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Abstract. We call a convex subset N of a convex d-polytope P = E“ a k-nucleus
of P if N meets every k-face of P, where 0 < k < d. We note that P has disjoint
k-nuclei if and only if there exists a hyperplane in E? which bisects the (relative)

interior of every k-face of P, and that this is possible only if [Mil £k<d-1

Our main results are that any convex d-polytope with at most 2d — 1 vertices (d = 3)
possesses disjoint (d — 1)-nuclei and that 24 — 1 is the largest possible number with
this property. Furthermore, every convex d-polytope with at most 2 d facets (d = 3)
possesses disjoint (d — 1)-nuclei, 2 d cannot be replaced by 2d + 2, and for d = 3, six
cannot be replaced by seven.

§0. Introduction. Let P = E“ be a convex d-polytope with S (P)
Jj-dimensional faces, 0 < j < d — 1 and d > 3. A convex subset of P is
called a k-nucleus of P if it meets every k-face of P, 0 < k < d. (For
the terminology, the reader should consult [3].) It is easy to check
(Lemma 2) that P possesses disjoint £-nuclei if and only if there exists
a hyperplane which bisects the (relative) interior of every k-face of P.
One might expect that there exists a P with a “large” number of
j-dimensional faces such that there are no disjoint k-nuclei of P.
Nevertheless, we show (Lemma 2) that there exists a convex:
d-polytope in E having disjoint k-nuclei if and only if
[%] <k<d-1,d>3 ([x] means the largest possible integer
which is not greater than xeR.) Thus the following question arises
naturally: What is the largest possible integer F;(d, k) (d> 3,
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0<j<d- 1,[d—“5—2]<k<d— 1) such that £(P) < Fy(d,k) im-

plies that P = E“ possesses disjoint k-nuclei? Lemma 2 shows that
dt1< I*}(d,[d—;r~2D< ﬁ;(d,[%—z] " 1>< < F(dd—1)
for any 0 <j<d— 1. We also show that F,(d,d—1)=2d -1,
d> 3 (Theorem 1, Remark 1), 2d< F,_(d,d— 1)<2d+ 1,d>4
(Theorem 3, Remark 3) and that F, (3, 2) = 6 (Theorem 3, Remark 2).
As an open problem, we ask whether there exists a convex d-polytope
in E, d> 4, with 2d + 1 facets such that it possesses no disjoint
(d — 1)-nuclei? If such a polytope exists, then it does not have a simple
vertex (Theorem 4). Finally, it would be very interesting to determine
F,(d, k) in some other cases as well. Since our problem is connected
with sections of polytopes, it is worth mentioning that some other
problems about convex polytope cross-sections can be found in [1],
(2], [4], [5], [6] and [8].

We wish to remark that work on this article was started at the
Department of Geometry of E6tvos Lorand University (Budapest) in
1986.

§1. We start with the following important observation.

Lemma 1. If P is a convex d-polytope in E* and H is a hyperplane
of E4(d = 1) which does not contain any vertex of P, then on at least

one side of H there exists a face of P of dimension at least [g]

Proof. Since the statement has already stimulated many nice
generalizations, we omit its simple proof. (See [2] and also [1], [4], and

[51)

Definition. Let H = E? be a hyperplane, d > 1. Then H bisects a
subset S of E if there are points p, and p, in S\ H which are on
opposite sides of H.

As an immediate consequence, we get the following.

Corollary. Let P be a convex d-polytope in E°(d = 1) and let k be
an integer such that 0 < k < [g] Then there is no hyperplane of E?

which bisects the (relative) interior of every k-face of P.
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Lemma 2. For the integers 0 <k < d, there exists a convex
d-polytope P in E° and a hyperplane (in E®) which bisects the (relative)

interior of every k-face of P if and only if [%2} <k<sd-1.P

possesses disjoint k-nuclei if and only if there is a hyperplane in E*
which bisects the (relative) interior of every k-face of P.

