LOWER BOUNDS FOR PACKING DENSITIES

K. BEZDEK (Budapest) and R. CONNELLY* (Ithaca)

I. Introduction

If a packing of incompressible rigid convex objects is sufficiently compressed or "compacted", one expects that the packing density will not be small. The aim of this paper is to show that certain conditions on a packing insure that there is at least a lower bound on the packing density, which generalize some previous results concerning such lower bounds.

One such condition is the notion of a compact packing of convex bodies due to L. Fejes Tóth in [6]. (Recall that a body in n-dimensional Euclidean space E^{n} is a compact set with nonempty interior, and a packing is a collection of sets with disjoint interiors.) We say that a body A is enclosed by the bodies $\left\{B_{i}\right\}$ if any curve, connecting a point of A with a point sufficiently far from A, intersects $\bigcup_{i} B_{i}$. If in the packing each body is enclosed by the bodies having a point in common with it, then the packing is said to be compact.

Two sets S_{1} and S_{2} in E^{n} are said to be homothetic if they are either translates or there exists a point O (as origin) and a positive real number λ such that

$$
\begin{equation*}
S_{2}=\lambda S_{1}=\left\{P_{2} \mid P_{2}-O=\lambda\left(P_{1}-O\right), P_{1} \in S_{1}\right\} \tag{1.1}
\end{equation*}
$$

where we always regard points as vectors. The homogeneity of a packing of convex bodies is the infimum of the volumes (or areas in dimension two) of the bodies divided by the supremum of the volumes. L. Fejes Tóth [6] proved that, in the Euclidean plane, the lower density of a compact packing of centrally symmetric homothetic convex sets of positive homogeneity is at least $3 / 4$, and he conjectured that when the condition of central symmetry is dropped, then the bound $3 / 4$ can be replaced by $1 / 2$. This was proved by A. Bezdek, K. Bezdek, and K. Böröczky in [1]. Thus if d denotes the density of a compact packing of the Euclidean plane by homothetic convex sets such that the ratio of the areas of any two sets is bounded, then $d \geqq 1 / 2$. Later K. Bezdek [2] proved that in $E^{n}(n \geqq 3)$ the density of any compact lattice packing formed by translates of a centrally symmetric convex body is greater than $2^{1 /(n-1)} /\left(2^{1 /(n-1)}+1\right)>1 / 2$. We shall generalize the theorems mentioned above. Namely we shall prove the following.

Theorem 1. If d denotes the density of a compact packing in $E^{n}, n \geqq 2$, consisting of homothetic centrally symmetric convex bodies with bounded volume ratios, then $d \geqq(n+1) / 2 n$, and for $n \leqq 3$ there is a compact lattice packing of centrally symmetric convex bodies where equality holds.

[^0]Remark 1. It turns out that our lower bound $(n+1) / 2 n$ is never sharp for $n \geqq 4$, but we do not know of a suitable replacement. We omit the proof. See Grünbaum [8], as well as our later comments about Grünbaum's Theorem.

We say that two sets S_{1} and S_{2} are homotheticly reversed if (1.1) holds for λ negative.

Theorem 2. Let d denote the density of a compact packing in the Euclidean plane consisting of homothetic and homotheticly reversed convex sets with bounded area ratios. Then $d \geqq 1 / 2$.

Remark 2. When the condition of central symmetry is dropped, we present the following problems: What is the greatest lower bound of the densities of compact packings in $E^{n}(n \geqq 3)$ consisting of homothetic convex bodies such that the volume ratios are greater than a fixed positive number? What is the greatest lower bound if we only suppose that our convex bodies are homothetic or homotheticly reversed?

For dimensions n greater than two, the condition of being a compact packing seems to be very strong. For instance, if each of the bodies is strictly convex, i.e. each support plane intersects the body at a single point, then the packing cannot be compact (for $n \geqq 3$).

Thus we offer an alternative to compact packings, in dimensions greater than two, that is more general at least for centrally symmetric convex bodies. Of course, the penalty we pay is that the lower bounds are much lower than for compact packings. We say that a packing of E^{n} by centrally symmetric convex bodies is a triangulated packing if there is a triangulation of E^{n} such that each vertex of the triangulation is the central point of one of the packing elements, and a 1 -simplex between two vertices implies that the two corresponding packing elements intersect. (Recall that a triangulation of a space X is a simplicial complex whose underlying space is X.) In dimension two, for packings of centrally symmetric convex sets, triangulated packings and compact packings are the same.

Theorem 3. Let d denote the density of a triangulated packing of homothetic centrally symmetric convex bodies in $E^{n}, n \geqq 2$, with bounded volume ratios. Then $d \geqq(n+1) / 2^{n}$, and there is a triangulated lattice packing of (congruent) centrally symmetric convex bodies where equality holds.

Remark 3. Unfortunately for dimensions greater than two no packing of congruent spheres can be triangulated.

By using a result of Hadwiger [10] and a result of Rogers and Shephard [12] we can apply Theorem 3 to the case when the convex bodies are not necessarily centrally symmetric. It turns out that any packing \mathscr{P} of translates of a convex body B has an associated packing $\hat{\mathscr{P}}$ of translates of a centrally symmetric convex body \hat{B}, where each B_{i} corresponds to a unique $\hat{B}_{i} \in \hat{\mathscr{P}}$ such that $B_{i} \cap B_{j} \neq \emptyset$ if and only if $\hat{B}_{i} \cap \hat{B}_{j} \neq \emptyset$. We say that \mathscr{P} is a triangulated packing if and only if $\hat{\mathscr{P}}$ is a triangulated packing.

Corollary. Let d denote the density of a triangulated packing of translates of a convex body in E^{n}. Then $d \geqq(n+1) /\binom{2 n}{n}$.

We thank Branko Griinbaum for (gently) pointing out that our Lemma 4 below is essentially the same as his Theorem 1 in [8]. Grünbaum's Theorem says that if there are $n+1$ symmetric homothetic convex bodies in E^{n} with pairwise nonempty intersections, and each body is dilated from its center by $2 n /(n+1)$, then the dilated bodies have a common intersection point.

When Grünbaum's Theorem is specialized to the case when the homothetic bodies are translates (i.e. the homothetic ratios are all 1), Grünbaum points out that his Theorem can be viewed (via Helly's Theorem) as a Jung type of result. Namely, in any Minkowski space (a finite dimensional normed linear space over the reals) a ball of diameter $2 n /(n+1)$ may cover, after a suitable translation, any set of diameter $\leqq 1$, which is a result of Bohnenblast [3]. See also Leichtweiss [11].

On the other hand, Grünbaum also applies his Theorem to the problem of the extensions of transformations [9].

We apply Grünbaum's Theorem (Lemma 4 below) to both our Theorem 1 and Theorem 3.

The main difficulty in Grünbaum's Theorem is handling the homothetic ratios.
We include our own version of Grünbaum's proof for two reasons. First, for the sake of completeness, it is convenient to have this important result included with the other ideas in our Theorem 1 and Theorem 3. Second, Grünbaum's version of his proof is very terse and gives no hint as to how he discovered the particular relations he used. We show how to derive the factor $2 n /(n+1)$ as well as explain geometrically the two cases which Grünbaum considers in his proof.

II. Proof of Theorem 1

The following Lemma 1 is the key result needed in the proof of Theorem 1. Lemma 1 is needed for Lemma 2, and Lemma 2 and Lemma 3 are used to prove Lemma 4 which is used to find a point "close" to the packing elements that surround a "hole".

