

On Hyperplanes and Polytopes

By

K. Bezdek¹, Budapest, **T. Bisztriczky**², Calgary, and **R. Connelly**³, Ithaca, NY

(Received 20 February 1989; in revised form 21 August 1989)

Abstract. We call a convex subset N of a convex d-polytope $P \subset E^d$ a k-nucleus of P if N meets every k-face of P, where 0 < k < d. We note that P has disjoint k-nuclei if and only if there exists a hyperplane in E^d which bisects the (relative) interior of every k-face of P, and that this is possible only if $\left[\frac{d+2}{2}\right] \le k \le d-1$. Our main results are that any convex d-polytope with at most 2d - 1 vertices $(d \ge 3)$

possesses disjoint (d - 1)-nuclei and that 2d - 1 is the largest possible number with this property. Furthermore, every convex *d*-polytope with at most 2d facets $(d \ge 3)$ possesses disjoint (d - 1)-nuclei, 2d cannot be replaced by 2d + 2, and for d = 3, six cannot be replaced by seven.

§0. Introduction. Let $P \subset E^d$ be a convex *d*-polytope with $f_j(P)$ *j*-dimensional faces, $0 \le j \le d - 1$ and $d \ge 3$. A convex subset of *P* is called a *k*-nucleus of *P* if it meets every *k*-face of *P*, 0 < k < d. (For the terminology, the reader should consult [3].) It is easy to check (Lemma 2) that *P* possesses disjoint *k*-nuclei if and only if there exists a hyperplane which bisects the (relative) interior of every *k*-face of *P*. One might expect that there exists a *P* with a "large" number of *j*-dimensional faces such that there are no disjoint *k*-nuclei of *P*. Nevertheless, we show (Lemma 2) that there exists a convex *d*-polytope in E^d having disjoint *k*-nuclei if and only if $\left[\frac{d+2}{2}\right] \le k \le d-1, \ d \ge 3$ ([x] means the largest possible integer which is not greater than $x \in \mathbb{R}$.) Thus the following question arises naturally: What is the largest possible integer $F_i(d, k)$ ($d \ge 3$,

¹ Partially supported by Hung. Nat. Found. for Sci. Research number 1238.

² Partially supported by the Natural Sciences and Engineering Council of Canada.

³ Partially supported by N.S.F. grant number MCS-790251.

 $0 \le j \le d-1, \left[\frac{d+2}{2}\right] \le k \le d-1$) such that $f_j(P) \le F_j(d,k)$ implies that $P \subset E^d$ possesses disjoint *k*-nuclei? Lemma 2 shows that $d+1 \le F_j\left(d, \left[\frac{d+2}{2}\right]\right) \le F_j\left(d, \left[\frac{d+2}{2}\right]+1\right) \le \ldots \le F_j(d, d-1)$ for any $0 \le j \le d-1$. We also show that $F_0(d, d-1) = 2d-1$, $d \ge 3$ (Theorem 1, Remark 1), $2d \le F_{d-1}(d, d-1) \le 2d+1$, $d \ge 4$ (Theorem 3, Remark 3) and that $F_2(3, 2) = 6$ (Theorem 3, Remark 2). As an open problem, we ask whether there exists a convex *d*-polytope in E^d , $d \ge 4$, with 2d + 1 facets such that it possesses no disjoint (d-1)-nuclei? If such a polytope exists, then it does not have a simple vertex (Theorem 4). Finally, it would be very interesting to determine $F_j(d, k)$ in some other cases as well. Since our problem is connected with sections of polytopes, it is worth mentioning that some other problems about convex polytope cross-sections can be found in [1], [2], [4], [5], [6] and [8].

We wish to remark that work on this article was started at the Department of Geometry of Eötvös Lòrànd University (Budapest) in 1986.

§1. We start with the following important observation.

Lemma 1. If P is a convex d-polytope in E^d and H is a hyperplane of E^d ($d \ge 1$) which does not contain any vertex of P, then on at least one side of H there exists a face of P of dimension at least $\left\lceil \frac{d}{2} \right\rceil$.

Proof. Since the statement has already stimulated many nice generalizations, we omit its simple proof. (See [2] and also [1], [4], and [5].)

Definition. Let $H \subset E^d$ be a hyperplane, $d \ge 1$. Then H bisects a subset S of E^d if there are points p_1 and p_2 in $S \setminus H$ which are on opposite sides of H.

As an immediate consequence, we get the following.