Proof. If P is a convex d-polytope in E“ and H is a hyperplane of
E“(d = 1) which bisects the (relative) interior of every k-face of P,
then we may suppose that H does not contain any vertex of P. Thus

k?[g]+ 1 =[£1%2] by Lemma 1. On the other hand, if

[Wd ; 2] < k < d — 1, then the case of a regular d-simplex of E?shows

the existence of a convex d-polytope P in E¢ and of a hyperplane H
(in E%) which bisects the (relative) interior of every k-face of P. (We
split the set of the vertices of a regular d-simplex by a hyperplane of

E? into two sets of cardinality d+1 and d+2 . The sets
2 2
determine simplices of dimension [%] and [g] Consequently,

any k-face of our regular d-simplex with [ﬂ +1= |:d;—2] <

< k< d -1 will contain some vertices from both sets; that is, a
hyperplane bisects the (relative) interior of every k-face.)

Finally, any k-nucleus of P contains a compact convex subset of
P which is also a k-nucleus. Hence if P possesses two disjoint k-nuclei,
then we may suppose that there is a hyperplane H which is disjoint
from the k-nuclei and separates them. Since each k-face F of P meets
both components of P\ H, H bisects the (relative) interior of F.
Conversely, let H be a hyperplane which bisects the (relative) interiors
of the k-faces of P. Let H' be parallel and close to H. Then H n P and
H' ~ P are disjoint k-nuclei of P. []

Theorem 1. Let P be a convex d-polytope such that f,(P) < 2d — 1,
d = 3. Then P possesses disjoint (d — 1)-nuclei.

Proof. We fix a facet of P, say, F*. Since F* has at least d ver-
tices, there exist k>0 and m>=1 such k+m<d-1,
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P=conv{p,....Puri>q1>-- G and F*¥ = conv {p,,...,p,,}. Since
m < d — 1, every facet of P contains a vertex of F*. (But no facet of
P contains all the vertices of F*, except F*.) Consequently, since
d = 3, there is a vertex, say, p; of F* such N, = conv{q,,...,q,, P}
is not a facet of P. (This is obvious form < d — 1,and form=d — 1,
it is enough to observe that if N, is a facet then conv{q,,...,q, 1,1}
is a (d — 1)-simplex. So conv(g,,....,q,_ ¢} is a (d — 2)-face of P
belonging to two facets of P.) We now set N, = conv {p,, p3, . -, Payr}
and observe that N, "N, = 0.

Let Fbe a facet of P. If F = F*, then p,e Nyn Fand p,,, € N,nF.
If F# F*, then of course some gq;€ N, N F. The preceding argument
shows that N, # F and thus, some p,e N, F where 2 <j<d+ k.
Hence N, and N, are disjoint (d — 1)-nuclei of P. [

Remark 1. For any d > 3, there is a convex d-polytope P with 2d
vertices such that no hyperplane meets the (relative) interior of every
facet of P.

In E% let p, be the point with 1 in its i’th coordinate and zero
elsewhere and ¢,= —p;; i=1,...,d and d> 3. Then the set
Pé=conv{p,,...Psqis---4qa is @ d-crosspolytope (cf. [3], p.55).
Suppose that there is a hyperplane H in E¢ which meets the (relative)
interior of every facet of P%. Then we may assume that H contains no
vertex of P%. Let H* and H - be two open half-spaces bounded by H.
We claim that if {p,q} < H* for some i=1,...,d, then
{pqy "H" #0 for all j=1,...,d. If not, then for some j+# i,
{9} < H‘,I—’f;—qi =0eH"™ andli_zt—qi = Qe H*; a contradiction.
Thus by relabelling, we may assume that {p,, ..., p,;} € H*. Recall that
P has 29 facets, and each facet is a (d — 1)-simplex which contains
either p, or ¢;, i=1,...,d. Therefore conv{p,,...,p;t is a facet
contained in H*. Thus we have shown that H contains a facet of P*
on one side, which is a contradiction. Hence P? does not have disjoint
(d — 1)-nuclei (see Lemma 2). We remark that every (d — 1)-nucleus
of P9 contains the origin of E¢. O

§2. We now introduce the results which we use for our
examination of d-polytopes with a “large” number of facets.
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A graph G on a set of vertices V is a subset of unordered pairs
(x,¥), x,ye V. The elements of G are called edges. G is simple if it has
no loops or parallel edges. A 1-factor of G is a system of independent
edges (no two of them have an endpoint in common) covering all the
vertices of V. We shall use the following well known fact.

