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LOWER BOUNDS FOR PACKING DENSITIES 

K. BEZDEK (Budapest) and R. CONNELLY* (Ithaca) 

L Introduction 

If a packing of  incompressible rigid convex objects is sufficiently compressed or 
"compacted", one expects that the packing density will not be small. The aim of 
this paper is to show that certain conditions on a packing insure that there is at 
least a lower bound on the packing density, which generalize some previous results 
concerning such lower bounds. 

One such condition is the notion of a compact packing of convex bodies due 
to L. Fejes T6th in [6]. (Recall that a body in n-dimensional Euclidean space E" 
is a compact set with nonempty interior, and a packing is a collection of sets with 
disjoint interiors.) We say that a body A is enclosed by the bodies {B~} if any curve, 
connecting a point of  A with a point sufficiently far from A, intersects U B~. If in 

the packing each body is enclosed by the bodies having a point in common with it, 
then the packing is said to be compact. 

Two sets S~ and S~ in E n are said to be homothetic if they are either translates 
or there exists a point O (as origin) and a positive real number 2 such that 

(1.1) Sz = 2S1 = {P~IPs-O = A(P~-O), P~S1}, 

where we always regard points as vectors. The homogeneity of a packing of  convex 
bodies is the infimum of the volumes (or areas in dimension two) of the bodies 
divided by the supremum of the volumes. L. Fejes T6th [6] proved that, in the 
Euclidean plane, the lower density of  a compact packing of centrally symmetric 
homothetic convex sets of positive homogeneity is at least 3/4, and he conjectured 
that when the condition of  central symmetry is dropped, then the bound 3/4 can 
be replaced by 1/2. This was proved by A. Bezdek, K. Bezdek, and K. BSr6czky 
in [1]. Thus if d denotes the density of a compact packing of the Euclidean plane 
by homothetic convex sets such that the ratio of the areas of any two sets is bounded, 
then d>-l/2. Later K. Bezdek [2] proved that in E" (n_~3) the density of any 
compact lattice packing formed by translates of a centrally symmetric convex body 
is greater than 21/("-1)/(21/c"-~)+I)>1/2. We shall generalize the theorems men- 
tioned above. Namely we shall prove the following. 

THEOREM 1. I f  d denotes the density o f  a compact packing in E ~, n~_2, con- 
sisting of  homothetic centrally symmetric convex bodies with bounded volume ratios, 
then d>=(n+ 1)/2n, and for n<-3 there is a compact lattice packing of  centrally 
symmetric convex bodies where equality holds. 
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292 K. BEZDEK AND R. CONNELLY 

REMARK 1. It turns out that our lower bound (n+ 1)/2n is never sharp for 
n=>4, but we do not know of a suitable replacement. We omit the proof. See Grtin- 
baum [8], as well as our later comments about Griinbaum's Theorem. 

We say that two sets $1 and $2 are homotheticly reversed if (1.1) holds for 2 
negative. 

THEOREM 2. Let d denote the density o f  a compact packing in the Euclidean 
plane consisting o f  homothetic and homotheticly reversed convex sets with bounded 
area ratios. Then d~=1/2. 

REMARK 2. When the condition of central symmetry is dropped, we present 
the following problems: What is the greatest lower bound of the densities of com- 
pact packings in E n (n=>3) consisting of homothetic convex bodies such that the 
volume ratios are greater than a fixed positive number? What is the greatest lower 
bound if we only suppose that our convex bodies are homothetic or homotheticly 
reversed? 

For dimensions n greater than two, the condition of  being a compact packing 
seems to be very strong. For instance, if each of the bodies is strictly convex, i.e. 
each support plane intersects the body at a single point, then the packing cannot 
be compact (for n=>3). 

Thus we offer an alternative to compact packings, in dimensions greater than 
two, that is more general at least for centrally symmetric convex bodies. Of course, 
the penalty we pay is that the lower bounds are much lower than for compact pack- 
ings. We say that a packing of E n by centrally symmetric convex bodies is a tri- 
angulated packing if there is a triangulation of E n such that each vertex of the tri- 
angulation is the central point of one of the packing elements, and a 1-simplex 
between two vertices implies that the two corresponding packing elements intersect. 
(Recall that a triangulation of a space X is a simplicial complex whose underlying 
space is X.) In dimension two, for packings of centrally symmetric convex sets, 
triangulated packings and compact packings are the same. 

THEOREM 3. Let d denote the density o f  a triangulated packing o f  homothetic 
centrally symmetric convex bodies in E n, n>-2, with bounded volume ratios. Then 
d>=(n+ I)/2", and there is a triangulated lattice packing o f  (congruent) centrally 
symmetric convex bodies where equality holds. 

REMARK 3. Unfortunately for dimensions greater than two no packing of con- 
gruent spheres can be triangulated. 

By using a result of Hadwiger [I0] and a result of Rogers and Shephard [12] 
we can apply Theorem 3 to the case when the convex bodies are not necessarily 
centrally symmetric. It turns out that any packing ~ of translates of a convex body 
B has an associated packing ~3 of translates of a centrally symmetric convex body 
/~, where each Bi corresponds to a unique ~iE~ such that BJqBj~O if and only 
if /~fqJgi~0. We say that ~ is a triangulated packing if and only if g~ is a tri- 
angulated packing. 
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COROLLARY. Let d denote the density o f  a triangulated packing o f  translates o f  

a convex body in E ~. Then d~-(n+l)/ n " 

We thank Branko Grfinbaum for (gently) pointing out that our Lemma 4 
below is essentially the same as his Theorem 1 in [8]. Grfinbaum's Theorem says 
that if there are n + l  symmetric homothetic convex bodies in E ~ with pairwise 
nonempty intersections, and each body is dilated from its center by 2n/(n+l), 
then the dilated bodies have a common intersection point. 