Corollary. Let P be a convex d-polytope in E^d ($d \ge 1$) and let k be an integer such that $0 \le k \le \left\lfloor \frac{d}{2} \right\rfloor$. Then there is no hyperplane of E^d which bisects the (relative) interior of every k-face of P. **Lemma 2.** For the integers 0 < k < d, there exists a convex *d*-polytope *P* in E^d and a hyperplane (in E^d) which bisects the (relative) interior of every k-face of *P* if and only if $\left[\frac{d+2}{2}\right] \leq k \leq d-1$. *P* possesses disjoint k-nuclei if and only if there is a hyperplane in E^d which bisects the (relative) interior of every k-face of *P*.

Proof. If *P* is a convex *d*-polytope in E^d and *H* is a hyperplane of E^d ($d \ge 1$) which bisects the (relative) interior of every *k*-face of *P*, then we may suppose that *H* does not contain any vertex of *P*. Thus $k \ge \left[\frac{d}{2}\right] + 1 = \left[\frac{d+2}{2}\right]$ by Lemma 1. On the other hand, if $\left[\frac{d+2}{2}\right] \le k \le d-1$, then the case of a regular *d*-simplex of E^d shows the existence of a convex *d*-polytope *P* in E^d and of a hyperplane *H* (in E^d) which bisects the (relative) interior of every *k*-face of *P*. (We split the set of the vertices of a regular *d*-simplex by a hyperplane of E^d into two sets of cardinality $\left[\frac{d+1}{2}\right]$ and $\left[\frac{d+2}{2}\right]$. The sets determine simplices of dimension $\left[\frac{d-1}{2}\right]$ and $\left[\frac{d}{2}\right] + 1 = \left[\frac{d+2}{2}\right] \le k \le d-1$ will contain some vertices from both sets; that is, a hyperplane bisects the (relative) interior of every *k*-face.)

Finally, any k-nucleus of P contains a compact convex subset of P which is also a k-nucleus. Hence if P possesses two disjoint k-nuclei, then we may suppose that there is a hyperplane H which is disjoint from the k-nuclei and separates them. Since each k-face F of P meets both components of $P \setminus H$, H bisects the (relative) interior of F. Conversely, let H be a hyperplane which bisects the (relative) interiors of the k-faces of P. Let H' be parallel and close to H. Then $H \cap P$ and $H' \cap P$ are disjoint k-nuclei of P. \Box

Theorem 1. Let P be a convex d-polytope such that $f_0(P) \le 2d - 1$, $d \ge 3$. Then P possesses disjoint (d - 1)-nuclei.

Proof. We fix a facet of P, say, F^* . Since F^* has at least d vertices, there exist $k \ge 0$ and $m \ge 1$ such $k + m \le d - 1$,

 $P = \operatorname{conv} \{p_1, \ldots, p_{d+k}, q_1, \ldots, q_m\}$ and $F^* = \operatorname{conv} \{p_1, \ldots, p_{d+k}\}$. Since $m \leq d-1$, every facet of P contains a vertex of F^* . (But no facet of P contains all the vertices of F^* , except F^* .) Consequently, since $d \geq 3$, there is a vertex, say, p_1 of F^* such $N_1 = \operatorname{conv} \{q_1, \ldots, q_m, p_1\}$ is not a facet of P. (This is obvious for m < d-1, and for m = d-1, it is enough to observe that if N_1 is a facet then $\operatorname{conv} \{q_1, \ldots, q_{d-1}, p_1\}$ is a (d-1)-simplex. So $\operatorname{conv}(q_1, \ldots, q_{d-1})$ is a (d-2)-face of P belonging to two facets of P.) We now set $N_2 = \operatorname{conv} \{p_2, p_3, \ldots, p_{d+k}\}$ and observe that $N_1 \cap N_2 = \emptyset$.

Let F be a facet of P. If $F = F^*$, then $p_1 \in N_1 \cap F$ and $p_{d+k} \in N_2 \cap F$. If $F \neq F^*$, then of course some $q_i \in N_1 \cap F$. The preceding argument shows that $N_1 \neq F$ and thus, some $p_j \in N_2 \cap F$ where $2 \leq j \leq d + k$. Hence N_1 and N_2 are disjoint (d-1)-nuclei of P. \Box

Remark 1. For any $d \ge 3$, there is a convex *d*-polytope *P* with 2*d* vertices such that no hyperplane meets the (relative) interior of every facet of *P*.