Let $\left\langle P_{1}, P_{2}, \ldots, P_{n+1}\right\rangle=\sigma$ be a simplex in E^{n}. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n+1}$ be positive real numbers, and suppose we have a point $P_{i, j}(i<j)$ on each edge between P_{i} and P_{j} with the property that

$$
\begin{equation*}
\lambda_{j}\left(P_{i}-P_{i, j}\right)=\lambda_{i}\left(P_{i, j}-P_{j}\right) \tag{2.1}
\end{equation*}
$$

where $1 \leqq i<j \leqq n+1$, and points are regarded as vectors. Define $\bar{\lambda}$ by

$$
\begin{equation*}
\bar{\lambda}=1+\frac{2(n-1)}{\left[\left(\sum_{i=1}^{n+1} \lambda_{i}\right)\left(\sum_{i=1}^{n+1} \lambda_{i}^{-1}\right)-\left(n^{2}-1\right)\right]} . \tag{2.2}
\end{equation*}
$$

For any set X in $E^{n}, P \in E^{n}, \alpha$ a scalar, define

$$
\alpha X(P)=\left\{Q \mid Q=\alpha\left(P^{\prime}-P\right)+P, P^{\prime} \in X\right\}
$$

Let L_{i} denote the hyperplane containing $P_{1, i}, \ldots, P_{i-1, i}, P_{i, i+1}, \ldots, P_{i, n+1}$.
Lemma 1. $\bigcap_{i=1}^{n+1} \lambda L_{i}\left(P_{i}\right) \neq \emptyset$.
Proof. The idea is to find the intersection point P as the solution to certain linear equations. This in turn will allow us to write P and $\bar{\lambda}$ explicitly in terms of matrices involving the P_{i}^{\prime} 's and λ_{i}^{\prime} 's.

For any column vector P in E^{n} let us define

$$
P=\binom{P}{1}
$$

the vector in E^{n+1} obtained by adding a one in the ($n+1$)-st coordinate. (Regard E^{n} as the subset of E^{n+1} consisting of the first n coordinates. All vectors are regarded as column vectors.) Note that $\hat{P}_{1}, \hat{P}_{2}, \ldots, \hat{P}_{n+1}$ is now a basis for E^{n+1}.

We now regard the hyperplanes L_{i} as the solutions to certain linear equations or equivalently as null spaces of certain linear functionals. Let $f_{i}: E^{n+1} \rightarrow E^{1}$ be the linear functional (uniquely) defined by $f_{i}\left(\hat{P_{i}}\right)=1$, and $f_{i}(\hat{Q})=0$, for all Q in L_{i}. We will calculate the f_{i} 's next, explicitly in terms of matrices. Rewriting (2.1) we get, for $i<j$,

$$
\lambda_{j}\left(\lambda_{i}+\lambda_{j}\right)^{-1} \hat{P}_{i}+\lambda_{i}\left(\lambda_{i}+\lambda_{j}\right)^{-1} \hat{P}_{j}=\hat{P}_{i, j}
$$

Applying f_{i} we get, for $i \neq j$,

$$
\lambda_{j}+\lambda_{i} f_{i}\left(\hat{P}_{j}\right)=0, \quad f_{i}\left(\hat{P}_{j}\right)=-\lambda_{j} \lambda_{i}^{-1}
$$

Define an $(n+1)$-by- $(n+1)$ matrix F such that

$$
F \hat{P}_{j}=\left(\begin{array}{c}
f_{1}\left(\hat{P}_{j}\right) \tag{2.3}\\
\vdots \\
f_{j}\left(\hat{P}_{j}\right) \\
\vdots \\
f_{n+1}\left(\hat{P}_{j}\right)
\end{array}\right)=\left(\begin{array}{c}
-\lambda_{j} \lambda_{1}^{-1} \\
\vdots \\
+1 \\
\vdots \\
-\lambda_{j} \lambda_{n+1}^{-1}
\end{array}\right)
$$

(Note that the first equality of (2.3) holds with any vector replacing \hat{P}_{j}.)
We can encode this information in a single matrix as follows: Let J be the column vector in E^{n+1} with all 1's as entries. Then $J J^{t}$ is the $(n+1)$-by- $(n+1)$ matrix with all 1's as entries, where ($)^{t}$ denotes the transpose operation. $J^{t} J$ is the one-by-one matrix with entry $n+1$. (We always regard a one-by-one matrix as a scalar.) Also note that $\left(-J J^{t}+2 I\right)$ is the $(n+1)$-by- $(n+1)$ matrix with +1 's on the diagonal and -1 's elsewhere, where I denotes the $(n+1)$-by- $(n+1)$ identity matrix. Define another $(n+1)$-by- $(n+1)$ matrix A by

$$
A=\left(\hat{P}_{1}, \hat{P}_{2}, \ldots, \hat{P}_{n+1}\right)
$$

Let D be the $(n+1)$-by- $(n+1)$ diagonal matrix where the i-th diagonal entry is λ_{i}.

Then we rewrite (2.3) as
Then

$$
F A=D^{-1}\left(-J J^{t}+2 I\right) D
$$

$$
F=D^{-1}\left(-J J^{t}+2 I\right) D A^{-1}
$$

This is the desired explicit expression for F and thus the functionals f_{i}.
We next proceed to use this to find a similar expression for the intersection point. Suppose $P=\bigcap_{i=1}^{n+1} \lambda L_{i}\left(P_{i}\right)$, for some scalar λ. Then for some $Q_{i} \in L_{i}$,

$$
P=\lambda\left(Q_{i}-P_{i}\right)+P_{i}=\lambda Q_{i}+(1-\lambda) P_{i},
$$

and thus,

$$
\hat{P}=\lambda \hat{Q}_{i}+(1-\lambda) \hat{P}_{i}, \quad f_{i}(\hat{P})=1-\lambda .
$$

By the definition of F,

$$
F P=-(\lambda-1) J, \quad \hat{P}=-(\lambda-1) F^{-1} J=-(\lambda-1) A D^{-1}\left(-J J^{t}+2 I\right)^{-1} D J .
$$

We can justify and simplify this expression for \hat{P} by calculating the inverse of $\left(-J J^{t}+2 I\right)$, using the properties of J, for $n>1$,

Then

$$
\left(-J J^{t}+2 I\right)^{-1}=[-2(n-1)]^{-1}\left(J J^{t}-(n-1) I\right)
$$

$$
\hat{P}=(\lambda-1)[2(n-1)]^{-1} A D^{-1}\left[J J^{t}-(n-1) I\right] D J,
$$

$$
\begin{equation*}
\hat{P}=(\lambda-1)[2(n-1)]^{-1} A\left[\left(\sum_{i=1}^{n+1} \lambda_{i}\right) D^{-1}-(n-1) I\right] J \tag{2.4}
\end{equation*}
$$

since $J^{t} D J=\sum_{i=1}^{n+1} \lambda_{i} .(2.4)$ is the desired explicit expression for \hat{P}.
Since the last entry of \hat{P} is one, this gives us another relation to calculate λ. Let E_{n+1} be the (column) vector in E^{n+1} with the last entry 1 and all the other entries 0 . Calculating the last entry of \hat{P} we get

$$
1=E_{n+1}^{t} \hat{P}=(\lambda-1)[2(n-1)]^{-1} E_{n+1}^{t} A\left[\left(\sum_{i=1}^{n+1} \lambda_{i}\right) D^{-1}-(n-1) I\right] J .
$$

But $E_{n+1}^{t} A=J^{t}$. Thus

$$
\begin{aligned}
& 1=(\lambda-1)[2(n-1)]^{-1}\left[\left(\sum_{i=1}^{n+1} \lambda_{i}\right) J^{t} D^{-1} J-(n-1) J^{t} J\right] \\
& 2(n-1)(\lambda-1)^{-1}=\left(\sum_{i=1}^{n+1} \lambda_{i}\right)\left(\sum_{i=1}^{n+1} \lambda_{i}^{-1}\right)-(n-1)(n+1) .
\end{aligned}
$$

From this it is easy to calculate that $\lambda=\bar{\lambda}$ in (2.2). Thus for this value of λ (only) we see that (2.4) defines \hat{P} and thus P.