When Griinbaum's Theorem is specialized to the case when the homothetic 
bodies are translates (i.e. the homothetic ratios are all 1), Grfinbaum points out 
that his Theorem can be viewed (via Helly's Theorem) as a Jtmg type of result. 
Namely, in any Minkowski space (a finite dimensional normed linear space over 
the reals) a ball of diameter 2n/(n+l) may cover, after a suitable translation, 
any set of diameter ~_ 1, which is a result of Bohnenblast [3]. See also Leicht- 
weiss [11]. 

On the other hand, Grtinbaum also applies his Theorem to the problem of 
the extensions of transformations [9]. 

We apply Grfinbaum's Theorem (Lemma 4 below) to both our Theorem 1 and 
Theorem 3. 

The main difficulty in Griinbaum's Theorem is handling the homothetic ratios. 
We include our own version of Griinbaum's proof for two reasons. First, for 

the sake of completeness, it is convenient to have this important result included 
with the other ideas in our Theorem 1 and Theorem 3. Second, Grtinbaum's version 
of l~s proof is very terse and gives no hint as to how he discovered the particular 
relations he used. We show how to derive the factor 2n/(n+ 1) as well as explain 
geometrically the two cases which Gfiinbaum considers in his proof. 

H. Proof of Theorem 1 

The following Lemma 1 is the key result needed in the proof of Theorem 1. 
Lemma 1 is needed for Lemma 2, and Lemma 2 and Lemma 3 are used to prove 
Lemma 4 which is used to find a point "close" to the packing elements that sur- 
round a "hole". 

Let (Px, P2, , . ,  P~+I) = a  be a simplex in E". Let A1, ;t,, .... ;t,+t be positive 
real numbers, and suppose we have a point ~.i  ( i<j)  on each edge between P, 
and Pj with the property that 

(2.1) ~s(e , -~ .s )  = ~ , ( ~ . s - ~ ) ,  

where 1 = z j = n + 1, and points are regarded as vectors. Define ~ by 

(2.2) ~ = 1 + 
2(n-  1) 

nq-1 n+'t 

[( Z ( Z ar  - 1)1 
i = l  i = l  
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For any set X in E", PEE", e a scalar, define 

~X(P) = {QIQ = ~ ( P ' - P ) +  P, F 6 X } .  

Let L~ denote the hyperplane containing Px, i . . . . .  P~-,,i, P~,i+, . . . . .  P~,n+*- 

n+l  
L ~ a A  1. 0 ~[Li(P~)#~. 

]?ROOF. The idea is to find the intersection point P as the solution to certain 
linear equations. This in turn will allow us to write P and ~[ explicitly in terms of 
matrices involving the P~'s and 2i's. 

For any column vector P in E" let us define 

the vector in E ~+~ obtained by adding a one in the (n+l)-st  coordinate. (Regard 
E" as the subset of E" + * consisting of the first n coordinates. All vectors are regarded 
as column vectors.) Note that /~,, P2 . . . .  , P,+t is now a basis for E "+*. 

We now regard the hyperplanes L~ as the solutions to certain linear equa- 
tions or equivalently as null spaces of certain linear functionals. Let f~: E"+*~E ~ 
be the linear functional (uniquely) defined by ~ ( ~ ) =  1, and f i (~)=0 ,  for all Q 
in L~. We will calculate theJ~'s next, explicitly in terms of  matrices. Rewriting (2.1) 
we get, for i<], 

Applyingf~ we get, for i r  

= 0,  60j) * 

Define an (n+l)-by-(n+l)  matrix F such that 

"l =/' (2.3/ e ~ j =  fj(..~j) = +'1 . 

(Note that the first equality of (2.3) holds with any vector replacing ~ . )  
We can encode this information in a single matrix as follows: Let Y be the 

column vector in E "+~ with all l's as entries. Then j jr  is the (n+ 1)-by-(n+ 1) matrix 
with all l's as entries, where ( )t denotes the transpose operation, j t j  is the one- 
by-one matrix with entry n + 1. (We always regard a one-by-one matrix as a scalar.) 
Also note that ( -JJ t+2I)  is the (n+l)-by-(n+l)  matrix with + l ' s  on the diag- 
onal and - l ' s  elsewhere, where I denotes the (n+l ) 'by- (n+l )  identity matrix. 
Define another (n+ 1)-by-(n+ 1) matrix A by 

A = ( / ~ , , ~ ,  . . . .  e . + l ) "  

Let D be the (n+l)-by-(n+l)  diagonal matrix where the i-th diagonal entry is 2,. 
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Then we rewrite (2.3) as 
FA = D-~( -dJ t  + 2I)D. 

Then 
F -- D- I ( - J J t+2 I )DA  -1. 

This is the desired explicit expression for F and thus the functionals f~. 
We next proceed to use this to find a similar expression for the intersection 

n+l 
point. Suppose P =  ~ 2L~(Pi), for some scalar 2. Then for some QiEL~, 

i=1 
P = = 4 0 , + ( 1 - 4 ) e .  

and thus, 
; = 42,§  f ( f f )  = 1 -2 .  

By the definition of F, 

Fff =--(4--1)J, /5=--(4--1)F-~J=--(4--1)AD-I(-JJt  +2I)-IDJ. 