In E^d , let p_i be the point with 1 in its *i*'th coordinate and zero elsewhere and $q_i = -p_i$; i = 1, ..., d and $d \ge 3$. Then the set $P^{d} = \operatorname{conv} \{p_{1}, \dots, p_{d}, q_{1}, \dots, q_{d}\}$ is a *d*-crosspolytope (cf. [3], p. 55). Suppose that there is a hyperplane H in E^d which meets the (relative) interior of every facet of P^d . Then we may assume that H contains no vertex of P^d . Let H^+ and H^- be two open half-spaces bounded by H. We claim that if $\{p_i, q_i\} \subset H^+$ for some i = 1, ..., d, then $\{p_i, q_i\} \cap H^+ \neq \emptyset$ for all j = 1, ..., d. If not, then for some $j \neq i$, $\{p_j, q_j\} \subset H^-, \frac{p_j + q_j}{2} = 0 \in H^- \text{ and } \frac{p_i + q_i}{2} = 0 \in H^+; \text{ a contradiction.}$ Thus by relabelling, we may assume that $\{p_1, \ldots, p_d\} \in H^+$. Recall that P^d has 2^d facets, and each facet is a (d-1)-simplex which contains either p_i or q_i , i = 1, ..., d. Therefore conv $\{p_1, ..., p_d\}$ is a facet contained in H^+ . Thus we have shown that H contains a facet of P^d on one side, which is a contradiction. Hence P^d does not have disjoint (d-1)-nuclei (see Lemma 2). We remark that every (d-1)-nucleus of P^d contains the origin of E^d . \Box

§2. We now introduce the results which we use for our examination of d-polytopes with a "large" number of facets.

A graph G on a set of vertices V is a subset of unordered pairs $(x, y), x, y \in V$. The elements of G are called edges. G is *simple* if it has no loops or parallel edges. A 1-*factor* of G is a system of independent edges (no two of them have an endpoint in common) covering all the vertices of V. We shall use the following well known fact.

Theorem 2. Let G be a simple graph on 2n vertices with all degrees at least n. Then G has a 1-factor.

Proof. ([7], p. 51) We suppose that G has no 1-factor. Then there exists a matching F in G, with a maximum number of edges, and two vertices u, v not in F. (A matching in G is a collection of edges of G such that each vertex belongs to at most one of them.) Let the edge $(x, y) \in F$. If there are at least three edges joining $\{x, y\}$ to $\{u, v\}$ then there are two of them which are independent, say, (x, u) and (y, v). But then $(F \setminus \{(x, y)\}) \cup \{(x, u), (y, v)\}$ is a bigger matching then F; a contradiction. So each edge of F is joined to $\{u, v\}$ by at most two edges. Since u and v are not joined to each other or to any point not on the edges of F (otherwise, F would not be maximal), this implies that deg(u) + deg $(v) \leq 2 \cdot |F| \leq 2(n-1)$. This, however, contradicts the hypothesis that deg(u) and deg(v) are at least n. \Box

Lemma 3. Let $A_1, A_2, ..., A_d$ be d convex sets in E^d of dimension at least d - 2, $d \ge 3$. Then

(2.1) there is a (d-2)-flat which contains two of the A_i , or

(2.2) there is a hyperplane which contains all the A_i , or

(2.3) there is a hyperplane which bisects each A_i .

Proof. Assume that (2.1) and (2.2) are not true for A_1, A_2, \ldots, A_d $(d \ge 3)$. Let H be a hyperplane containing the points $p_i \in \operatorname{relint} A_i$, $1 \le i \le d-1$, and $p_d^1 \in \operatorname{relint} A_d$. Since (2.2) is not true, at least one of our sets, say, A_d contains a point $p_d^2 \in \operatorname{relint} A_d$ outside H. Since (2.1) is not true, the (d-2)-flat $\overline{H} \subset H$, which passes through the points $p_1, p_2, \ldots, p_{d-1}$, may be chosen so that the sets $A_1, A_2, \ldots, A_{d-1}$ have points outside \overline{H} with the possible exception of, say, A_1 . In that case, the dimension of A_1 is d-2. Then there exists a point $p_d \in \operatorname{conv} \{p_d^1, p_d^2\} \subset \operatorname{relint} A_d$ such that the hyperplane spanned by p_d and \overline{H} bisects all the sets A_1, A_2, \ldots, A_d , except possibly A_1 and in that case, A_1 is a (d-2)-dimensional subset of the hyperplane in question. But then, a suitable rotation of the hyperplane yields the hyperplane satisfying (2.3). \Box

Lemma 4. Let P be a convex d-polytope which possesses d (d-2)-faces $A_1, A_2, ..., A_d$ such that any facet of P contains at least one A_i , $d \ge 3$. Then there is a hyperplane of E^d which bisects the (relative) interior of every facet of P.