Remark 4. In dimension 2 it is clear that P must lie in σ. However in dimension 3 or higher, it could turn out that P lies outside σ. This can be seen by calculating the affine coordinates of $P, t_{1}, t_{2}, \ldots, t_{n+1}$ (i.e. $P=\sum_{i=1}^{n+1} t_{i} P_{i}$) by the same method
as we use to find λ. Thus using (2.4)

$$
t_{i}=(\lambda-1)[2(n-1)]^{-1}\left[\lambda_{i}^{-1}\left(\sum_{j=1}^{n+1} \lambda_{j}\right)-(n-1)\right] .
$$

If

$$
(n-2) \lambda_{i}>\sum_{\substack{j=1 \\ j \neq i}}^{n+1} \lambda_{j},
$$

then P_{i} lies outside the i-th face of σ opposite P_{i}, because t_{i} is negative. Figure 1 , below, shows the sets involved in Lemma 1, for $n=2$. Here it is clear geometrically that P lies in σ.

Fig. 1
There are other ways of calculating $\bar{\lambda}$, using Cramer's Rule for instance, but our method here seems as simple as any, since it does not calculate by explicitly manipulating arrays of numbers, but uses closed form matrix properties instead.

In Grünbaum's Theorem, his first case is when all the $t_{i} \geqq 0$. He presents λ (he calls it μ) as well as the affine coordinates of each point in B_{i} that dilates to \boldsymbol{P}, and then he calculates that each point does indeed dilate to P. His second case is when some $t_{i}<0$, and he handles this differently than we do below.

In what follows we reinterpret the result of Lemma 1 in terms of expanding half spaces. Using the above we define H_{i} as the half space containing P_{i} with boundary L_{i} (recall L_{i} is determined by $P_{1, i}, P_{2, i}, \ldots, P_{i-1, i}, P_{i, i+1}, P_{i, n+1}$).

Lemma 2. $\bigcap_{i=1}^{n+1} 2 n(n+1)^{-1} H_{i}\left(P_{i}\right) \cap \sigma \neq \emptyset$.
Proof. Note that since the harmonic mean is less than the arithmetic mean we have

$$
\begin{gathered}
\left((n+1)^{-1} \sum_{i=1}^{n+1} \lambda_{i}^{-1}\right)^{-1} \leqq(n+1)^{-1} \sum_{i=1}^{n+1} \lambda_{i} \\
(n+1)^{2} \leqq\left(\sum_{i=1}^{n+1} \lambda_{i}\right)\left(\sum_{i=1}^{n+1} \lambda_{i}^{-1}\right) \\
(n+1)^{2}-\left(n^{2}-1\right)=2(n+1) \leqq\left(\sum_{i=1}^{n+1} \lambda_{i}\right)\left(\sum_{i=1}^{n+1} \lambda_{i}^{-1}\right)-\left(n^{2}-1\right) .
\end{gathered}
$$

Thus

$$
\lambda=1+\frac{2(n-1)}{\left(\left(\sum_{i=1}^{n+1} \lambda_{i}\right)\left(\sum_{i=1}^{n+1} \lambda_{i}^{-1}\right)-\left(n^{2}-1\right)\right)} \leqq 1+\frac{2(n-1)}{2(n+1)}=2 n /(n+1)
$$

Thus

$$
\bar{\lambda} L_{i}\left(P_{i}\right) \subset \bar{\lambda} H_{i}\left(P_{i}\right) \subset 2 n(n+1)^{-1} H_{i}\left(P_{i}\right)
$$

By Lemma 1 we get

$$
\begin{equation*}
\bigcap_{i=1}^{n+1} 2 n(n+1)^{-1} H_{i}\left(P_{i}\right) \neq \emptyset \tag{2.5}
\end{equation*}
$$

We shall prove the Lemma by induction on n. It is clearly true for $n=1$. We shall assume the result for $n-1$.

Note that $2 n(n+1)^{-1}$ is a monotone increasing function for $n>0$.
Let H_{i}^{σ} denote the support half-space for σ whose boundary is the hyperplane L_{i}^{σ} spanned by the facet opposite P_{i} in σ. I.e. L_{i}^{σ} is spanned by $P_{1}, P_{2}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{n+1}$ and

$$
\begin{equation*}
\bigcap_{i=1}^{n+1} H_{i}^{\sigma}=\sigma . \tag{2.6}
\end{equation*}
$$

We apply induction to each L_{i}^{σ} with $H_{j} \cap L_{i}^{\sigma}, j \neq i$, replacing H_{j}, and $\sigma \cap L_{i}^{\sigma}$ replacing σ. Thus

$$
\begin{equation*}
\emptyset \neq\left(\sigma \cap L_{i}^{\sigma}\right) \bigcap_{\substack{j=1 \\ j \neq i}}^{n+1} 2(n-1) n^{-1}\left(H_{j} \cap L_{i}^{\sigma}\right)\left(P_{j}\right) \subset \bigcap_{i=1}^{n+1} H_{i}^{\sigma} \bigcap_{\substack{j=1 \\ j \neq i}}^{n+1} 2 n(n+1)^{-1} H_{j}\left(P_{j}\right) \tag{2.7}
\end{equation*}
$$

Thus by (2.5), (2.6), and (2.7) the $2(n+1)$ half-spaces

$$
2 n(n+1)^{-1} H_{i}\left(P_{i}\right), \quad H_{i}^{\sigma}, \quad i=1,2, \ldots, n+1
$$

have the property that every $n+1$ of them have a non-empty intersection. Thus by Helly's Theorem, they all must intersect, finishing the Lemma.

Let \mathscr{P} be a compact packing in E^{n}. Let W, a hole, be the closure of a component of the complement of the union of the elements of \mathscr{P}. Let $\mathscr{P}_{W} \subset \mathscr{P}$ be those packing elements of \mathscr{P} whose intersection with W is $(n-1)$-dimensional. W must be bounded and \mathscr{P}_{W} is finite since \mathscr{P} is a compact packing and the elements of \mathscr{P} have volumes greater than a fixed positive number.

Lemma 3. For all $B_{1}, B_{2} \in \mathscr{P}_{W}, B_{1} \cap B_{2} \neq \emptyset$.
Proof. Suppose not; suppose some $B_{1}, B_{2} \in \mathscr{P}_{W}$ are such that $B_{1} \cap B_{2}=\emptyset$ Suppose that the volume of B_{1} is not larger than the volume of B_{2}. Then B_{2} is not a neighbor of B_{1}, and there is a path from B_{1} through W to the center of B_{2}. Then the ray from the center P_{2} of B_{2} in the opposite direction from the center P_{1} of B_{1} completes a path to infinity that violates the compactness of \mathscr{P}.

To see this suppose not; suppose some neighbor B of B_{1} intersects B_{1} at Q_{1} and the ray at P. Then construct Q_{2} on the line segment $\left\langle Q_{1}, P\right\rangle$ so that the triangles $Q_{1} P_{1} P$ and $Q_{2} P_{2} P$ are similar. Since B is convex, Q_{2} must be in B. But Q_{2} must be in the interior of B_{2} as well, since the coefficient of homogeneity for $B_{\mathbf{\varepsilon}}$
is larger than or equal to the coefficient for B_{1}. Packing elements cannot intersect in interior points. Thus B cannot intersect the path defined above.

Thus $B_{1} \cap B_{2} \neq \emptyset$ for all $B_{1}, B_{2} \in \mathscr{P}_{W}$. See Figure 2.
Remark 5. For Lemma 3 in the plane, we do not need the condition that the elements of \mathscr{P} are homothetic. We can simply choose a ray going to infinity lying between the two common support lines of B_{1}, B_{2}, where $B_{1} \cap B_{2}=\emptyset$.