We can justify and simplify this expression for /5 by calculating the inverse of 
( - JJ~+2l ) ,  using the properties of J, for n > l ,  

( -dJ t+2I) - I  = [ - 2 ( n -  1)]-l(dd t - ( n -  1)I). 
Then 

/5 = ( 2 - 1 )  [ 2 ( n -  1)]-lAD-a[dd t - (n -  1)IJOJ, 

n+l 
(2.4) P = ( 4 - 1 ) [ 2 ( n -  1)I-iX [(~Z 4 t ) O - l - (  n -  1)1] J, 

i=1 
n+l 

since j tDy= ~ 4i. (2.4) is the desired explicit expression for/5. 
i=1 

Since the last entry o f /5  is one, this gives us another relation to calculate 4. 
Let E,+I be the (column) vector in E ~+~ with the last entry i and all the other entries 0. 
Calculating the last entry of t5 we get 

n+l 
1 = E t + l / 5  = (4-- 1) [2(n-- 1)]-~E~+a A [( Z 4 , ) D - 1 - (  n -  1) I]  J. 

i=1 
But E~.+IA=a n. Thus 

n+l 
1 = (2- I)[2(n- 01 -I [(~_~ 4,)JtD-IY--(n - l)gtJ], 

n4-! n+l 
2 ( H - -  1 ) (4 - -  1) -1  = ( Z 4i) ( Z 4 r  1 ) - ( n -  1 ) ( n +  1). 

i=1 i= l  

From this it is easy to calculate that 2 = ~[ in (2.2). Thus for this value of 2 (only) 
we see that (2.4) defines /5 and thus P. 

REMARK 4. In dimension 2 it is clear that P must lie in tr. However in dimension 
3 or higher, it could turn out that P lies outside a. This can be seen by calculating 

n+l 
the affme coordinates of P, h, t~ . . . .  , t~+a (i.e. P =  ~ tiP~) by the same method 
as we use to find 2. Thus using (2.4) ~=1 

n+l 
t, = ( 4 -  I)i -I I (2" 43-(.- I)]. 
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If 
n + l  

(n-2) ;h  > ~' ~j, 
3=1 

then P~ lies outside the i-th face of a opposite P~, because t~ is negative. Figure 1, 
below, shows the sets involved in Lemma 1, for n=2. Here it is clear geometrically 
that P lies in o-. 
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There are other ways of calculating ~, using Cramer's Rule for instance, but 
our method here seems as simple as any, since it does not calculate by explicitly 
manipulating arrays of numbers, but uses closed form matrix properties instead. 

In GriJnbaum's Theorem, his first case is when all the tr>0. He presents ~[ 
(he calls it p) as well as the affme coordinates of each point in B~ that dilates to P, 
and then he calculates that each point does indeed dilate to P. His second case is 
when some ti<0, and he handles this differently than we do below. 

In what follows we reinterpret the result of Lemma 1 in terms of expanding 
half spaces. Using the above we define Ht as the half space containing Pi with bound- 
ary L~ (recall Ll is determined by PI,~, P2,1 . . . . .  Pi-l,i, Pi, t+x, P~,,+I). 

n-I-1 

LEMMA 2. N 2 n ( n + l ) - l H i ( P i ) r l ~ r ~ O  �9 
i=1  

PROOF. Note that since the harmonic mean is less than the arithmetic mean 
we have 

n+l .+i 

( (n+l)  -1 Z 2~'1) -1 ~- ( n + l )  -1 Z 2i, 
/=1 /=I 

. + i  n + l  

(.+D (Z 
i=1  i=1 

n +l  n+1 

(n+l )"- (n' - l )  = 2(,,+1) ( Z  a,)(Z 1)- 
i = l  i = l  
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Thus 
2 ( n -  l) 

= 1+ .+1 .+1 
(( Z 2i)( Z , ~ 1 ) - (  yl2-1)) 

i=1 5=1 

Thus 

By Lemma 1 we get 

(2.5) 

2 ( n -  l) 
<= 1 -+ - -  = 2n/(n+ 1). 

2 ( n + l )  

;ILi(Pi) c ~H,(P~) c 2n(n+ 1)-lHi(Pi). 

n + I  
N 2n(n+l) -~ , (P , )  ~ O. 

i = l  

We shall prove the Lemma by induction on n. It is clearly true for n=  1. We 
shall assume the result for n - 1 .  

Note that 2n(n+ 1) -a is a monotone increasing function for n>0. 
Let Hr  denote the support half-space for o" whose boundary is the 

hyperplane Lf spanned by the facet opposite ~ in a. I.e. Lf is spanned by 
,P1, ~ . . . .  , ~/-1:~ ~ / + 1 ,  . . . .  -Pn+l and 

n + l  
(2.6) n H~' = o. 

i=1  

We apply induction to each L~' with HiNLr, j~ i ,  replacing Hj ,  and aNL~' re- 
placing o. Thus 

n + l  . + 1  n + l  
(2.7) ~ ~ (aNLT) N 2(n-1)n-I(HjNL~)(Pj) C n H~ rl 2n(n+ I)-I Hj(P~). 

j=l i=1 j=i 

Thus by (2.5), (2.6), and (2.7) the 2 ( n + l )  half-spaces 

2n(n+l)-lH~(P~), HT, i =  1,2 . . . . .  n + l ,  

have the property that every n + 1 of them have a non-empty intersection. Thus by 
Helly's Theorem, they all must intersect, finishing the Lemma. 