Proof. Let $1 \le i < j \le d$. Since A_i and A_j are distinct (d - 2)-faces of P, it follows that the affine hull of $A_i \cup A_j$ is either E^d or a hyperplane of E^d . Thus (2.1) is not true: By (2.2), we may assume that there is a hyperplane H such that $\bigcup_{i=1}^{d} A_i \subset H$. Since any facet of Pcontains at least one A_i , $H \cap P$ is determined by d supporting hyperplanes of P. Thus $H \cap P$ is a (d - 1)-simplex in H. If H is a supporting hyperplane of P, then P is a d-simplex and the assertion follows by Theorem 1. If H does not support P, then P is a bipyramid with base $H \cap P$ and P possesses d + 2 vertices. Since $d \ge 3$ implies that $d + 2 \le 2d - 1$, we again apply Theorem 1. Finally, (2.3) immediately yields the Lemma. □

§3. Theorem 3. Let P be a convex d-polytope such that $f_{d-1}(P) \leq 2d, d \geq 3$. Then there is a hyperplane in E^d which bisects the (relative) interior of every facet of P.

Proof. We note that it is sufficient to consider the case $f_{d-1}(P) = 2d$. Let F_1, F_2, \ldots, F_{2d} be the 2d facets of P. We observe that each facet contains at least d(d-2)-faces and of course, each (d-2)-faces is uniquely determined by two facets.

Let G be a graph on 2d vertices, labelled 1, 2, ..., 2d, such that there is an edge between distinct i and j if and only if $F_i \cap F_j$ is a (d-2)-face of P. Thus each vertex of G has degree at least d and G is simple. By Theorem 2, G has a 1-factor. Thus P possesses d (d-2)-faces such that any facet of P contains one of them. Hence the assertion follows from Lemma 4. \Box

Remark 2. In E^3 , there is a convex 3-polytope with seven facets such that no plane meets that (relative) interior of every facet. As depicted in Fig. 1, let $P = conv \{(0,0,0), (1,0,0), (1,1,0), (0,1,0), (0,0,1), (1,0,1), (0,1,1)\}$. Suppose that there is a plane H which

meets the (relative) interior of every facet of P. As in Remark 1, we assume that H contains no vertex of P and introduce H^+ and H^- .

Since conv {(1, 1, 0), (1, 0, 1), (0, 1, 1)} is a facet of *P*, we may assume that, say, {(1, 1, 0), (1, 0, 1)} $\subset H^+$ and $(0, 1, 1) \in H^-$. Thus $(1, 0, 0) \in H^-$ as well, and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = \frac{1}{2}(1, 0, 0) + \frac{1}{2}(0, 1, 1) \in H^-$. Then $(1, 0, 1) \in H^+$ and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = \frac{1}{2}(1, 0, 1) + \frac{1}{2}(0, 1, 0) \notin H^+$ imply that $(0, 1, 0) \in H^-$. A similar argument yields that $(0, 0, 0) \in H^-$. As conv {(0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1)} is a facet of *P*, the preceding implies that $(0, 0, 1) \in H^+$. But then $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) = \frac{1}{2}(0, 0, 1) + \frac{1}{2}(1, 1, 0) = \frac{1}{2}(1, 0, 0) + \frac{1}{2}(0, 1, 1) \in H^+ \cap H^-$; a contradiction. Thus there is no hyperplane *H* which bisects every facet. \Box

Lemma 5. Let $P \subset E^d$, $d \ge 3$, be a convex d-polytope with $f_{d-1}(P) = 2d + 1$. Then for any set of d + 1 facets $F_1, F_2, \ldots, F_{d+1}$ of P, there is a hyperplane H in E^d such that H bisects the (relative) interior of each F_i , $i = 1, 2, \ldots, d + 1$.

We introduce the following notion.

Definition. Two facets of a convex *d*-polytope are *adjacent* if their intersection is a (d - 2)-face of the polytope.

