	Statistics	Cornell University
1088 Budapest	University of Calgary	Ithaca, NY 14853, U.S.A.
Rákóczi út 5	Calgary, Alberta	
Hungary	Canada T2N 1N4	

and
Dept. of Mathematics
Cornell University
Ithaca, NY 14853, U.S.A.

[^0]: ${ }^{1}$ Partially supported by Hung. Nat. Found. for Sci. Research number 1238.
 ${ }^{2}$ Partially supported by the Natural Sciences and Engineering Council of Canada.
 ${ }^{3}$ Partially supported by N.S.F. grant number MCS-790251.