Let ~ be a compact packing in E". Let W, a hole, be the closure of a compo- 
nent of  the complement of  the union of  the elements of  ~ .  Let ~ w C ~  be those 
packing elements o f ~  whose intersection with W is (n-1)-dimensional. W must be 
bounded and ~w is finite since ~ is a compact packing and the elements of 
have volumes greater than a fixed positive number. 

L E ~  3. For all BI, B~E~w, B1NB2~O. 

PROOF. Suppose not; suppose some B1, B2E~w are such that B1NB~=O 
Suppose that the volume of B1 is not larger than the volume of B2. Then B2 is not 
a neighbor of B1, and there is a path from B, through W to the center of B.a. Then 
the ray from the center P~ of  B2 in the opposite direction from the center P~ of  B1 
completes a path to infinity that violates the compactness of ~ .  

To see this suppose not; suppose some neighbor B of B1 intersects B1 at Qx 
and the ray at P. Then construct Q~ on the line segment (Q~, P)  so that the tri- 
angles Q~P~Pand Q~P,P are similar. Since B is convex, Q2 must be in B. But Q~ 
must be in the interior of  Bz as well, since the coefficient of  homogeneity for B~ 
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is larger than or equal to the coefficient for B1. Packing elements cannot intersect 
in interior points. Thus B cannot intersect the path defined above. 

Thus BJqB~#O for all B1, B~C~w. See Figure2. 

REMARK 5. For Lemma 3 in the plane, we do not need the condition that the 
elements of # are homothetic. We can simply choose a ray going to infinity lying 
between the two common support lines of Bx, B~, where BxfqB~=fl. 

Fig. 2 

LEMMA 4 (Grfinbaum). 0 2n(n+l)-lBi(Pi)~O, where Pi is the center of Bi. 
B~E~w 

PROOF. By Helly's Theorem we need only show the result for n + 1 elements of 
~w, say B1, B2 . . . . .  B,+I. We can also assume that the centers P~,/?.2 . . . . .  P,+I 
are affine independent and form a simplex a in E". By Lemma 3, we know that 
there is a unique point P~ j=B~OBjA(Pi, Pj}, i<j, where (P, Pj) is the line 
segment between P, and Pj. ~.et H~ be the half-space containing Pi with P~,j, j # i ,  
on the boundary of Hi. Clearly HiAacB~. Lemma 2 implies that 

n + l  n + l  

0 # 0 2n(n+l)-XH,(P3 Na c 0 2n(n+l)-lBi(Pi), 
/=1  /=1 

finishing the Lemma. 

For what follows, we need to compare volumes, and it helps to consider a 
slight generalization of the notion of the volume bounded by a surface. Let P be 
a point in E n, and let S be an oriented surface possibly with boundary. For instance, 
S could be a polyhedral surface with an orientation, or the boundary of a com- 
ponent of the intersection of the complements of a finite number of convex bodies. 
In the case of a polyhedral surface we define the signed volume from a point P to 
S by 

Vol [S, P] = (n!) -~ ~ det (P~-P, P~-P, .... g - P ) ,  
oES 

for o =  (Pt . . . . .  P,), an oriented simplex of S. "det" denotes the determinant, and 
vectors are n-by-one columns, as usual. If S is a closed surface enclosing a bounded 
region in E n, then Vol [S, P] is the volume enclosed by S. By taking limits of 
polyhedral surfaces, we can extend this definition to the case of more general sur- 
faces, such as the piecewise convex surfaces mentioned above. 

We say C c E  ~ is a cone from PCE ~ if tC(P)=C, for all 0<t .  For any set 
X let bdy (X) denote the topological boundary of X. For a convex body B we 
choose an orientation on bdy (B) such that Vol [bdy (B), P] is positive and thus 
equal to Vol (B), the usual Euclidean volume. 
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LEMMA 5. Let C be a cone from _P in E ~, and B a convex body containing F in 
its interior. Let PoEE ~ and 2>-1 be such that .PoE2B(P). Then 

(2.8) (2 -1 )  Vol(BNC) = ( 2 - 1 )  Vol[bdy(B)NC,  t ' ] ~  V o l [ b d y ( B ) - n c ,  Po], 

where ( . ) -  indicates the opposite orientation. 

Fl~.3 

PROOF. We will show the lemma first in the case when C and B are both poly- 
hedral. The more general case follow by approximating the surfaces with polyhedral 
sets. Furthermore, by subdividing the boundary of B into simplices, we can further 
reduce our considerations to the cases when B N C  is a simplex r We simply sum 
over all simplices on the boundary of B, where each term is the case when C is the 
cone from P over each simplex in B N C. Let H denote the half-space containing 
with boundary L containing the face opposite P. Let d denote the distance of P 
from L, and let do denote the signed distance of P0 from L, where do is negative if P0 
is in H. Then 

n Vol ( H n C )  = dVoln_l (LNC) ,  n V o l [ L - N C ,  1'o] = do Voln_x ( L n C ) ,  

where VoI~_x is the (n-1)-dimensional volume in L. 

L 

Then, 

Fig. 4 

d+do~_2d, do~_(2-1)d, 
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since PoE2B(P). See Figure 4. Thus 

n Vol[L- ('lC, P0] = doVol,,-t(LVIC) ~- 

~_ (2 -1 )dVol ,_ l  (Lf)C) = ( ~ -  1)n Vol (HVIC) = (2 -1 )  n Vol (BfqC). 

(2.8) then follows, finishing the Lemma. 