Proof of Lemma 5. We consider first the case when no two of the facets $F_1, F_2, \ldots, F_{d+1}$ are adjacent. Then $F_1, F_2, \ldots, F_{d+1}$ are (d-1)-simplices and all of them are adjacent to any of the other d facets of P. Say, F is a facet of P which is adjacent to the facets $F_1, F_2, \ldots, F_{d+1}$. Let H be the supporting hyperplane spanned by F. Then a hyperplane H', close and parallel to H, bisects the relative interior of each facet $F_i, i = 1, 2, \ldots, d + 1$. Next we suppose that, say, F_1 and F_2 are adjacent. Then we choose points $p_1 \in \text{relint} (F_1 \cap F_2)$ $p_2 \in \text{relint } F_3, \ldots, p_d \in \text{relint } F_{d+1}$. Thus there is a hyperplane H going

through the points $p_1, p_2, ..., p_d$. In addition, we choose the points $p_1, p_2, ..., p_d$ such that $p_1 \in F_1 \cap F_2 \notin H$ (since $d \ge 3$). Consequently, H bisects the (relative) interior of each F_i , i = 1, 2, ..., d + 1. \Box

Lemma 6. Let $P \subset E^d$, $d \ge 3$, be a convex d-polytope with a vertex w which lies on exactly d facets F_1, F_2, \ldots, F_d of P. Let H be a hyperplane such that $w \in H$ and $H \cap \operatorname{int} P \neq \emptyset$. Then there is a hyperplane H', close to H and not containing w, which bisects the (relative) interior of each F_i , $i = 1, \ldots, d$.

Proof. Since w lies on exactly d-facets of P, there is a simplex $Q \subset P$ such that w is a vertex of Q, $H \cap \operatorname{int} Q \neq \emptyset$ and $F_i \cap Q$ are facets of Q, $i = 1, \ldots, d$. Let F_w be the remaining facet of Q. Then $w \notin F_w$, $H \cap \operatorname{relint} F_w \neq \emptyset$ and H separates in some manner the vertices of F_w . If both components of $Q \setminus H$ contain at least two vertices of F_w , then any H', close to H and not containing w, bisects each relint F_i . If one component of $Q \setminus H$ contains exactly one vertex of F_w , then we choose H' so that each component of $Q \setminus H'$ contains at least two vertices of vertices of Q. \Box

Now we are in a position to prove our last theorem.

Theorem 4. Let $P \subset E^d$ be a convex d-polytope such that it has a simple vertex (a vertex which belongs to exactly d facets of P) and $f_{d-1}(P) = 2d + 1, d \ge 4$. Then there is a hyperplane in E^d which bisects the (relative) interior of every facet of P.

Proof. Let w be a simple vertex of P. Let $\mathscr{F} = \{F_1, \ldots, F_d\}$ or the set of facets which contain w and $\mathscr{F}^* = \{F_1^*, \ldots, F_d^*, F_{d+1}^*\}$ be the set of facets which do not contain w. We claim that there exist adjacent facets in \mathscr{F}^* .

Suppose that $F_i^* \in \mathscr{F}^*$ is not adjacent to any $F_j^* \in \mathscr{F}^*$ for $i \neq j$. Then F_i^* is necessarily adjacent to each $F_k \in \mathscr{F}$ and F_i^* is a (d-1)-simplex. Since $w \notin F_i^*, Q = \operatorname{conv} \{F_i^*, w\} \subset P$ is a d-simplex. Let $\overline{H}_k(\overline{H}_i^*)$ denote the closed halfspace bounded by the affine hull aff $F_k(\operatorname{aff} F_j^*)$ and containing $P, F_k \in \mathscr{F}$ ($F_i^* \in \mathscr{F}^*$). Since Q is a d-simplex, it follows that $P \subset \left(\bigcap_{k=1}^d \overline{H}_k\right) \cap \overline{H}_i^* = Q$ and P is a d-simplex; a contradiction. As an immediate consequence of the preceding, we observe that

(i) there exist four facets of \mathscr{F}^* , say, F_1^*, F_2^*, F_3^* and F_4^* such that F_1^* and F_2^* (F_3^* and F_4^*) are adjacent or

(ii) there is an $F_i^* \in \mathscr{F}^*$ which is adjacent to each $F_i^* \in \mathscr{F}^* \setminus \{F_i^*\}$.