Fig. 2
Lemma 4 (Grünbaum). $\bigcap_{B_{i} \in \mathscr{F}_{W}} 2 n(n+1)^{-1} B_{i}\left(P_{i}\right) \neq \emptyset$, where P_{i} is the center of B_{i}.
Proof. By Helly's Theorem we need only show the result for $n+1$ elements of \mathscr{P}_{W}, say $B_{1}, B_{2}, \ldots, B_{n+1}$. We can also assume that the centers $P_{1}, P_{2}, \ldots, P_{n+1}$ are affine independent and form a simplex σ in E^{n}. By Lemma 3, we know that there is a unique point $P_{i, j}=B_{i} \cap B_{j} \cap\left\langle P_{i}, P_{j}\right\rangle, i<j$, where $\left\langle P_{i}, P_{j}\right\rangle$ is the line segment between P_{i} and P_{j}. Let H_{i} be the half-space containing P_{i} with $P_{i, j}, j \neq i$, on the boundary of H_{i}. Clearly $H_{i} \cap \sigma \subset B_{i}$. Lemma 2 implies that

$$
\emptyset \neq \bigcap_{i=1}^{n+1} 2 n(n+1)^{-1} H_{i}\left(P_{i}\right) \cap \sigma \subset \bigcap_{i=1}^{n+1} 2 n(n+1)^{-1} B_{i}\left(P_{i}\right)
$$

finishing the Lemma.
For what follows, we need to compare volumes, and it helps to consider a slight generalization of the notion of the volume bounded by a surface. Let P be a point in E^{n}, and let S be an oriented surface possibly with boundary. For instance, S could be a polyhedral surface with an orientation, or the boundary of a component of the intersection of the complements of a finite number of convex bodies. In the case of a polyhedral surface we define the signed volume from a point P to S by

$$
\operatorname{Vol}[S, P]=(n!)^{-1} \sum_{\sigma \in S} \operatorname{det}\left(P_{1}-P, P_{2}-P, \ldots, P_{n}-P\right)
$$

for $\sigma=\left\langle P_{1}, \ldots, P_{n}\right\rangle$, an oriented simplex of S. "det" denotes the determinant, and vectors are n-by-one columns, as usual. If S is a closed surface enclosing a bounded region in E^{n}, then $\operatorname{Vol}[S, P]$ is the volume enclosed by S. By taking limits of polyhedral surfaces, we can extend this definition to the case of more general surfaces, such as the piecewise convex surfaces mentioned above.

We say $C \subset E^{n}$ is a cone from $P \in E^{n}$ if $t C(P)=C$, for all $0<t$. For any set X let bdy (X) denote the topological boundary of X. For a convex body B we choose an orientation on bdy (B) such that $\operatorname{Vol}[b d y(B), P]$ is positive and thus equal to $\operatorname{Vol}(B)$, the usual Euclidean volume.

Lemma 5. Let C be a cone from P in E^{n}, and B a convex body containing P in its interior. Let $P_{0} \in E^{n}$ and $\lambda=1$ be such that $P_{0} \in \lambda B(P)$. Then

$$
\begin{equation*}
(\lambda-1) \operatorname{Vol}(B \cap C)=(\lambda-1) \operatorname{Vol}[\mathrm{bdy}(B) \cap C, P] \geqq \operatorname{Vol}\left[\operatorname{bdy}(B)^{-} \cap C, P_{0}\right], \tag{2.8}
\end{equation*}
$$ where (.)- indicates the opposite orientation.

Fig. 3
Proof. We will show the lemma first in the case when C and B are both polyhedral. The more general case follow by approximating the surfaces with polyhedral sets. Furthermore, by subdividing the boundary of B into simplices, we can further reduce our considerations to the cases when $B \cap C$ is a simplex σ. We simply sum over all simplices on the boundary of B, where each term is the case when C is the cone from P over each simplex in $B \cap C$. Let H denote the half-space containing σ with boundary L containing the face opposite P. Let d denote the distance of P from L, and let d_{0} denote the signed distance of P_{0} from L, where d_{0} is negative if P_{0} is in H. Then

$$
n \operatorname{Vol}(H \cap C)=d \operatorname{Vol}_{n-1}(L \cap C), \quad n \operatorname{Vol}\left[L^{-} \cap C, P_{0}\right]=d_{0} \operatorname{Vol}_{n-1}(L \cap C)
$$

where Vol_{n-1} is the $(n-1)$-dimensional volume in L.

Fig. 4
Then,

$$
d+d_{0} \leqq \lambda d, \quad d_{0} \leqq(\lambda-1) d,
$$

since $P_{0} \in \lambda B(P)$. See Figure 4. Thus

$$
\begin{gathered}
n \operatorname{Vol}\left[L^{-} \cap C, P_{0}\right]=d_{0} \operatorname{Vol}_{n-1}(L \cap C) \leqq \\
\leqq(\lambda-1) d \operatorname{Vol}_{n-1}(L \cap C)=(\lambda-1) n \operatorname{Vol}(H \cap C)=(\lambda-1) n \operatorname{Vol}(B \cap C) .
\end{gathered}
$$

(2.8) then follows, finishing the Lemma.

Proof of Theorem 1. The idea is to compare the volume of the holes of the packing to the volume of the packing elements using Lemma 5. We get our estimate to be the sharpest when there is a point sufficiently near to all of the packing elements next to the hole. Lemma 4 guarantees that there is such a point.

Let W be a hole for the compact packing \mathscr{P}. Recall that \mathscr{P}_{W} is the collection of those elements of \mathscr{P} whose boundary and W intersect in an ($n-1$)-dimensional set. Let P_{i} be the center of B_{i}, as in our previous notation. Let V_{i} denote the cone over $B_{i} \cap W$ from P_{i}, namely

$$
V_{i}=\left\{\left\langle Q, P_{i}\right\rangle \mid Q \in B_{i} \cap W\right\}
$$

where $\left\langle Q, P_{i}\right\rangle$ is the line segment between Q and P_{i}.
By Lemma 4 there is a point

$$
P_{0} \in \bigcap_{B_{i} \in \mathscr{A}_{W}} 2 n(n+1)^{-1} B_{i}\left(P_{i}\right)
$$

By Lemma 5 for $\lambda=2 n(n+1)^{-1}$, and $B_{i} \in \mathscr{P}_{W}$,

$$
\operatorname{Vol}\left[\operatorname{bdy}\left(B_{i}\right)^{-\cap W}, P_{0}\right] \leqq(n-1)(n+1)^{-1} \operatorname{Vol}\left(V_{i}\right)
$$

But

Thus

$$
\sum_{B_{i} \in \mathscr{F}_{W}} \operatorname{Vol}\left[\mathrm{bdy}\left(B_{i}\right)-\cap W, P_{0}\right]=\operatorname{Vol}(W)
$$

$$
\operatorname{Vol}(W) \leqq(n-1)(n+1)^{-1} \sum_{B_{i} \in W} \operatorname{Vol}\left(V_{i}\right)
$$

Let $V=\bigcup_{B_{i} \in \mathscr{P}_{W}} V_{i}$. Then in $W \cup V$

$$
\begin{gathered}
\frac{n+1}{2 n}=\frac{\operatorname{Vol}(V)}{(n-1)(n+1)^{-1} \operatorname{Vol}(V)+\operatorname{Vol}(V)} \leqq \\
\leqq \frac{\operatorname{Vol}(V)}{\operatorname{Vol}(W)+\operatorname{Vol}(V)}=\frac{\operatorname{Vol}(V)}{\operatorname{Vol}(W \cup V)} .
\end{gathered}
$$

Since the sets $\{W \cup V\}$ have disjoint interiors and cover the complement of the packing elements of \mathscr{P} and since the volume ratios of the packing elements are bounded, we have that the lower packing density of \mathscr{P} is $\geqq \frac{n+1}{2 n}$.

To complete the proof of Theorem 1, we need the following:

Construction 1. Let

$$
B=\left\{\left(x_{1}, \ldots, x_{n}\right)| | x_{1}+\ldots+x_{n}\left|\leqq 1,\left|x_{i}\right| \leqq 1, i=1, \ldots, n\right\}\right.
$$

for $n=2$ or 3 . Let \mathscr{P} be the packing defined by taking translates of B by the lattice

$$
\Lambda=\left\{\left(2 k_{1}, \ldots, 2 k_{n}\right) \mid k_{1}, \ldots, k_{n} \text { are integers }\right\}
$$

Figure 5 shows B for $n=2$ and $n=3$.

Fig. 5
We claim that \mathscr{P} is a compact packing of convex symmetric bodies with density $(n+1) /(2 n)$ for $n=2$ and $n=3$. It is clear that \mathscr{P} is a packing of convex symmetric bodies. It is easy to check that by translating each facet F of the square or cube to the opposite facet \bar{F} that the relative interior of $B \cap F$ is translated into the relative complement of $B \cap \bar{F}$ and the two sets cover the facet \bar{F}. Thus the two simplices that make up the complement of B in the cube or square are holes in the packing \mathscr{P}. Thus \mathscr{P} is a compact packing. The density is easily calculated to be $(n+1) /(2 n)$ for $n=2$ and $n=3$. This finishes the proof of Theorem 1 .