PROOF OF THEOREM 1. The idea is to compare the volume of the holes of the 
packing to the volume of the packing elements using Lemma 5. We get our estimate 
to be the sharpest when there is a point sufficiently near to all of the packing ele- 
ments next to the hole. Lemma 4 guarantees that there is such a point. 

Let W be a hole for the compact packing # .  Recall that : w  is the collection of 
those elements o f #  whose boundary and W intersect in an (n-1)-dimensional set. 
Let P~ be the center of B~, as in our previous notation. Let V~ denote the cone over 
B~NW from ~ ,  namely 

V~ = {(Q, P~)tQEB, fqW}, 

where (Q, Pi) is the line segment between Q and Pi. 
By Lemma 4 there is a point 

PoE 0 2n(n+ l)-XB,(P3 �9 
BtE#w 

By Lemma 5 for 2 = 2 n ( n + l )  -~, and B~C#w, 

But 

Thus 

Let V= U V~. 
BtE,~ w 

Vol [bdy (B,)- 0 IV, Po] ~- ( n -  1)(n+ 1) -~ Vol (V~). 

z~ Vol [bdy (B,)- 0 W,, Po] = Vol (W). 
BIE @w 

Vol(W) ~ ( n - 1 ) ( n + l )  -~ ~ VoI(V~). 
B~E W 

Then in WUV 

n + l  

2n 
Vol (V) < 

( n -  1)(n+ 1)-~Vol (V)+Vol (V) - 

Vol (v)  Vol (v) 
~ . 

- Vol (W)+Vol (V) Vol(W(JV) 

Since the sets {WUV} have disjoint interiors and cover the complement of 
the packing elements of ~ and since the volume ratios of the packing elements 

n + l  
are bounded, we have that the lower packing density of  ~ is _~ 2"--"~- 

To complete the proof of  Theorem 1, we need the following: 

C O N S T R U C T I O N  1. Let 

B = {(xl, ...,x,)llx~+...+x.I <- 1, Ix, l~_l, i =  1 . . . . .  n}, 
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for n=2  or 3. Let ~ be the packing defined by taking translates 0fB by the lattice 

A = {(2kl . . . . .  2k,) Ikl . . . .  , kn are integers}. 

Figure 5 shows B for n = 2 and n = 3. 

Fig. 5 

We claim that ~ is a compact packing of convex symmetric bodies with density 
(n+ 1)/(2n) for n=2  and n=3. It is clear that ~ is a packing of convex symmetric 
bodies. It is easy to check that by translating each facet F of the square or cube to 
the opposite facet F that the relative interior of B f3 F is translated into the rela- 
tive complement of B A F and the two sets cover the facet F. Thus the two sire, 
plices that make up the complement of B in the cube or square are holes in the 
packing ~ .  Thus ~ is a compact packing. The density is easily calculated to be 
(n+ 1)/(2n) for n=2  and n=3. This finishes the proof of Theorem 1. 

m .  Proof of Theorem 2 

Let ~ be a compact packing of the Euclidean plane by homothetic and homo- 
theticly reversed compact convex sets such that the area of all the packing elements 
have a positive lower bound. 

Recall that a hole W is a connected component of the complement of the union 
of the elements of ~ .  

By Remark 5 after Lemma 3 each W is the connected component of the com- 
plement of a finite number $1 . . . . .  S,E~, where StOSj~O, for i~j. Since 
each St is a convex set with non-empty interior in the plane, each set of 3 of the 
S{s, say $1, $2, $3 must bound a connected region in the plane. If $4 is in this bounded 
region then W is not connected. If $4 is outside this region it is not part of the bound- 
ary of W. Thus n = 3. 

Let Ct be the centroid of St, i=  1, 2, 3. Let i,j= 1, 2, 3, i~j. If St and Sj 
are homotheticly reversed we define P~,~=Pj,~ to be the unique point on the line 
segment from Ci to Cj in SiOSj. Note in this case P~,j is the center of dilation 
which moves St to Sj. If  St and Sj are not homotheticly reversed, then we choose 
P~,s to be any point in StfqSj. However, if St and Ss correspond to another hole 
we must be careful to  choose the same P~,s. 
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Let H(W) be the hexagon whose boundary consists of the union of the line 
segments [Ci, Pt,~], i#j, i,j= 1, 2, 3. See Figure 6. 

I I ",, 
\ 

Fig. 6 

Note that if at least one of the sets is homotheticly reversed and at least one is 
not homotheticly reversed, then two pairs of adjacent sides of the hexagon are 
colinear, and we can think of our hexagon as a quadrilateral. 

LEMMA 6. The collection of hexagons {H(W)IW is a hole of ~} have disjoint 
interiors and the union covers the complement oj the union of the elements of ~. 

PROOF. Ez',,,[SIUSaUS~UH(W)] is connected and unbounded, thus H(W) 
must contain the bounded component of E2\[SI U S~U S~]. I.e., WcH(W). Since 
there are no unbounded components of the complement of the union of the ele- 
ments of # ,  the union of the hexagons must cover the complement of the union of 
the elements of # .  

By the construction of S~, $2, $3s for each hole, we see that no H(W) 
contains an element of # .  Thus H(W) contains no centroid of an element of # 
and no P~,j. Since no two of the segments that define the boundaries of the hexagons 
can intersect except at their endpoints, any two hexagons must have disjoint interiors. 
This finishes the proof of the Lemma. 

If we know that the density of the packing # ,  when each element is intersected 
with one of the hexagons, is not smaller than 1/2, then the overall packing density 
of # is not smaller than 1/2. Thus the following Lemma finishes Theorem 2. 

