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Abstract. We call a convex subset N of a convex d-polytope P c E d a k-nucleus 
of P if N meets every k-face of P, where 0 < k < d. We note that P has disjoint 
k-nuclei if and only if there exists a hyperplane in E d which bisects the (relative) 

interior of every k-face of P, and that this is possible only i f / ~ - / ~ <  k ~< d - 1 .  
1 _ - 3  

Our main results are that any convex d-polytope with at most 2 d - 1 vertices (d >/3) 
possesses disjoint (d - 1)-nuclei and that 2 d - 1 is the largest possible number with 
this property. Furthermore, every convex d-polytope with at most 2 d facets (d/> 3) 
possesses disjoint (d - 1)-nuclei, 2 d cannot be replaced by 2 d + 2, and for d = 3, six 
cannot be replaced by seven. 

w 0. Introduction. Let P c E d be a convex d-polytope with fj (P) 

j-dimensional faces, 0 ~< j ~< d - 1 and d ~> 3. A convex subset of  P is 
called a k-nucleus of  P if it meets every k-face of  P, 0 < k < d. (For  
the t e rminology ,  the reader  should  consul t  [3].) I t  is easy to  check 

( L e m m a  2) tha t  P possesses disjoint  k-nuclei  i f  and  only  if  there  exists 

a hype rp l ane  which bisects the (relative) in ter ior  o f  every  k-face o f  P. 

One  migh t  expect  tha t  there  exists a P wi th  a " large"  n u m b e r  o f  

j -d imens iona l  faces such tha t  there  are no  disjoint  k-nuclei  o f  P. 

Never theless ,  we show ( L e m m a  2) tha t  there  exists a c o n v e x  

d -po ly tope  in E d having  disjoint  k-nuclei  if  and  only  if  

[ ~ - ]  <, k <, d -  l, d>~ 3 ([x] means the largest possible integer 

which  is no t  greater  t han  x e ~.) Thus  the fol lowing ques t ion  arises 
natural ly:  W h a t  is the largest  possible integer  Fj(d,k) (d>~ 3, 
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Vtl  + ) q  
O<.j<~ d -  l , [ : : ~ [ ~  k <~ d - 1 )  such that f;(P) <~ Fj(d,k) im- 

i _ - - _ 1  

plies that P c E a possesses disjoint k-nuclei? Lemma 2 shows that 

for any 0 ~ j ~ <  d -  1. We also show that F o ( d , d -  1) = 2 d -  1, 
d~> 3 (Theorem 1, Remark 1), 2d~< F a _ l ( d , d -  1) ~< 2 d +  1, d~> 4 
(Theorem 3, Remark 3) and that F2 (3, 2) = 6 (Theorem 3, Remark 2). 
As an open problem, we ask whether there exists a convex d-polytope 
in E a, d/> 4, with 2 d + 1 facets such that it possesses no disjoint 
(d - D-nuclei? If such a polytope exists, then it does not have a simple 
vertex (Theorem 4). Finally, it would be very interesting to determine 
Fj (d, k) in some other cases as well. Since our problem is connected 
with sections of polytopes, it is worth mentioning that some other 
problems about convex polytope cross-sections can be found in [1], 
[2], [4], [5], [6] and [8]. 

We wish to remark that work on this article was started at the 
Department of Geometry of E6tv6s Ldrfind University (Budapest) in 
1986. 

w 1. We start with the following important observation. 

Lemma 1. I f  P is a convex d-polytope in E d and H is a hyperplane 
of  Ea(d>~ 1) which does not contain any vertex of P, then on at least 

side of H there exists a face of  P of dimension at least [2J" one  

Proof. Since the statement has already stimulated many nice 
generalizations, we omit its simple proof. (See [2] and also [1], [4], and 

[51.) 
Definition. Let H ~ E d be a hyperplane, d >t 1. Then H bisects a 

subset S of E d if there are points Pl and P2 in S \  H which are on 
opposite sides of H. 

As an immediate consequence, we get the following. 

Corollary. Let P be a convex d~polytope in Ea(d>~ 1) and let k be 

an integer such that O<~k <~ [d]. Then there is no hyperplane of  E a 
L - ~  

which bisects the (relative) interior o f  every k-face of  P. 
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Lemma 2. For the integers 0 < k < d, there exists a convex 
d-polytope P in E d and a hyperplane (in E d) which bisects the (relative) 

interior of  every k-face of  P if  and only if  [d +2 21<~ k <~ d - 1 .  P 

possesses disjoint k-nuelei if and only if there is a hyperpIane in E d 
which bisects the (relative) interior of  every k-face of  P. 