Theorem 2. Let G be a simple graph on 2 n vertices with all degrees
at least n. Then G has a 1-factor.

Proof. (7], p. 51) We suppose that G has no 1-factor. Then there
exists a matching Fin G, with a maximum number of edges, and two
vertices u, v not in F. (A matching in G is a collection of edges of G
such that each vertex belongs to at most one of them.) Let the edge
(x, y)e F. If there are at least three edges joining {x, y} to {u, v} then
there are two of them which are independent, say, (x, u) and (y, v). But
then (F\ {(x,»)}) v{(x,u), (y,v)} is a bigger matching then F, a
contradiction. So each edge of F is joined to {u, v} by at most two
edges. Since u and v are not joined to each other or to any point not
on the edges of F (otherwise, F would not be maximal), this implies
that deg(u) + deg(v) <2-|F|<2(n—1). This, however, con-
tradicts the hypothesis that deg (x) and deg (v) are at least n. O

Lemma 3. Let A, 4,,. .., A, be d convex sets in E° of dimension at
least d — 2, d = 3. Then

(2.1) there is a (d — 2)-flat which contains two of the A,,
or

(2.2) there is a hyperplane which contains all the A,,
or

(2.3) there is a hyperplane which bisects each A,.

Proof. Assume that (2.1) and (2.2) are not true for 4,,4,,..., 4,
(d=3). Let H be a hyperplane containing the points p,erelint 4,,
1 <i<d- 1,and p)erelint 4,. Since (2.2) is not true, at least one of
our sets, say, 4, contains a point pjerelint 4, outside H. Since (2.1)
is not true, the (d — 2)-flat A = H, which passes through the points
P15D2s - - - Pa—1» May be chosen so that the sets 4, 4,,..., 4, , have
points outside A with the possible exception of, say, 4,. In that case,
the dimension of A4; is d—2. Then there exists a point
psEconv{p}, pi} < relint 4, such that the hyperplane spanned by p,
and A bisects all the sets A, 4,, . .., Ay, except possibly 4, and in that
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case, A, is a (d — 2)-dimensional subset of the hyperplane in question.
But then, a suitable rotation of the hyperplane yields the hyperplane
satisfying (2.3). O

Lemma 4. Let P be a convex d-polytope which possesses d
(d — 2)-faces A, A,, ..., A, such that any facet of P contains at least
one A,, d= 3. Then there is a hyperplane of E® which bisects the
(relative) interior of every facet of P.

Proof. Let 1 < i< j<d. Since 4, and 4, are distinct (d — 2)-faces
of P, it follows that the affine hull of 4, 4; is either E¢ or a
hyperplane of E“. Thus (2.1) is not true: By (2.2), we may assume that

d

there is a hyperplane H such that U A; < H. Since any facet of P
i=1

contains at least one A;,, HN P is determined by d supporting
hyperplanes of P. Thus Hn P is a (d — 1)-simplex in H. If His a
supporting hyperplane of P, then P is a d-simplex and the assertion
follows by Theorem 1. If H does not support P, then P is a bipyramid
with base Hn P and P possesses d + 2 vertices. Since d = 3 implies
that d +2<2d— 1, we again apply Theorem 1. Finally, (2.3)
immediately yields the Lemma. [

§3. Theorem 3. Let P be a convex d-polytope such that
fi_1(P)< 2d,d> 3. Then there is a hyperplane in E* which bisects the
(relative) interior of every facet of P.