LEM~t~ 7. For each hole W o f #  

2(area W) ~ area H(W). 

PROOF. If  all three of the packing elements corresponding to W are homothetie 
or all three are homotheticly reversed, then the methods of A. Bezdek, K. Bezdek, 
and K. Bfr6czky [1] imply the result. 

Thus we are left with the case when one of the packing elements is different 
(homotheticly) from the other two. We assume that $1 is homotheticly reversed 
from S~ and S~ (and thus S~ and S~ are homothetie). Since affine linear transforma- 
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tions take centroids to centroids, preserve area ratios, and homothetic pairs of 
sets, we may al~o assume that the triangle (P~,~, P~.3, P3,a) is an equilateral triangle 
of side length 1. We must carefully estimate the area of W. Let C~, for i=  1, 2, 3, 
be the point in S~ furtherest from the line through P/,~+x, P~,~-~ (indices mod 3) 
on the same side as W.. The quadrilateral (C~, Pi,~+~, C~,P~,~-I) is contained in 
Si and roughly speaking we will use its area as a lower bound for the area of H(W) A 
A St. See Figure 7. Note that it might happen that C~ and C~ are on the same side 
of P~,i+x, P~j-~- 

/ 

F~g. 7 

Let absolute value of hi be the altitude of (C~, Pi,~+~, P/,~-I} from the vertex Ct. 
We define h~ to be positive if Ci and C~ are on opposite sides of (P~,~+I, Pij-1}, 
otherwise hi is negative (or zero if Ci is on the line through P~,i+~, P~'i-1). 

Let h~>0 be the altitude of (C~, P~j_a, P~,i+~} from the vertex C~. We claim: 

area [H(W) A S,] ~ 1 (hi + hi). 

In case Ci and C~- are on opposite sides of the line through Pi,i-1 and P~,~+I, or 

Ci lies inside the triangle (C~, Pi,~-~, P~,~+I), then 2(hi+h~) is the area of the 
, I  

quadrilateral (C~, Pi,i-1, C~, Pi,i+l} which is contained in H(W)ASI. On the 
other hand, it is easy to see that when h~<0, since Ihi[<-h~, the claim still holds, 

1 
since the triangle (Ci, Pij+~,C~} has area >=-~(hi+h~) and is contained in 

H(W) f-'l S~, assuming (without loss of generality) that the segments (Ci, P~,i+a} and 
(C~, Pi.i-x} cross. See Figure 8. 

We now must estimate hi +h~, for i=  1, 2, 3. 
We observe that if L is a support line for S~, i=  1, 2, 3, and b~ is the breadth 

of St in the direction perpendicular to L, then d(Ci, L)>=bd3, where d(C~, L) 
is the distance from the centroid Ci to L. (See Bonnesen and Fenchel [4], page 52.) 
In particular when L~ is the support line through C~ parallel to P~,g-1, P~,~+I, then 
d(Ct, Li)=hi+h'. Thus we now look for lower bounds for the breadth in the direc- 
tion perpendicular to the line through P~j-x, P~,~+~. 
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\X,I \ 

- Fig~8 

We use the homotheties to find points far away from C[ in the given direction. 
Let 2~, i=  1, 2, 3 be the absolute scalar constants of homothety for S~. That is, 
the ratio of the lengths of correspondig line segments from S~ to Sj is 2d2~. Recall 
$I is homotheticly reversed from $2 a~d $3. Let hk, z: Sk-~S~ be the homothetic 
dilation that takes the set Sk onto Sz, where k ~ l ,  k , / = 1 , 2 , 3 .  Define ~k,.t= i , J  
=hk.:(Ptj). Note that p~k~t is defined only when Pi,~ESk, i.e. i = k  or j = k .  

We now compute the distance of ~ '~  from the line through P~,s, P~,z- See 
Figure 9. 

\ 

Fig. 9 

Recall hx.2(PI.~)=PI,~ and hl,3(P1,8)=Pl, s 

(3.1) 1,~ ~ 28 1~,2-Px,~[ = Ihl,~(P~.3)-hl,~(P~,2)l = 1 Ie~.3-~ ,~l  = AT" 

But 
Pa~,'3 ~ = h~, , ( P~. 3) = hx, , h., x ( P~, 8) = hs, a(P~.8) =/~,'8 ~, 
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since a composition of  homothetic dilations is a homothetic dilation. Then 

(3.2) ~ , ~  ~*.~ ~p~,: u~,~t atl,$ - - a 2 , 3 1  = | a l , 3  - - a 2 , 3 1  = 

(3 .3)  

Similarly 

= l h 3 . a ( ~ . 3 ) - h 3 . , ( P ~ . 3 ) l  = -~a  IP~.3,P~.31 = 2-'7" 

Each of the above line segments makes a 60 ~ angle with the line through P~,_ and 
P~,a- So by (3,1) and (3,2), 

~_( l~ .q_p~d+ p,~,, ~ 3 ~ +  ~.'~ -- ~,'~ ~, ha' -~ b~, 

I/7 t & & ~ , 
T L~+~J +h~ ~- b~ <= 3(h~+h~). 

1/3 ( 23 2a) h ' _  
(3.4) -~L~-~ + - ~ a j +  a ~ ba <- 3(ha+h~). 

We get an estimate for hx+h~ by calculating ~ , t .  