Proof. If P is a convex d-polytope in E d and H is a hyperplane of 
Ed(d>>- 1) which bisects the (relative) interior of every k-face of P, 
then we may suppose that H does not contain any vertex of P. Thus 

k ~ > ] 2 [ + l = [ ~ z  [ by Lemma 1. On the other hand, if 
L - , . . , J  L -  J 

Id+22]<~k<<.d - 1, then the case of a regular d-simplex of Ed shows 
k _  , .A  

the existence of a convex d-polytope P in E d and of a hyperplane H 
(in E d) which bisects the (relative) interior of every k-face of P. (We 
split the set of the vertices of a regular d-simplex by a hyperplane of 

E ~ into two sets of cardinality I ~  ] and L JId22]"- - The sets 

determine simplices of dimension [ ~  11 and [~d ~. Consequently, 

k-face of our regular d-simplex with [ 2 ] + 1 =  [ ~ ] ~ <  any 
L -  J 

~< k ~< d -  1 will contain some vertices from both sets; that is, a 
hyperplane bisects the (relative) interior of every k-face.) 

Finally, any k-nucleus of P contains a compact convex subset of 
P which is also a k-nucleus. Hence i fP  possesses two disjoint k-nuclei, 
then we may suppose that there is a hyperplane H which is disjoint 
from the k-nuclei and separates them. Since each k-face F of P meets 
both components of P \  H, H bisects the (relative) interior of F. 
Conversely, let H be a hyperplane which bisects the (relative) interiors 
of the k-faces of P. Let H' be parallel and close to H. Then H c~ P and 
H' c~ P are disjoint k-nuclei of P. [] 

Theorem 1. Let P be a convex d-polytope such that fo (P) <~ 2 d - 1, 
d >. 3. Then P possesses disjoint ( d -  l)-nuclei. 

Proof We fix a facet of P, say, F*. Since F* has at least d ver- 
tices, there exist k>~0 and m~> 1 such k + m ~ < d - 1 ,  
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P = c o n v  {Pl, �9 �9 .,Pal+k, q l , . . . ,  qm} and F* = c o n v  {Pl, �9 �9 .,Pd+k}" Since 
m ~< d - 1, every facet of  P contains a vertex of  F*. (But no facet of  
P contains all the vertices of  F*, except F*.) Consequently, since 
d~> 3, there is a vertex, say, Pl of  F* such N1 = c o n v  {ql , . . . ,  q,,,Pl} 
is not  a facet of  P. (This is obvious for m < d - 1, and for m = d - 1, 
it is enough to observe that if N~ is a facet then conv {q~,..., qd-~, Pl} 
is a ( d -  1)-simplex. So conv(ql , . . . ,qd_~} is a ( d -  2)-face of  P 

belonging to two facets of  P.) We now set N2 = c o n v  {Pz,P3,-..,Pd+k} 
and observe that NI n N2 = 0. 

Let F b e  a facet of  P. If  F =  F*, thenp~ ~N~ n F a n d p d + k ~ N 2  n F .  
If F ~ F*, then of  course some qi~ N~ c~ F. The preceding argument  
shows that N~ v ~ F and thus, some pj~ N 2 c~ F where 2 ~< j ~< d + k. 
Hence N~ and N2 are disjoint (d - l)-nuclei of  P. [] 

Remark 1. For  any d >i 3, there is a convex d-polytope P with 2 d 
vertices such that no hyperplane meets the (relative) interior of  every 

facet of  P. 

In E a, let Pi be the point with I in its i ' th coordinate and zero 
elsewhere and qi = - P i ;  i =  1 , . . . , d  and d>~ 3. Then the set 
p a =  conv{pl , . . . ,Pa ,  ql , . . . ,qd} is a d-crosspolytope (cf. [3], p. 55). 
Suppose that  there is a hyperplane H in E u which meets the (relative) 
interior of  every facet of  pd. Then we may assume that  H contains no 
vertex of  pd. Let H § and H -  be two open half-spaces bounded by H. 
We claim that if {P~,qi} c H + for some i =  l , . . . , d ,  then 
{pj, qj} c~ H + r 0 for all j = 1 , . . . ,  d. If  not, then for some j r i, 

{pj, qj} = H - ,  p~ + qj = 0 e H -  and p~ + qt _ 0 E H+; a contradiction. 
2 2 

Thus by relabelling, we may  assume that  {Pl . . . . .  Pa} e H+. Recall that 
pa has 2 a facets, and each facet is a (d - 1)-simplex which contains 
either p~ or qi, i = l , . . . , d .  Therefore conv {Pl,...,Pa} is a facet 
contained in H + . Thus we have shown that H contains a facet of  pd 
on one side, which is a contradiction. Hence pd does not  have disjoint 
( d -  1)-nuclei (see Lemma 2). We remark that every ( d -  1)-nucleus 
of  pd contains the origin of  E a. [] 

w We now introduce the results which we use for our 
examination of  d-polytopes with a "large" number  of  facets. 
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A graph G on a set of vertices V is a subset of unordered pairs 
(x, y), x, y e V. The elements of G are called edges. G is simple if it has 
no loops or parallel edges. A 1-factor of G is a system of independent 
edges (no two of them have an endpoint in common) covering all the 
vertices of V. We shall use the following well known fact. 