III. Proof of Theorem 2

Let \mathscr{P} be a compact packing of the Euclidean plane by homothetic and homotheticly reversed compact convex sets such that the area of all the packing elements have a positive lower bound.

Recall that a hole W is a connected component of the complement of the union of the elements of \mathscr{P}.

By Remark 5 after Lemma 3 each W is the connected component of the complement of a finite number $S_{1}, \ldots, S_{n} \in \mathscr{P}$, where $S_{i} \cap S_{j} \neq \emptyset$, for $i \neq j$. Since each S_{i} is a convex set with non-empty interior in the plane, each set of 3 of the S_{i} 's, say S_{1}, S_{2}, S_{3} must bound a connected region in the plane. If S_{4} is in this bounded region then W is not connected. If S_{4} is outside this region it is not part of the boundary of W. Thus $n=3$.

Let C_{i} be the centroid of $S_{i}, i=1,2,3$. Let $i, j=1,2,3, i \neq j$. If S_{i} and S_{j} are homotheticly reversed we define $P_{i, j}=P_{j, i}$ to be the unique point on the line segment from C_{i} to C_{j} in $S_{i} \cap S_{j}$. Note in this case $P_{i, j}$ is the center of dilation which moves S_{i} to S_{j}. If S_{i} and S_{j} are not homotheticly reversed, then we choose $P_{i, j}$ to be any point in $S_{i} \cap S_{j}$. However, if S_{i} and S_{j} correspond to another hole we must be careful to choose the same $P_{i, j}$.

Let $H(W)$ be the hexagon whose boundary consists of the union of the line segments $\left[C_{i}, P_{i, j}\right], i \neq j, i, j=1,2,3$. See Figure 6.

Fig. 6
Note that if at least one of the sets is homotheticly reversed and at least one is not homotheticly reversed, then two pairs of adjacent sides of the hexagon are colinear, and we can think of our hexagon as a quadrilateral.

Lemma 6. The collection of hexagons $\{H(W) \mid W$ is a hole of $\mathscr{P}\}$ have disjoint interiors and the union covers the complement of the union of the elements of \mathscr{P}.

Proof. $E^{2} \backslash\left[S_{1} \cup S_{2} \cup S_{3} \cup H(W)\right]$ is connected and unbounded, thus $H(W)$ must contain the bounded component of $E^{2} \backslash\left[S_{1} \cup S_{2} \cup S_{3}\right]$. I.e., $W \subset H(W)$. Since there are no unbounded components of the complement of the union of the elements of \mathscr{P}, the union of the hexagons must cover the complement of the union of the elements of \mathscr{P}.

By the construction of $S_{1}, S_{2}, S_{3} \in \mathscr{P}$ for each hole, we see that no $H(W)$ contains an element of \mathscr{P}. Thus $H(W)$ contains no centroid of an element of \mathscr{P} and no $P_{i, j}$. Since no two of the segments that define the boundaries of the hexagons can intersect except at their endpoints, any two hexagons must have disjoint interiors. This finishes the proof of the Lemma.

If we know that the density of the packing \mathscr{P}, when each element is intersected with one of the hexagons, is not smaller than $1 / 2$, then the overall packing density of \mathscr{P} is not smaller than $1 / 2$. Thus the following Lemma finishes Theorem 2.

Lemma 7. For each hole W of \mathscr{P}

$$
2(\operatorname{area} W) \leqq \operatorname{area} H(W)
$$

Proof. If all three of the packing elements corresponding to W are homothetic or all three are homotheticly reversed, then the methods of A. Bezdek, K. Bezdek, and K. Böröczky [1] imply the result.

Thus we are left with the case when one of the packing elements is different (homotheticly) from the other two. We assume that S_{1} is homotheticly reversed from S_{2} and S_{3} (and thus S_{2} and S_{3} are homothetic). Since affine linear transforma-
tions take centroids to centroids, preserve area ratios, and homothetic pairs of sets, we may also assume that the triangle $\left\langle P_{1,2}, P_{2,3}, P_{3,1}\right\rangle$ is an equilateral triangle of side length 1 . We must carefully estimate the area of W. Let C_{i}^{\prime}, for $i=1,2,3$, be the point in S_{i} furtherest from the line through $P_{i, i+1}, P_{i, i-1}$ (indices mod 3) on the same side as W. The quadrilateral $\left\langle C_{i}, P_{i, t+1}, C_{i}^{\prime}, P_{i, i-1}\right\rangle$ is contained in S_{i} and roughly speaking we will use its area as a lower bound for the area of $H(W) \cap$ $\cap S_{i}$. See Figure 7. Note that it might happen that C_{i} and C_{i}^{\prime} are on the same side of $P_{i, i+1}, P_{i, i-1}$.

Fig. 7
Let absolute value of h_{i} be the altitude of $\left\langle C_{i}, P_{i, i+1}, P_{i, i-1}\right\rangle$ from the vertex C_{i}. We define h_{i} to be positive if C_{i} and C_{i}^{\prime} are on opposite sides of $\left\langle P_{i, i+1}, P_{i, i-1}\right\rangle$, otherwise h_{i} is negative (or zero if C_{i} is on the line through $P_{i, i+1}, P_{i, i-1}$).

Let $h_{i}^{\prime}>0$ be the altitude of $\left\langle C_{i}^{\prime}, P_{i, i-1}, P_{i, i+1}\right\rangle$ from the vertex C_{i}^{\prime}. We claim:

$$
\operatorname{area}\left[H(W) \cap S_{i}\right] \geqq \frac{1}{2}\left(h_{i}+h_{i}^{\prime}\right) .
$$

In case C_{i} and C_{i}^{\prime} are on opposite sides of the line through $P_{i, i-1}$ and $P_{i, i+1}$, or C_{i} lies inside the triangle $\left\langle C_{i}^{\prime}, P_{i, i-1}, P_{i, i+1}\right\rangle$, then $\frac{1}{2}\left(h_{i}+h_{i}^{\prime}\right)$ is the area of the quadrilateral $\left\langle C_{i}, P_{i, i-1}, C_{i}^{\prime}, P_{i, i+1}\right\rangle$ which is contained in $H(W) \cap S_{i}$. On the other hand, it is easy to see that when $h_{i}<0$, since $\left|h_{i}\right| \leqq h_{i}^{\prime}$, the claim still holds, since the triangle $\left\langle C_{i}, P_{i, i+1}, C_{i}^{\prime}\right\rangle$ has area $\geqq \frac{1}{2}\left(h_{i}+h_{i}^{\prime}\right)$ and is contained in $H(W) \cap S_{i}$, assuming (without loss of generality) that the segments $\left\langle C_{i}, P_{i, i+1}\right\rangle$ and $\left\langle C_{i}^{\prime}, P_{i, i-1}\right\rangle$ cross. See Figure 8.

We now must estimate $h_{i}+h_{i}^{\prime}$, for $i=1,2,3$.
We observe that if L is a support line for $S_{i}, i=1,2,3$, and b_{i} is the breadth of S_{i} in the direction perpendicular to L, then $d\left(C_{i}, L\right) \geqq b_{i} / 3$, where $d\left(C_{i}, L\right)$ is the distance from the centroid C_{i} to L. (See Bonnesen and Fenchel [4], page 52.) In particular when L_{i} is the support line through C_{i}^{\prime} parallel to $P_{i, i-1}, P_{i, i+1}$, then $d\left(C_{i}, L_{i}\right)=h_{i}+h_{i}^{\prime}$. Thus we now look for lower bounds for the breadth in the direction perpendicular to the line through $P_{i, i-1}, P_{i, i+1}$.