Thus 

~3 1 p 2i 21 

r 
-E l~.q-~,d +h~ ~_ b~, 

(3.5) u  ""  2--2-1+ h~ ~_ b t _~ 3(hx + hl). 
2 ha 

Adding (3.3), (3.4), and (3.5) we get 

-'~- (---~ +.-~t +-~a +-~t +-fT) + h~ + h'2+ h; ~_ 3(ha + h~ + h~ + h'~ + h~ + h's), 

;h ha 22 As . 
Since az ax's-+T-=~2 and ~-7+-~-_~2, We get 

But 

Thus 

2 . 4 +  z~h;  =< 3( hi+h;), 
i = I  i:=l 

p2~.- h i=0 ,  for all i = 1 , 2 , 3 ,  so 
3 

21/3"~ 3 " X (hi + hi). 

3 3 

2 ~  3 Zh,+2 Zh;. 

3 = ~=x 2 l=tarea[H(W)NSd = area: H t= & 
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But Wc(Pa,2, P2,3, P3,t) and 

area (P1.2, P~,s,/'~,1) = -~-. 

, , ,< CY r Thus area ,, =---~--<--]--<=area [H(W)N( 0 Si)]. Thus 
i = 1  

11 

2 area W<= area [(H(W) (q ( U St)) U w]  = area H(W) 
i = l  

finishing the Lemma and the Theorem. 

IV. Proof of Theorem 3 

We repeat here the same notation of Section II, where (P~ . . . . .  P,,+l)=o" is 
a simplex in E", and 21,2~, ,,., 2,+1 are positive real numbers. Pi,j ( i<j)  is a 
point on each edge (Pi, Pj) between Pi and Pj with the property that 

,~j(~-e,,j) = & ( & 7 ~ ) ,  

where l<=i<j~n+l.  We regard P~.j=Pj.t. 

n + l ~ ,  , 
LEMt~tA 8. Vol [Cony {P~,j}~,j]<- 1 - ~ j  vol a. 

PROOF. Without loss of generality, by applying an affine linear transforma- 
tion we may assume that each edge has.lengt, h 1. We will proceed by induction on n. 
For n= 1 and n=2 the statement is trivial and follows from the analysis in Sec- 
tion II respectively. 

n + l  

c~n W=conv {p,.~},,~. Let ~,=eonv [jU= {P,.j}]. Then 

n + l  

(4.1) a = WU U B*%, 

where P~. zt is the convex hull of  ~ and z~, and each of the sets in the union has 
disjoint interiors. P~.z~ is the i-th "corner" of a outside W.. See Figure 10. 

We now apply Lemma 2 to find a point #Ea such that for all i=1, 2 . . . .  , n+  1 
the half-space with T~ in its boundary containing Pi when dilated (from P~) by 2n/(n+ 1) 
contains #. Fix i = I , 2  . . . .  , n + l .  Let It be the altitude from P~ in P~*zi. Let 
be the altitude from # in # .  zt (the convex hull of # and ~0, where, if # is on the 
same side ofvi as Pi, then it<0, and #*zt is regarded as having negative volume. 
Then 

2n It, It<- - n - !  t,+/t < n §  1 --YgT t,, 
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R 

Fig. 10 

and 
n - - 1  

(4.2) Vol O* zi ~- ~ Vol/]* xi. 

Let o'i =(P~ . . . . .  /li-1, B+I . . . . .  -P,+I) be the face opposite Pi. Let 

w,  = c o n y  {~ , j } , , j ,~ , ,  c ~,. 
Then 

n+l  n+ l  
W =  U #-*WiU U ~*Ti. 

i=l  i=1 

Let h~ be the perpendicular distance of 8 from the plane of ai. Since each pair of 
sets in the above union have disjoint interiors, we get 

n=l  1 n+ l  
VolW= ~ --hiVol._ 1W~+ z~ VolS*zi, 

i=1  n i = I  

where Vol._~ denotes ( n -  l)-dimensional volume. By induction 

V o l . - 1 N -  ~ 1 - ~ =  i- Vol,_lov 

Thus using (4.2) 
.+lh, [ _~_1 .+I n - 1  vol w=< ,--iZ 1-  Vol._,o,+ Z volW,.O 
_- x ~ -' i=1 n + l  - -  

~ ( | - -  2~'~ T-l)  V~ ~ 

since Vol~_~ ~=Voln_ 1 al, for all i. 
o. Thus 

Voln_ 1 ol 
n 

n+~ . - 1  a + l  

i=1 n.-~ ]=1 

n + l  
Since o" is regular z~ hi=any aItitude of 

tffil 

n+l 
Z hi = Vol o. 
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By (4.1) 
n + l  
~ '  Vol (P~* zl) = Vol a - V o l  IV. 
i = l  

Putting this together we get 

Vol (W) <= (1-  2,n-~_~ l Vol a + ~  (Vol a-Vol W), 

n + l  V~ n + l  2~-f Vola, Vol(W) <- 1 - ~  Vol~, 

finishing the Lemma. 

We now can show the density estimate in Theorem 3. If  a is an n-simplex in 
the triangulation for the triangulated packing ~ ,  then each vertex P~ of a is the 
center of some body B ~ .  If 2~ is the constant of homothety for B~, then points 

n + l  

P~dE(P~, Pj)OB, fqBj areas in Lemma 8. Thus P**zicBi and WU U Bi~ff, and 
i = l  

n + l  
U (BS~O~\W. So 

i = l  

n + l  n + l  

Vol(aXW) <- V o l ( U  B, Aa), Vola-VolW<= V o l ( U  1 B, Na), 
i=  i=  

n +  1 a .+1 
V o l a -  1 - ~ J V o l a ~ V o l [ , U x _  Bif3a], n+l<2.  -- 

n + l  
Thus 2n <=d, where d = d e n s i t y o f ~ .  