T h e o r e m  2. Let G be a simple graph on 2 n vertices with all degrees 
at least n. Then G has a l-factor. 

Proof  ([7], p. 51) We suppose that G has no l-factor. Then there 
exists a matching F in G, with a maximum number of edges, and two 
vertices u, v not in F. (A matching in G is a collection of edges of G 
such that each vertex belongs to at most one of them.) Let the edge 
(x, y) ~ F. If there are at least three edges joining {x, y} to {u, v} then 
there are two of them which are independent, say, (x, u) and (y, v). But 
then ( F \  {(x,y)})w {(x,u), (y,v)} is a bigger matching then F; a 
contradiction. So each edge of F is joined to {u, v} by at most two 
edges. Since u and v are not joined to each other or to any point not 
on the edges of F (otherwise, F would not be maximal), this implies 
that deg(u) +deg(v)~< 2 . IF[  ~< 2(n - 1). This, however, con- 
tradicts the hypothesis that deg (u) and deg (v) are at least n. [] 

Lemma 3. Let A~, A2,..., A a be d convex sets in E a o f  dimension at 
least d -  2, d/> 3. Then 

(2.1) there is a ( d -  2)-flat which contains two o f  the Ai, 
or 

o r  

(2.2) there is a hyperplane which contains all the Ai, 

(2.3) there is a hyperplane which bisects each A i. 

Proof  Assume that (2.1) and (2.2) are not true for A1,A2,.. . ,Ad 
(d~> 3). Let H be a hyperplane containing the points pi~relintAi, 
1 ~< i ~< d - 1, a n d p ~ r e l i n t  Aa. Since (2.2) is not true, at least one of 
our sets, say, A d contains a point pa2~ relint Ad outside H. Since (2.1) 
is not true, the ( d -  2)-flat/7 c H, which passes through the points 
Pa,P2,...,Pa-1, may be chosen so that the sets A1, A2,.. . ,  Ad_l have 
points outside/7 with the possible exception of, say, A1. In that case, 
the dimension of A1 is d - 2 .  Then there exists a point 
pat  conv {p~, p~} c relint Aa such that the hyperplane spanned by Pa 
and H bisects all the sets A1, A2 . . . .  , Aa, except possibly A~ and in that 
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case, A~ is a (d - 2)-dimensional subset of  the hyperplane in question. 
But then, a suitable rota t ion of  the hyperplane yields the hyperplane 
satisfying (2.3). [] 

Lemma 4. Let  P be a convex d~polytope which possesses d 
(d - 2)-faces A 1 , A2,..., A a such that any facet  o f  P contains at least 
one Ai, d >1 3. Then there is a hyperplane o f  E d which bisects the 
(relative) interior o f  every facet  o f  P. 

Proo f  Let 1 ~< i < j ~< d. Since A i and Aj are distinct (d - 2)-faces 
of  P, it follows that  the affine hull of  Ai w Aj is either E d or a 
hyperplane o f E  d. Thus  (2.1) is not  true: By (2.2), we may  assume that  

d 
there is a hyperplane H such that  U Ai c H. Since any facet of  P 

contains at least one A~, H n P  is determined by d suppor t ing 
hyperplanes of  P. Thus  H n P is a (d - 1)-simplex in H. If  H is a 
suppor t ing hyperplane of  P, then P is a d-simplex and the assertion 
follows by Theorem 1. I f  H does not  suppor t  P, then P is a bipyramid 
with base H ~ P and P possesses d + 2 vertices. Since d >~ 3 implies 
that  d +  2 ~< 2 d - 1 ,  we again apply Theorem 1. Finally, (2.3) 
immediately yields the Lemma.  [] 

w Theorem 3. Let  P be a convex d-polytope such that 
fd-  1 (P) <~ 2 d, d >~ 3. Then there is a hyperplane in E d which bisects the 
(relative) interior o f  every facet  o f  P. 