Fig: 8

We use the homotheties to find points far away from C_{i}^{\prime} in the given direction. Let $\lambda_{i}, i=1,2,3$ be the absolute scalar constants of homothety for S_{i}. That is, the ratio of the lengths of correspondig line segments from S_{i} to S_{j} is $\lambda_{i} / \lambda_{j}$. Recall S_{1} is homotheticly reversed from S_{2} and S_{3}. Let $h_{k, l}: S_{k} \rightarrow S_{i}$ be the homothetic dilation that takes the set S_{k} onto S_{l}, where $k \neq l, k, l=1,2,3$. Define $P_{i, j}^{k, l}=$ $=h_{k, l}\left(P_{i, j}\right)$. Note that $P_{i, j}^{k, l}$ is defined only when $P_{i, j} \in S_{k}$, i.e. $i=k$ or $j=k$.

We now compute the distance of $P_{2,3}^{3,2}$ from the line through $P_{2,3}, P_{1,2}$. See Figure 9.

Fig. 9

Recall $h_{1,2}\left(P_{1,2}\right)=P_{1,2}$ and $h_{1,3}\left(P_{1,3}\right)=P_{1,3}$

$$
\begin{equation*}
\left|P_{1,2}^{1,2}-P_{1,2}\right|=\left|h_{1,2}\left(P_{1,3}\right)-h_{1,2}\left(P_{1,2}\right)\right|=\frac{\lambda_{2}}{\lambda_{1}}\left|P_{1,3}-P_{1,2}\right|=\frac{\lambda_{2}}{\lambda_{1}} . \tag{3.1}
\end{equation*}
$$

But

$$
P_{1,3}^{1,2}=h_{1,2}\left(P_{1,3}\right)=h_{1,2} h_{3,1}\left(P_{1,3}\right)=h_{3,2}\left(P_{1,3}\right)=P_{1,3}^{9,2}
$$

since a composition of homothetic dilations is a homothetic dilation. Then

$$
\begin{gather*}
\left|P_{1,3}^{1,3}-P_{2,3}^{3,2}\right|=\left|P_{1,3}^{8,2}-P_{2,3}^{3,2}\right|= \tag{3.2}\\
=\left|h_{3,2}\left(P_{1,3}\right)-h_{3,2}\left(P_{2,3}\right)\right|=\frac{\lambda_{2}}{\lambda_{3}}\left|P_{1,3}-P_{2,3}\right|=\frac{\lambda_{2}}{\lambda_{3}} .
\end{gather*}
$$

Each of the above line segments makes a 60° angle with the line through $P_{1,2}$ and $P_{2,3}$. So by (3.1) and (3.2),

$$
\begin{align*}
& \frac{\sqrt{3}}{2}\left(\left|P_{1,3}^{1,2}-P_{1,2}\right|+\left|P_{1,3}^{1,3}-P_{2,3}^{3,2}\right|\right)+h_{2}^{\prime} \leqq b_{2} \\
& \frac{\sqrt{3}}{2}\left(\frac{\lambda_{2}}{\lambda_{1}}+\frac{\lambda_{2}}{\lambda_{3}}\right)+h_{2}^{\prime} \leqq b_{2} \leqq 3\left(h_{2}+h_{2}^{\prime}\right) . \tag{3.3}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\frac{\sqrt{3}}{2}\left(\frac{\lambda_{3}}{\lambda_{1}}+\frac{\lambda_{3}}{\lambda_{2}}\right)+h_{3}^{\prime} \leqq b_{3} \leqq 3\left(h_{3}+h_{3}^{\prime}\right) \tag{3.4}
\end{equation*}
$$

We get an estimate for $h_{1}+h_{1}^{\prime}$ by calculating $P_{2,3}^{3,1}$.

Thus

$$
\left|P_{2,3}^{3,1}-P_{1,3}\right|=\left|h_{3,1}\left(P_{2,3}\right)-h_{3,1}\left(P_{1,3}\right)\right|=\frac{\lambda_{1}}{\lambda_{3}}\left|P_{2,3}-P_{1,3}\right|=\frac{\lambda_{1}}{\lambda_{3}}
$$

Thus

$$
\begin{gather*}
\frac{\sqrt{3}}{2}\left|P_{2,3}^{3,1}-P_{1,3}\right|+h_{1}^{\prime} \leqq b_{1} \\
\frac{\sqrt{3}}{2} \frac{\lambda_{1}}{\lambda_{3}}+h_{1}^{\prime} \leqq b_{1} \leqq 3\left(h_{1}+h_{1}^{\prime}\right) . \tag{3.5}
\end{gather*}
$$

Adding (3.3), (3.4), and (3.5) we get

$$
\frac{\sqrt{3}}{2}\left(\frac{\lambda_{1}}{\lambda_{3}}+\frac{\lambda_{2}}{\lambda_{1}}+\frac{\lambda_{2}}{\lambda_{3}}+\frac{\lambda_{3}}{\lambda_{1}}+\frac{\lambda_{3}}{\lambda_{2}}\right)+h_{2}^{\prime}+h_{2}^{\prime}+h_{3}^{\prime} \leqq 3\left(h_{1}+h_{2}+h_{3}+h_{1}^{\prime}+h_{2}^{\prime}+h_{3}^{\prime}\right)
$$

Since $\frac{\lambda_{1}}{\lambda_{3}}+\frac{\lambda_{3}}{\lambda_{1}} \geqq 2$ and $\frac{\lambda_{2}}{\lambda_{3}}+\frac{\lambda_{3}}{\lambda_{2}} \geqq 2$, we get

$$
\frac{\sqrt{3}}{2} \cdot 4+\sum_{i=1}^{8} h_{i}^{\prime} \leqq 3\left(\sum_{i=1}^{3} h_{i}+h_{i}^{\prime}\right), \quad 2 \sqrt{3} \leqq 3 \sum_{i=1}^{8} h_{i}+2 \sum_{i=1}^{3} h_{i}^{\prime}
$$

But $h_{i}^{\prime} \geqq 0$, for all $i=1,2,3$, so

$$
2 \sqrt{3} \leqq 3 \sum_{i=1}^{3}\left(h_{i}+h_{i}^{\prime}\right)
$$

Thus

$$
\frac{\sqrt{3}}{3} \leqq \sum_{i=1}^{3} \frac{\left(h_{i}+h_{i}^{\prime}\right)}{2} \leqq \sum_{i=1}^{3} \operatorname{area}\left[H(W) \cap S_{i}\right]=\operatorname{area}\left[H(W) \cap\left(\bigcup_{i=1}^{2} S_{i}\right)\right]
$$

But $W \subset\left\langle P_{1,2}, P_{2,3}, P_{3,1}\right\rangle$ and

$$
\operatorname{area}\left\langle P_{1,2}, P_{2,3}, P_{2,1}\right\rangle=\frac{\sqrt{3}}{4}
$$

Thus area $W \leqq \frac{\sqrt{3}}{4}<\frac{\sqrt{3}}{3} \leqq \operatorname{area}\left[H(W) \cap\left(\bigcup_{i=1}^{3} S_{i}\right)\right]$. Thus

$$
2 \operatorname{area} W \leqq \operatorname{area}\left[\left(H(W) \cap\left(\bigcup_{i=1}^{3} S_{i}\right)\right) \cup W\right]=\operatorname{area} H(W)
$$

finishing the Lemma and the Theorem.

IV. Proof of Theorem 3

We repeat here the same notation of Section II, where $\left\langle P_{1}, \ldots, P_{n+1}\right\rangle=\sigma$ is a simplex in E^{n}, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n+1}$ are positive real numbers. $P_{i, j}(i<j)$ is a point on each edge $\left\langle P_{i}, P_{j}\right\rangle$ between P_{i} and P_{j} with the property that

$$
\lambda_{j}\left(P_{i}-P_{i, j}\right)=\lambda_{i}\left(P_{i, j}-P_{j}\right),
$$

where $1 \leqq i<j \leqq n+1$. We regard $P_{i, j}=P_{j, i}$.
Lemma 8. $\operatorname{Vol}\left[\operatorname{Conv}\left\{P_{i, j}\right\}_{i \neq j}\right] \leqq\left(1-\frac{n+1}{2^{n}}\right) \operatorname{Vol} \sigma$.
Proof. Without loss of generality, by applying an affine linear transformation we may assume that each edge has. length 1 . We will proceed by induction on n. For $n=1$ and $n=2$ the statement is trivial and follows from the analysis in Section II respectively.

