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Abstract. We show that there is a bar-and-joint framework G(p) which has a 
configuration p in the plane such that the component of p in the space of all planar 
configurations of G has a cusp at p. At the cusp point, the mechanism G(p) turns out 
to be third-order rigid in the sense that every third-order flex must have a trivial 
first-order component. The existence of a third-order rigid framework that is not 
rigid calls into question the whole notion of higher-order rigidity. 

1. Introduction 

Suppose a finite conf igurat ion of  labeled points p = (Px . . . . .  p,), where each Pi is 
in Eucl idean space Ra, is given. Let  G be a graph whose vertices cor respond to 
the labels {1 . . . . .  n}, An edge of  G, denoted by  {i,j}, is called a bar. The 
configurat ion p together  with the graph G is called a bar-and-joint framework, and 
is denoted  by G(p). If {i,j} is a ba r  of  G, then dur ing any cont inuous  one -pa ramete r  
mot ion  p(t) = (px(t) . . . . .  p,(t)) with p(0) = p, we insist that  the dis tance from p~(t) 
to pj(t) be kept  fixed. When  is this bar -and- jo in t  f ramework G(p) rigid? That  is to 
say, when does every such cont inuous  mot ion  of  the points  of the framework,  
preserving the ba r  lengths, arise as a restr ic t ion of a one -pa ramete r  family of  
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congruences of Rd? Equivalently, when does every continuous motion preserve 
the distance between any two points, whether they are connected by a bar or not? 

Considering each of the points p~ of the configuration as a vector in ~d, the 
distance between p~ and pj can be written in terms of the usual dot product, and 
the distance constraints are expressed by the system of quadratic equations 

(Pi -- Pj) '(Pl - Pj) = cij for all {i,j} bars of G, (1) 

where each c~i, a constant, is the squared length of bar {i,j}. If there is an analytic 
motion of the points p~ satisfying (1), then all the derivatives of the left-hand side 
must be identically zero. The resulting homogeneous differential equations provide 
the motivation behind the concept of first-order and second-order rigidity. 

In the case of the first derivative, the definition of first-order rigidity is natural, 
and things work out well. Again, let p = (Pl . . . . .  p,) denote a fixed configuration 
corresponding to the graph G. Af i rs t -order f lex  of G(p) is a configuration of vectors 
p' = (p'~ . . . . .  p',) such that the equations 

(pi - pj)'(p'~ - p~) = 0 for all {i,j} bars of G (2) 

are satisfied. Equation (2) comes from the formal derivative of (1). We say that p' 
is trivial if p'i = (d/dt)~t(p~)l o for a one-parameter family ~,,  0 < t < 1, of con- 
gruences of ~d, where ~o is the identity. 

If d = 2, then we may, without loss of generality, take any bar and require 
that bar to be fixed by any motion, essentially pinning its endpoints. Since the 
only one-parameter family of congruences of the plane which fixes some edge 
is the identity, the trivial first-order flex is easily identified by the equation 
p ' = 0 .  

We say that G(p) is first-order rigid if it has only trivial first-order flexes. With 
this definition of first-order rigidity, it is easy and natural to show that if G(p) is 
first-order rigid, then it is rigid. See [1] and [4] for a proof  and a discussion of 
this concept. 

In the case of the second derivative, the definition of second-order rigidity is 
still reasonable and things still work out well. A second-order flex of G(p) is a pair 
of configurations of vectors (p', p"), where p' is a first-order flex of G(p) and 
p" = (p'~ . . . . .  p~), with p'[ e R ~, i = 1 . . . . .  n, is such that the equations 

(Pi -- Pj)'(P;' - P)') + (P'i -- P))'(P'I - P)) = 0 for all {i,j} bars of G (3) 

are satisfied. We also insist that p7 = 0 for all pinned vertices i. Equation (3) comes 
from the formal derivative of (2). Physically we can regard p' as formal velocities 
and p" as formal accelerations permitted by the distance constraints of the 
framework G(p). 

We say that a bar  framework G(p) is second-order rigid if every second-order 
flex (p', p") has p' trivial as a first-order flex. In the case when G has pinned vertices, 
we say that G(p) is second-order rigid if every second-order flex (p', p") has p' = O. 
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Fig. 1. A second-order rigid framework which is not first-order rigid. 
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Clearly, if G(p) is first-order rigid, then it is second-order  rigid. In Fig. 1 we see a 
f ramework which is second-order  rigid but not first-order rigid. The symbol  at 
the endpoints  represents a pinned vertex. In [2-] it is shown that if G(p) is 
second-order  rigid, then it is rigid. 