Proof. We note  that  it is sufficient to consider the case 
fa-~ (P) = 2 d. Let F 1, F2, . . . ,  F2e be the 2 d facets of  P. We observe 
that  each facet contains at least d (d - 2)-faces and of  course, each 
( d -  2)-faces is uniquely determined by two facets. 

Let G be a graph on 2 d vertices, labelled 1, 2 , . . . ,  2 d, such that  
there is an edge between distinct i and j if and only if F~ n Fj. is a 
(d - 2)-face of  P. Thus  each vertex of  G has degree at least d and G 
is simple. By Theorem 2, G has a 1-factor. Thus  P possesses d 
(d - 2)'faces such that  any facet of  P contains one of  them. Hence the 
assertion follows f rom L e m m a  4. [] 

Remark 2. In E 3, there is a convex 3-polytope with seven facets 
such that  no plane meets that  (relative) interior of  every facet. As 
depicted in Fig. 1, let P = conv {(0, 0, 0), (1, 0, 0), (1, 1,0), (0, 1,0), 
(0,0, 1), (1, 0, 1), (0, 1, 1)}. Suppose that  there is a plane H which 
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meets the (relative) interior of  every facet of  P. As in Remark 1, we 
assume that H contains no vertex of  P and introduce H § and H - .  

(0,1,1)- 

 ol- 

{0,0,01- (1,0,O)- 

Fig. 1 

Since conv {(1, 1, 0), (I, 0, 1), (0, 1, 1)} is a facet of  P, we may 
assume that, say, {(1, 1, 0), (1, 0, 1)} c H + and (0, 1, 1) e H - .  Thus 
( 1 , 0 , 0 ) ~ H - a s w e l l ,  and Cl~2, z, zj _la l (1, 0, 0) + l (0,1,1) ~ H - .  The n 
( 1 , 0 , 1 ) ~ n  + and (�89189189 = �89 + 1 ( 0 , 1 , 0 ) r  + imply that 
(0, 1, 0) ~ H - .  A similar argument  yields that (0, 0, 0) ~ H - .  As 
conv {(0, 0, 0), (0, 1,0), (0, 1, 1), (0, 0, 1)} is a facet of  P, the preceding 
implies that ( 0 , 0 , 1 ) ~ H  +. But then ~,r 3,1 ~Jla=�89 

+ 1(1,1,0)  = �89 + � 89  + n i l - ;  a contradiction. 
Thus there is no hyperplane H which bisects every facet. [] 

Lemma 5. Let P c  E a, d>>-3, be a convex d-polytope with 
fd- i (P) = 2 d + 1. Then for any set o f  d + 1 facets F1, F2, . . . ,  Fd+ 1 of  
P, there is a hyperplane H in E d such that H bisects the (relative) 
interior o f  each Fi, i = 1, 2 , . . . ,  d + 1. 

We introduce the following notion. 

Definition. Two facets of  a convex d-polytope are adjacent if their 
intersection is a ( d -  2)-face of  the polytope. 

Proof o f  Lemma 5. We consider first the case when no two of  the 
facets F1,F2,.. . ,Fd+I are adjacent. Then F1,F2,.. . ,Fa+I are 
( d -  1)-simplices and all of  them are adjacent to any of  the other d 
facets of  P. Say, F is a facet of  P which is adjacent to the facets 
/71, F 2 . . . .  , Fd+ 1 . Let H be the supporting hyperplane spanned by F. 
Then a hyperplane H', close and parallel to H, bisects the relative 
interior of  each facet Fi, i = 1, 2 , . . . ,  d + 1. Next we suppose that, say, 
F 1 and F 2 are adjacent. Then we choose points Pl ~ relint (F 1 n Fz) 
P2 ~ relint F3, . . . ,  Pa ~ relint Fa+ ~ . Thus there is a hyperplane H going 
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through the points P t ,P : , . . . ,Pd .  In addition, we choose the points 
Pl, P2,.. ",Pd such that p~ ~ F 1 n F 2 ~ H(since d >~ 3). Consequently, H 
bisects the (relative) interior of  each Fi, i = 1, 2 , . . . ,  d + 1. [] 

Lemma 6. Let P c E d, d >t 3, be a convex d-polytope with a vertex 
w which lies on exactly d facets F1, F2, . . . ,  F d o f  P. Let  H be a 
hyperplane such that w ~ H and H n i n t  P v L O. Then there is a 
hyperplane H', close to H and not containing w, which bisects the 
(relative) interior o f  each Fi, i =  1 , . . . ,  d. 