Call $W=\operatorname{conv}\left\{P_{i, j}\right\}_{i \neq j}$. Let $\tau_{i}=\operatorname{conv}\left[\bigcup_{\substack{j=1 \\ j \neq 1}}^{n+1}\left\{P_{i, j}\right\}\right]$. Then

$$
\begin{equation*}
\sigma=W \bigcup \bigcup_{i=1}^{n+1} P_{i} * \tau_{i} \tag{4.1}
\end{equation*}
$$

where $P_{i} * \tau_{i}$ is the convex hull of P_{i} and τ_{i}, and each of the sets in the union has disjoint interiors. $P_{i} * \tau_{i}$ is the i-th "corner" of σ outside W. See Figure 10.

We now apply Lemma 2 to find a point $\hat{\sigma} \in \sigma$ such that for all $i=1,2, \ldots, n+1$ the half-space with τ_{i} in its boundary containing P_{i} when dilated (from P_{i}) by $2 n /(n+1)$ contains $\hat{\sigma}$. Fix $i=1,2, \ldots, n+1$. Let l_{i} be the altitude from P_{i} in $P_{i} * \tau_{i}$. Let \vec{l}_{i} be the altitude from $\hat{\sigma}$ in $\hat{\sigma} * \tau_{i}$ (the convex hull of $\hat{\sigma}$ and τ_{i}), where, if $\hat{\sigma}$ is on the same side of τ_{i} as P_{i}, then $\hat{i}_{i}<0$, and $\hat{\sigma} * \tau_{i}$ is regarded as having negative volume. Then

$$
l_{i}+\hat{l}_{i} \leqq \frac{2 n}{n+1} l_{i}, \quad \hat{l}_{i} \leqq \frac{n-1}{n+1} l_{i}
$$

Fig. 10
and

$$
\begin{equation*}
\operatorname{Vol} \hat{\sigma} * \tau_{i} \leqq \frac{n-1}{n+1} \operatorname{Vol} P_{i} * \tau_{i} \tag{4.2}
\end{equation*}
$$

Let $\sigma_{i}=\left\langle P_{1}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{n+1}\right\rangle$ be the face opposite P_{i}. Let

$$
W_{i}=\operatorname{conv}\left\{P_{i, j}\right\}_{i \neq j \neq k \neq i} \subset \sigma_{i} .
$$

Then

$$
W=\bigcup_{i=1}^{n+1} \hat{\sigma} * W_{i} \cup \bigcup_{i=1}^{n+1} \hat{\sigma} * \tau_{i} .
$$

Let h_{i} be the perpendicular distance of $\hat{\sigma}$ from the plane of σ_{i}. Since each pair of sets in the above union have disjoint interiors, we get

$$
\operatorname{Vol} W=\sum_{i=1}^{n=1} \frac{1}{n} h_{i} \operatorname{Vol}_{n-1} W_{i}+\sum_{i=1}^{n+1} \operatorname{Vol} \hat{\sigma} * \tau_{i},
$$

where Vol $_{n-1}$ denotes ($n-1$)-dimensional volume. By induction

$$
\operatorname{Vol}_{n-1} W_{i} \leqq\left(1-\frac{n}{2^{n-1}}\right) \operatorname{Vol}_{n-1} \sigma_{i}
$$

Thus using (4.2)

$$
\begin{aligned}
& \mathrm{Vol} W \leqq \sum_{i=1}^{n+1} \frac{h_{i}}{n}\left(1-\frac{n}{2^{n-1}}\right) \operatorname{Vol}_{n-1} \sigma_{i}+\sum_{i=1}^{n+1} \frac{n-1}{n+1} \operatorname{Vol}\left(P_{i} * \tau_{i}\right) \leqq \\
& \quad \leqq\left(1-\frac{n}{2^{n-1}}\right) \frac{\operatorname{Vol}_{n-1} \sigma_{1}}{n} \sum_{i=1}^{n+1} h_{i}+\frac{n-1}{n+1} \sum_{i=1}^{n+1} \operatorname{Vol}\left(P_{i} * \tau_{i}\right),
\end{aligned}
$$

since $\operatorname{Vol}_{n-1} \sigma_{i}=\operatorname{Vol}_{n-1} \sigma_{1}$, for all i. Since σ is regular $\sum_{i=1}^{n+1} h_{i}=$ any altitude of
σ. Thus

$$
\frac{\operatorname{Vol}_{n-1} \sigma_{1}}{n} \sum_{i=1}^{n+1} h_{i}=\operatorname{Vol} \sigma
$$

By (4.1)

$$
\sum_{i=1}^{n+1} \operatorname{Vol}\left(P_{i} * \tau_{i}\right)=\operatorname{Vol} \sigma-\operatorname{Vol} W
$$

Putting this together we get

$$
\begin{gathered}
\operatorname{Vol}(W) \leqq\left(1-\frac{n}{2^{n-1}}\right) \operatorname{Vol} \sigma+\frac{n-1}{n+1}(\operatorname{Vol} \sigma-\operatorname{Vol} W) \\
\frac{2 n}{n+1} \operatorname{Vol}(W) \leqq\left(\frac{2 n}{n+1}-\frac{n}{2^{n-1}}\right) \operatorname{Vol} \sigma, \quad \operatorname{Vol}(W) \leqq\left(1-\frac{n+1}{2^{n}}\right) \operatorname{Vol} \sigma
\end{gathered}
$$

finishing the Lemma.
We now can show the density estimate in Theorem 3. If σ is an n-simplex in the triangulation for the triangulated packing \mathscr{P}, then each vertex P_{i} of σ is the center of some body $B_{i} \in \mathscr{P}$. If λ_{i} is the constant of homothety for B_{i}, then points $P_{i, j} \in\left\langle P_{i}, P_{j}\right\rangle \cap B_{i} \cap B_{j}$ are as in Lemma 8. Thus $P_{i} * \tau_{i} \subset B_{i}$ and $W \cup \bigcup_{i=1}^{n+1} B_{i} \supset \sigma$, and $\bigcup_{i=1}^{n+1}\left(B_{i} \cap \sigma\right) \supset \sigma \backslash W$. So

$$
\operatorname{Vol}(\sigma \backslash W) \leqq \operatorname{Vol}\left(\bigcup_{i=1}^{n+1} B_{i} \cap \sigma\right), \quad \operatorname{Vol} \sigma-\operatorname{Vol} W \leqq \operatorname{Vol}\left(\bigcup_{i=1}^{n+1} B_{i} \cap \sigma\right)
$$

$$
\operatorname{Vol} \sigma-\left(1-\frac{n+1}{2^{n}}\right) \operatorname{Vol} \sigma \leqq \operatorname{Vol}\left[\bigcup_{i=1}^{n+1} B_{i} \cap \sigma\right], \quad \frac{n+1}{2^{n}} \leqq \frac{\operatorname{Vol}\left[\bigcup_{i=1}^{n+1} B_{i} \cap \sigma\right]}{\operatorname{Vol} \sigma}
$$

Thus $\frac{n+1}{2^{n}} \leqq d$, where $d=$ density of \mathscr{P}.
To finish the Theorem we rely on the following:
CONSTRUCTION 2. Let $\Gamma=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid z_{i}\right.$ is an integer $\left.i=1,2, \ldots, n\right\} \subset E^{n}$ be the usual integral lattice. Let $C \subset \Gamma$ be vertices of the unit cube, i.e., $C=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid\right.$ for each $i, z_{i}=0$ or 1$\}$. We define a relation on Γ by saying for $P, Q \in \Gamma, P \prec Q$ if $Q-P \in C$. Note the $<$ is a partial ordering on C, but not all of Γ.