To finish the Theorem we rely on the following: 

. + 1  

Vol [ U n,,] 
i = 1  

Vot ~r 

CONSTRUCTION2. Let F={(z~ ,  .... z,)lz, is an integer i=1,2 ,  ..., n}cE" 
be the usual integral lattice. Let CcF be vertices of  the unit cube, i.e., 
C={(zx ..... z,)lfor each i, zi=O or 1}. We define a relation on F by saying for 
P, Q~F, P-<Q if Q-PCC. Note the -< is a partial ordering on C, but not 
all of F. 

We now define the triangulation oj- of E". A simplex a=(P~ ...... Pro) of oJ" 
consists of P~6F such that Px'<P~'<...Pm and P~-<Pj if l<-i<j~m<=n+l. 
I.e., well-ordered subsets of  F are the vertices of simplices of  ~.  This defines a well- 
known triangulation orE" apparanfly originally due to Freudenthal [7]. See Todd [13], 
for example, for a proof that we have indeed defined a triangulation. 

For P a vertex of ~, we claim that the star of P in ~-=s t  (P ,~ ' )=  
=U{alaE~,, P is a vertex of a} is the, convex body Bp defined b y  Be=P+ 
+ x ,  i,x xd<-l, l x , - x . l - l , i ~ j , i , j= l ,  ,n ((1....)11 . - .  , -  . . . .  } .  

To show this claim we assume, without loss of generahty, that P =  O, the 
origin. If  a simplex of ~,, a c s t  (P, oj-), then we can order the vertices of  a so that 
Px-<...-K0=P~-<...-<P,+I (possibly with repeated Pj's). All the coordinates of 
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P~ . . . .  , P~-I are 0 or - 1 ,  and all the coordinates of  Pi+a, ..., .Pn+l are 0 or 1. In 
order for P~'<P,+I the non-zero coordinates in the two collections must be disjoint. 
Thus the vertices of  a are in Bo and hence acB0.  

Suppose Q=(xa . . . . .  x,)CBo. By reordering the coordinates, we may suppose 
that xx~_...~xi_~_O=x~<=x~+a<=...<=x,. Let 

Pj = ( - 1  . . . .  , - 1 , 0 ,  .... 0), j =  1, . . . , i - l ,  

where the first] coordinates are - 1 ,  and the rest are 0. Let P~=O. 

P j = ( 0  . . . .  ,1 . . . .  ,1), j = i + l , . . . , n + l ,  

where the last j coordinates are 1. Then P~'<...'<P,+I defines a simplex 
a=(P1, . . . . .  P,+I) in ~ and a is in st:(O, oq') since P~=O. 

To show that Q is in st(O, ~ )  define fi, i=1,  ..., n + l ,  by 

t 1 = X2"X 1 

t i _  2 -~ X i _ I - - X i _  2 

t i _  1 ~ - - X i _  1 

h = 1--x .+xt  

h+l = x n - - x . - 1  

t n -~ X i + l - - X  i 

t . + 1  = xi. 
n+l n+l 

It is easy to cheek that t~=>0, for all i=I, .~.tn+l, Z t,=l, and ~Y t~P~=p. 
i=1 i=I 

I t  is clear that ~-- is symmetric about any vertex of ~.. Then we define a Sym- 

metric convex set Bp=P+-~Bo for each PEF. This is the convex hull of  the 

midpoints of all of the 1-simpliees with P as one vertex. /~r is symmetric Since Y" 
is, and each/~p is congruent t o / ~ ,  P, Q~F by a translation. Each /?eAo" where 
aE~, P~a, is precisely the comer defined by 21=2.2 . . . .  =2,+1 in Lemma 8. Thus 
the density is exactly (n+ 1)/2". See Figure 11. 

. . L  �9 

This finishes the proof of Theorem 3. 

REMARK 6. It turns out in Construction 2 that the sets Bp are all (congruent) 
zonotopes. They are the convex hull of a cube of side length 1/2 and the reflection 
of that cube about one of its vertices. 

Note also that although no triangulated packing of equal spheres exists for 
dimensions greater than 2, in dimension 3 we can find a triangulated packing with 
just two sizes o f  spheres: Take the usuaI ct6se latticepacking of equal spheres with 
radius 1 say. Joining the centers of  adjacent spheres we get a 1-dimensional com- 
plex that can be regarded as the edges of a tiling of  E s by regular octahedra and 
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F(g. 11 

tetrahedra of side length 2. In the center of each octahedron place a smaller sphere 
of radius 1/9-2 --  1, which touches all 8 of the surrounding spheres of the regular 
octahedron. This then yields a triangulated packing of E 3 by spheres of just two 
sizes. 

PROOF OF Tm~ COROLLARY. Let O be the origin in the interior of a convex 
body B. Then the Minkowski average of B and - B ,  

-~B--~B1 1 { 1 1  } = = -~x--~y]x ,  yEB 

is a centrally symmetric convex body. If  B~=p~+B and Bj=p~+B are translates 
of B with disjoint interiors, then by a Theorem of Hadwiger [10] /~=p~+/~,/~1= 
=pj+B have disjoint interiors and intersect if and only if B~ and B i intersect, as 
mentioned in the introduction. 

A theorem of  Rogers and Shephard [12] says that 

Vol/~ ~_ (2~) VolB. 
2 

This then yields the Corollary via Theorem 3. 
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