Proof. We note that it is sufficient to consider the case
fi_1(P)=2d. Let F,F,,..., F,, be the 2d facets of P. We observe
that each facet contains at least d (d — 2)-faces and of course, each
(d — 2)-faces is uniquely determined by two facets.

Let G be a graph on 2d vertices, labelled 1,2,...,2d, such that
there is an edge between distinct 7 and j if and only if F;,nF;is a
(d — 2)-face of P. Thus each vertex of G has degree at least 4 and G
is simple. By Theorem 2, G has a 1-factor. Thus P possesses d
(d — 2)-faces such that any facet of P contains one of them. Hence the
assertion follows from Lemma 4. [

Remark 2. In E’, there is a convex 3-polytope with seven facets
such that no plane meets that (relative) interior of every facet. As
depicted in Fig. 1, let P = conv {(0,0,0), (1,0,0), (1,1,0), (0,1,0),
0,0,1), (1,0,1), (0,1, 1)}. Suppose that there is a plane H which
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meets the (relative) interior of every facet of P. As in Remark 1, we
assume that H contains no vertex of P and introduce H* and H~.

{0317

(0, 0’1 )4-

(0,001 (100"
Fig. 1

Since conv{(1,1,0), (1,0,1), (0,1,1)} is a facet of P, we may
assume that, say, {(1,1,0), (1,0,1)} =« H* and (0,1,1)e H~. Thus
(1,0,0)e H™ aswell, and (3,4, = 1(1,0,0) + 1(0,1,1)e H~. Then
(1,0,)eH" and (3,3, =1(1,0,1)+1(0,1,0)¢ H* imply that
0,1,0)e H~. A similar argument yields that (0,0,0)e H~. As
conv{(0,0,0), (0,1,0), (0,1,1), (0,0, 1)} is a facet of P, the preceding
implies that (0,0,1)eH*. But then (},1,3)=14(0,0,1)+
+3(1,1,00=1(1,0,0) + 1 (0,1,1)e H* nH~; a contradiction.
Thus there is no hyperplane H which bisects every facet. [

Lemma 5. Let P< E°, d>3, be a convex d-polytope with
Ja_1(P)=2d + 1. Then for any set of d + 1 facets F,,F,,.. ,F, , of
P, there is a hyperplane H in E° such that H bisects the (relative)
interior of each F,, i=1,2,...,d + 1.

We introduce the following notion.

Definition. Two facets of a convex d-polytope are adjacent if their
intersection is a (d — 2)-face of the polytope.

Proof of Lemma 5. We consider first the case when no two of the
facets F,F,,...,F;,, are adjacent. Then F,F,...,F, , are
(d — 1)-simplices and all of them are adjacent to any of the other d
facets of P. Say, F is a facet of P which is adjacent to the facets
I, F,,..,F,; . Let H be the supporting hyperplane spanned by F.
Then a hyperplane H’, close and parallel to H, bisects the relative
interior of each facet F;,i = 1,2,...,d + 1. Next we suppose that, say,
F, and F, are adjacent. Then we choose points p,€relint (F, N F))
p.€relint F;, .. ., p,erelint F;, ;. Thus there is a hyperplane H going
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through the points p,,p,,...,p,. In addition, we choose the points
DisDas- - - Dgsuch that p e F, n F, & H(since d > 3). Consequently, H
bisects the (relative) interior of each F,, i = 1,2,...,d + 1. [J

Lemma 6. Let P < E d > 3, be a convex d-polytope with a vertex
w which lies on exactly d facets F|,F,,...,F; of P. Let H be a
hyperplane such that we H and HNint P # 0. Then there is a
hyperplane H', close to H and not containing w, which bisects the
(relative) interior of each F,, i=1,...,d.

Proof. Since w lies on exactly d-facets of P, there is a simplex
Q < P such that w is a vertex of Q, HnintQ # 0 and F,n Q are
facets of Q, i=1,...,d. Let F, be the remaining facet of Q. Then
w¢F,, Hnrelint F,, # 0 and H separates in some manner the vertices
of F,,.. If both components of Q \ H contain at least two vertices of
F,, then any H’, close to H and not containing w, bisects each relint
F;. If one component of Q \ H contains exactly one vertex of F,, then
we choose H' so that each component of Q \ H' contains at least two
vertices of Q. [J

Now we are in a position to prove our last theorem.