We now define the triangulation \mathscr{T} of E^{n}. A simplex $\sigma=\left\langle P_{1}, \ldots, P_{m}\right\rangle$ of \mathscr{T} consists of $P_{i} \in \Gamma$ such that $P_{1} \prec P_{2} \prec \ldots P_{m}$ and $P_{i}<P_{j}$ if $1 \leqq i<j \leqq m \leqq n+1$. I.e., well-ordered subsets of Γ are the vertices of simplices of \mathscr{T}. This defines a wellknown triangulation of E^{n} apparantly originally due to Freudenthal [7]. See Todd [13], for example, for a proof that we have indeed defined a triangulation.

For P a vertex of \mathscr{T}, we claim that the star of P in $\mathscr{T}=$ st $(P, \mathscr{T})=$ $=\bigcup\{\sigma \mid \sigma \in \mathscr{T}, P$ is a vertex of $\sigma\}$ is the convex body B_{P} defined by $B_{P}=P+$ $+\left\{\left(x_{1}, \ldots, x_{n}\right)| | x_{i}\left|\leqq 1,\left|x_{i}-x_{j}\right| \leqq 1, i \neq j, i, j=1, \ldots, n\right\}\right.$.

To show this claim we assume, without loss of generality, that $P=O$, the origin. If a simplex of $\mathscr{T}, \sigma \subset \operatorname{st}(P, \mathscr{T})$, then we can order the vertices of σ so that $P_{1} \prec \ldots \prec 0=P_{i} \prec \ldots \prec P_{n+1}$ (possibly with repeated P_{j} 's). All the coordinates of
P_{1}, \ldots, P_{i-1} are 0 or -1 , and all the coordinates of P_{i+1}, \ldots, P_{n+1} are 0 or 1. In order for $P_{1}<P_{n+1}$ the non-zero coordinates in the two collections must be disjoint. Thus the vertices of σ are in B_{0} and hence $\sigma \subset B_{0}$.

Suppose $Q=\left(x_{1}, \ldots, x_{n}\right) \in B_{0}$. By reordering the coordinates, we may suppose that $x_{1} \leqq \ldots \leqq x_{i-1} \leqq 0=x_{i} \leqq x_{i+1} \leqq \ldots \leqq x_{n}$. Let

$$
P_{j}=(-1, \ldots,-1,0, \ldots, 0), \quad j=1, \ldots, i-1
$$

where the first j coordinates are -1 , and the rest are 0 . Let $P_{i}=0$.

$$
P_{j}=(0, \ldots, 1, \ldots, 1), \quad j=i+1, \ldots, n+1
$$

where the last j coordinates are 1 . Then $P_{1} \prec \ldots<P_{n+1}$ defines a simplex $\sigma=\left\langle P_{1},, \ldots, P_{n+1}\right\rangle$ in \mathscr{T}, and σ is in st (O, \mathscr{T}) since $P_{i}=O$.

To show that Q is in st (O, \mathscr{T}) define $t_{i}, i=1, \ldots, n+1$, by

$$
\begin{gathered}
t_{1}=x_{2}-x_{1} \\
\vdots \\
t_{i-2}=x_{i-1}-x_{i-2} \\
t_{i-1}=-x_{i-1} \\
t_{i}=1-x_{n}+x_{1} \\
t_{i+1}=x_{n}-x_{n-1} \\
\vdots \\
t_{n}=x_{i+1}-x_{i} \\
t_{n+1}=x_{i} .
\end{gathered}
$$

It is easy to check that $t_{i} \geqq 0$, for all $i=1, \ldots, n+1, \sum_{i=1}^{n+1} t_{i}=1$, and $\sum_{i=1}^{n+1} t_{i} P_{i}=Q$.
It is clear that \mathscr{T} is symmetric about any vertex of \mathscr{T}. Then we define a symmetric convex set $\hat{B}_{P}=P+\frac{1}{2} B_{o}$ for each $P \in \Gamma$. This is the convex hull of the midpoints of all of the 1 -simplices with P as one vertex. $\hat{\mathcal{B}}_{P}$ is symmetric since \mathscr{T} is, and each \hat{B}_{P} is congruent to $\hat{B}_{Q}, P, Q \in \Gamma$ by a translation. Each $\hat{B}_{P} \cap \sigma$ where $\sigma \in \mathscr{T}, P \in \sigma$, is precisely the corner defined by $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n+1}$ in Lemma 8. Thus the density is exactly $(n+1) / 2^{n}$. See Figure 11.

This finishes the proof of Theorem 3.
Remark 6. It turns out in Construction 2 that the sets B_{P} are all (congruent) zonotopes. They are the convex hull of a cube of side length $1 / 2$ and the reflection of that cube about one of its vertices.

Note also that although no triangulated packing of equal spheres exists for dimensions greater than 2 , in dimension 3 we can find a triangulated packing with just two sizes of spheres. Take the usual close lattice packing of equal spheres with radius 1 say. Joining the centers of adjacent spheres we get a 1 -dimensional complex that can be regarded as the edges of a tiling of E^{3} by regular octahedra and

Fig. 11
tetrahedra of side length 2. In the center of each octahedron place a smaller sphere of radius $\sqrt{2}-1$, which touches all 8 of the surrounding spheres of the regular octahedron. This then yields a triangulated packing of E^{3} by spheres of just two sizes.

Proof of the Corollary. Let O be the origin in the interior of a convex body B. Then the Minkowski average of B and $-B$,

$$
\tilde{B}=\frac{1}{2} B-\frac{1}{2} B=\left\{\left.\frac{1}{2} x-\frac{1}{2} y \right\rvert\, x, y \in B\right\}
$$

is a centrally symmetric convex body. If $B_{i}=p_{i}+B$ and $B_{j}=p_{j}+B$ are translates of B with disjoint interiors, then by a Theorem of Hadwiger [10] $\widetilde{B}_{i}=p_{i}+\widetilde{B}, \widetilde{B}_{j}=$ $=p_{j}+\widetilde{B}$ have disjoint interiors and intersect if and only if B_{i} and B_{j} intersect, as mentioned in the introduction.

A theorem of Rogers and Shephard [12] says that

$$
\operatorname{Vol} \tilde{B} \leqq \frac{\binom{2 n}{n}}{2} \operatorname{Vol} B
$$

This then yields the Corollary via Theorem 3.

References

[1] A. Bezdek, K. Bezdek, K. Böröczky, On compact packings, Studia Sci. Math. Hung.; 21 (1986), 343-346.
[2] K. Bezdek, Compact packings in the Euclidean space, Beiträge zur Algebra und Geometrie ${ }_{i}$ 25 (1987), 79-84.
[3] F. Bohnenblast, Convex regions and projections in Minkowski spaces, Ann. of Math.; (20) 39 (1938), 301-308.
[4] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper; Chelsea Publishing Company (Bronx, New York).
[5] L. Fejes Tóth, Regular Figures, The MacMillan Company (New York, 1964).
[6] L. Fejes Tóth, Compact packings of circles, Studia Sci. Math. Hung., 19 (1984), 103-109.
[7] H. Freudenthal, Simplizialzerlegungen von beschränkter Flachheit, Arnals of Math., 43 (1942), 580-582.
[8] B. Grünbaum, On some covering and intersection properties in Minkowski spaces, Pac. J. of Math., 9 (1959), 487-489.
[9] B. Grünbaum, Some applications of expansion constants, Pac. J. of Math.; 10 (1960), 193201.
[10] H. Hadwiger, Über Treffenzahlen bei translationgleichen Eikörpern, Arch. Math.; VIII (1957), 212-213.
[11] K. Leichtweiss, Zwei Extremalprobleme der Minkowski-Geometrie, Math. Z.; 62 (1955), 37-49.
[12] C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math., 8 (1957), 220-233.
[13] M. J. Todd, The Computation of Fixed Points and Applications, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Vol. 124 (1976), 29-31.
(Received September 14, 1988)

DEPARTMENT OF GEOMETRY

EOTVOS UNIVERSITY
1088 BUDAPEST, RAKÓCZI ƯT 5 HUNGARY

DEPARTMENT OF MATHEMATICS
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853
U.S.A.

[^0]: * Partially supported by N. S. F. grant, number MCS-790251.