If (i), then we choose points $p \in \text{relint}(F_1^* \cap F_2^*)$, $q \in \text{relint}(F_3^* \cap F_4^*)$ and $r_j \in \text{relint} F_j^*$, j = 5, ..., d + 1. Then there is a hyperplane Hcontaining w, p, q and the (d - 3) points $r_5, ..., r_{d+1}$. Since $d \ge 4$ we may choose the r_j 's so that H contains neither $F_1^* \cap F_2^*$ nor $F_3^* \cap F_4^*$. Thus a hyperplane H', close to H, also bisects the (relative) interior of each $F_k^* \in \mathscr{F}^*$. Finally Lemma 6 implies that there is an H' which bisects the (relative) interior of every facet of P.

We assume (ii). Let \overline{H} denote supporting hyperplane spanned by F_i^* . In \overline{H} , F_i^* is a convex (d-1)-polytope whose facets include $F_i^* \cap F_j^*$ for $i \neq j$, $1 \leq j \leq d+1$. Obviously, the number of facets of F_i^* in \overline{H} is at most 2d. If this number of facets is at most 2(d-1) then by Theorem 3, there exists a hyperplane H^* in \overline{H} which bisects the (relative) interior of every facet of F_i^* in \overline{H} . If the number of facets of F_i^* in \overline{H} is 2(d-1) + 1 = 2d - 1 then by Lemma 5, there exists a hyperplane H^* in \overline{H} which bisects the (relative) interiors of the facets $F_i^* \cap F_j^*$, $j \neq i$, $1 \leq j \leq d+1$. In both cases, Lemma 6 yields a hyperplane in E^d , close to aff $\{H^*, w\}$, which bisects the relative interior of every facet of P. Finally, if F_i^* is adjacent to any other facet of P, then a hyperplane H in E^d , close and parallel to \overline{H} , bisects the (relative) interiors of the facets of P, then a hyperplane H in E^d , close and parallel to $\overline{F_i^*}$). But then, after a little rotation of H, the resulting hyperplane bisects the relative interior of every facet of P. \Box

Remark 3. Let $d \ge 4$. Then there is a convex polytope $P \subset E^d$ with $f_{d-1}(P) = 2d + 2$ such that no hyperplane in E^d meets the (relative) interior of every facet of P.

Let $Q = \operatorname{conv} \{q_1, \ldots, q_d, q_{d+1}\}$ be a *d*-simplex in E^d . As the vertices of Q are in general position, it follows that $Q^* = \operatorname{conv} \{q_1^*, \ldots, q_d^*, q_{d+1}^*\}$ is a *d*-simplex whenever q_i^* is sufficiently close to q_i , $i = 1, \ldots, d+1$. Now let P be a convex *d*-polytope obtained by slicing off each q_i of Q by a hyperplane arbitrarily close to q_i , $i = 1, \ldots, d+1$. Then each q_i is replaced by a facet of P, the points of which are arbitrarily close to q_i . Thus P has 2d + 2 facets and any nucleus of P contains d + 1 points q_i^* as described above. \Box

References

[1] BEZDEK, A., BEZDEK, K., ODOR, T.: On a Caratheodory-type theorem. Preprint (1988).

[2] GOODMAN, J. E., PACH, J.: Cell decomposition of polytopes by bending. Israel J. Math. 64, 129–138 (1988).

[3] GRÜNBAUM, B.: Convex Polytopes. New York: Interscience. 1967.

[4] HOVANSKI, A.G.: Hyperplane sections of polytopes, toric varieties and discrete groups in Lobachevsky space. Functional Anal. Appl. 20, 50-61 (1986).

[5] KINCSES, J.: Convex hull representation of cut polytopes. Preprint (1988).

[6] KLEINSCHMIDT, P., PACHNER, U.: Shadow-boundaries and cuts of convex polytopes. Mathematika 27, 58-63 (1980).

[7] LOVÁSZ, L.: Combinatorial Problems and Exercises. Amsterdam-New York-Oxford: North-Holland. p. 51, problem 7.22.

[8] SHEPHARD, G. C.: Sections and projections of convex polytopes. Mathematika 19, 144–162 (1972).

K. Bezdek	T. Bisztriczky	R. CONNELLY
Dept. of Geometry	Dept. of Mathematics &	Dept. of Mathematics
Eötvös L. University	Statistics	Cornell University
1088 Budapest	University of Calgary	Ithaca, NY 14853, U.S.A.
Rákóczi út 5	Calgary, Alberta	
Hungary	Canada T2N 1N4	

and

Dept. of Mathematics Cornell University Ithaca, NY 14853, U.S.A.