Proof. Since w lies on exactly d-facets of P, there is a simplex 
Q c P such that w is a vertex of  Q, H n i n t  Q va 0 and Fi c~ Q are 
facets of Q, i = 1, . . . ,  d. Let Fw be the remaining facet of Q. Then 
w r Fw, H n relint Fw ~ 0 and H separates in some manner the vertices 
of Fw. If both components of Q \ H contain at least two vertices of  
Fw, then any H', close to H and not  containing w, bisects each relint 
Fi. If one component  of Q \ H contains exactly one vertex of F~, then 
we choose H' so that each component  of  Q \ H' contains at least two 
vertices of Q. [] 

Now we are in a position to prove our last theorem. 

Theorem 4. Let P c E d be a convex d-polytope such that it has a 
simple vertex (a vertex which belongs to exactly d facets o f  P) and 
f d- ~ ( P) = 2 d + 1, d >1 4. Then there is a hyperplane in E d which bisects 
the (relative) interior o f  every facet  o f  P. 

Proof. Let w be a simple vertex Of P. Let ~ = {F~,. . . ,  rd~ . . . . . .  
set of facets which contain w and i f*  = {F~,...,/~d,/~d+~} be the set 
of facets which do not contain w. We claim that there exist adjacent 
facets in Y*.  

Suppose t h a t / ~ e  ~'* is not  adjacent to any b-~*j e i f*  for i r j. Then 
Ff~ is necessarily adjacent to each Fkeo ~ and F~ is a ( d -  1)-simplex. 
Since w r P/, Q = c o n v  (F~*i, w} c P is a d-simplex. Let n k ( n ~  denote 
the closed halfspace bounded by the affine hull affFk(aff /~ and 
containing P, F k ~  (F~ e f t* ) .  Since Q is a d-simplex, it follows that 

P c n ~ = Q and P is a d-simplex; a contradiction. 

As an immediate consequence of the preceding, we observe that 

(i) there exist four facets of  i f* ,  say, Fi~, F~2, F~3 and F~4 such that 
and/~2 (F]3 and F~ are adjacent or 
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(ii) there is an P~*~ E~-* which is adjacent to each E*j e f t * \  {~'}. 

If (i), then we choose points p ~ relint (F~I c~ F~2), q e relint (F~3 n F~4) 
and rjerelintb-~7, j =  5 , . . . , d +  1. Then there is a hyperplane H 
containing w,p, q and the ( d -  3) points rs , . . . ,  rd+~. Since d~> 4 we 
may choose the rSs so that H contains neither F~ n/~2 nor F~3 n F~4. 
Thus a hyperplane H', close to H, also bisects the (relative) interior 
of each F~k e ~-*. Finally Lemma 6 implies that there is an H' which 
bisects the (relative) interior of every facet of P. 

We assume (ii). L e t / t  denote supporting hyperplane spanned by 
F~i. In/~, F~/is a convex (d - 1)-polytope whose facets include/~/n 
for i r j, 1 ~< j ~< d + 1. Obviously, the number of facets of ~,. in R is 
at most 2 d. If this number of facets is at most 2 ( d -  1) then by 
Theorem 3, there exists a hyperplane H* in Er which bisects the 
(relative) interior of every facet of ~ in / t .  If the number of facets of 

i n / t  is 2 (d - I) + 1 = 2 d - 1 then by Lemma 5, there exists a 
hyperplane H* in H which bisects the (relative) interiors of the facets 
/~gc~j, j r  l ~ < j ~ < d + l .  In both cases, Lemma 6 yields a 
hyperplane in E a, close to aft{H*, w}, which bisects the relative 
interior of every facet of P. Finally, if ~ i s  adjacent to any other facet 
of P, then a hyperplane H in E d, close and parallel t o / t ,  bisects the 
(relative) interiors of the facets of P (except possibly that of F~. But 
then, after a little rotation of H, the resulting hyperplane bisects the 
relative interior of every facet of P. [] 

Remark 3. Let d >~ 4. Then there is a convex polytope P c E d with 
fd- 1 (P) = 2 d + 2 such that no hyperplane in E d meets the (relative) 
interior of every facet of P. 

Let Q = c o n v { q l , . . . , q a ,  qd+~ } be a d-simplex in E a. As the 
vertices of Q are in general position, it follows that 
Q* conv{q*, * * . . . .  , qd, qd+ 1} is a d-simplex whenever q* is sufficiently 
close to qi, i =  1 , . . . , d +  I. Now let P be a convex d-polytope 
obtained by slicing off each q; of Q by a hyperplane arbitrarily close 
to qi, i = 1, . . . ,  d + 1. Then each qi is replaced by a facet of P, the 
points of which are arbitrarily close to q~. Thus P has 2 d + 2 facets 
and any nucleus of P contains d + 1 points q 'as  described above. [] 
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