Theorem 4. Let P = E“ be a convex d-polytope such that it has a
simple vertex (a vertex which belongs to exactly d facets of P) and
fi_1(P)=2d + 1,d > 4. Then there is a hyperplane in E° which bisects
the (relative) interior of every facet of P.

Proof. Let w be a simple vertex of P. Let & = {F|,...,rz; vv wn
set of facets which contain w and F* = {F¥,.. ., F%, F}, )} be the set
of facets which do not contain w. We claim that there exist adjacent
facets in F*.

Suppose that F}*e¢ #* is not adjacent to any Fe #* for i # j. Then
F¥is necessarily adjacent to each F e # and Ffis a (d — 1)-simplex.
Since w¢ F¥ Q = conv {F¥ w} = Pis a d-simplex. Let H,(H} denote
the closed halfspace bounded by the affine hull aff F, (aff F}) and
containing P, F,e # (F¥e #*). Since Q is a d-simplex, it follows that

d
Pc (ﬂ FIk) N H*= Q and Pis a d-simplex; a contradiction.
k=1
As an immediate consequence of the preceding, we observe that

(1) there exist four facets of #*, say, Ff, F¥, F¥ and Ffsuch that
F¥ and F¥ (F¥ and F})) are adjacent or
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ii) there is an Ffe #* which is adjacent to each Ffe #*\ {F¥.
i J

If (1), then we choose points pe relint (Ff N F¥), gerelint (F¥ n F¥)
and rierelint i, j=35,...,d+ 1. Then there is a hyperplane H
containing w, p, g and the (d — 3) points rs,...,r,, . Since d > 4 we
may choose the r/s so that H contains neither FF¥ 0 F¥ nor F¥ 0 Ff.
Thus a hyperplane H’, close to H, also bisects the (relative) interior
of each F}e #*. Finally Lemma 6 implies that there is an A" which
bisects the (relative) interior of every facet of P.

We assume (ii). Let A denote supporting hyperplane spanned by
F}.In H, F¥is a convex (d — 1)-polytope whose facets include F¥n F¥
fori# j, 1 < j< d+ 1. Obviously, the number of facets of F¥in H is
at most 2d. If this number of facets is at most 2(d — 1) then by
Theorem 3, there exists a hyperplane H* in H which bisects the
(relative) interior of every facet of F*in H. If the number of facets of
Ffin His 2(d— 1)+ 1 =2d — 1 then by Lemma 35, there exists a
hyperplane H* in A which bisects the (relative) interiors of the facets
FfnF; j#i, 1<j<d+ 1. In both cases, Lemma 6 yields a
hyperplane in E? close to aff {H* w}, which bisects the relative
interior of every facet of P. Finally, if F*is adjacent to any other facet
of P, then a hyperplane H in EY close and parallel to A, bisects the
(relative) interiors of the facets of P (except possibly that of F¥. But
then, after a little rotation of H, the resulting hyperplane bisects the
relative interior of every facet of P. [J

Remark 3. Let d > 4. Then there is a convex polytope P = E? with
Ja—1(P) = 2d + 2 such that no hyperplane in E? meets the (relative)
interior of every facet of P.

Let Q0 =conv{q,...,q: 94,1} be a d-simplex in E° As the
vertices of (@ are in general position, it follows that
O* = conv{qgf,...,q} g}, } is a d-simplex whenever g¢¥is sufficiently
close to ¢;, i=1,...,d+ 1. Now let P be a convex d-polytope
obtained by slicing off each ¢; of Q by a hyperplane arbitrarily close
to g, i=1,...,d + 1. Then each g, is replaced by a facet of P, the
points of which are arbitrarily close to ¢;,. Thus P has 2d + 2 facets
and any nucleus of P contains d + 1 points g*as described above. [
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