Just considering the pinned case, at first sight it might  seem more  natural  to 
define a f ramework to be second-order  rigid if every second-order  flex (p', p") 
satisfies p' = p" = 0. The difficulty with this definition is that it leads to a notion 
of second-order  rigidity which is equivalent to first-order rigidity. 

Proposition 1. A pinned framework G(p), in the plane, is first-order rigid, if and 
only if every second-order flex (p', p") = (0, 0). 

Proof Suppose that G(p) is not first-order rigid. Let p' be a nonzero first-order 
flex of G(p) that  satisfies (2). Then (0, p'), where p' takes the place of a formal 
acceleration, is a nonzero second-order  flex satisfying both (2) and (3). 

Suppose that  G(p) is first-order rigid. Let (p', p") be any second-order  flex. Since 
p' is a first-order flex, p' = 0. Then (3) reduces to (2) with p" playing the role of a 
first-order flex. So p" = 0 as well. []  

A similar result holds in ~d. 
Thus it is clear that we must  control only the formal first derivative in the 

definition of second-order  rigidity. In what  follows we discuss the difficulties of 
extending this definition to the case of higher-order rigidity. Some authors  have 
a t tempted to make  such definitions, but we believe that there are some inherent 
difficulties with any reasonable definition. See [9, pp. 60-61] or [10], for example, 
for some a t tempts  to make  such a definition of higher-order rigidity. We discuss 
one very natural  possibility here and show the difficulties. This example is also a 
counterexample  to the claim of [9] on pp. 60-61 that  such examples must  be 
"geometrical ly invariant." 

2. Higher-Order Rigidity 

The question is how to extend these definitions of first- and second-order  rigidity 
to higher-order  rigidity. The formal derivatives satisfy 

(~)(la~--p}a))'(plk-a)--p}k-a))=O for all {i,j} bars of G, (4) 
a = O  

where p[") = (p~") . . . . .  p~,")) represents the formal nth derivative, p(~ and(ka) 

is the binomial  coefficient. We say that  (ptl) . . . . .  ptm) is an Nth-orderflex if all the 
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Fig. 2. 

,A, 
An eighth-order rigid framework which is not fourth-order rigid. 

equations in (4) are satisfied for all k = 1, 2 . . . . .  N, and for all {i,j} bars of G. In 
[2] the following was suggested as a definition of higher-order rigidity. 

Definition 1. A bar-and-joint framework G(p) is Nth-order rigid if every Nth- 
order flex (p~lj . . . . .  p~m) has p~l) trivial as a first-order flex. 

Note that this definition agrees with the definitions above for second- 
order rigidity and first-order rigidity, and it is clear that nth-order rigidity 
implies mth-order rigidity for 1 _< n < m. The hierarchy of rigidity is also non- 
trivial, as seen in Fig. 2, which indicates how to create a sequence of frame- 
works of higher-order rigidity out of pieces like Fig. 1. For  details see [10]. 

The difficulty arises in trying to show that Nth-order rigidity implies rigidity. 
If a framework has a nontrivial motion, which we may assume, without loss of 
generality, to be analytic (see [3] for a proof of this analytic parametrization), then 
it would at first appear that we can take as many derivatives as needed to 
distinguish the motion from a trivial one. Those derivatives will be a nontrivial 
flex of some order. So the following question arises. Are there mechanisms (with 
pinned vertices), that is, nonrigid frameworks, all of whose nontrivial flexes have 
a trivial first-order component? The mechanism must at least have this property 
to be a candidate for being an example of being Nth-order rigid, but not rigid. 
Regard each configuration p as a single vector in [~,d and consider the configura- 
tion space X, 

X = {pip is a configuration satisfying (1)} c E,a, 

where pinned vertices are fixed in the definition of X. A motion of a mechanism 
corresponds to a path in X, and so a curve in ~,a. In this general context, if a 
curve has a cusp (such as the curve given by y2 = x 3 at the point (0, 0) in the 
plane), then the velocity of any analytic parametrization at the cusp point must 
be 0. If the only third-order flexes are those coming from parametrizations of the 
curve in configuration space, then we will have an example of a mechanism that 
is third-order rigid. These considerations motivate the following example. 
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Fig. 3. A third-order rigid framework that is a mechanism. 
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3. A Cusp Mechanism 

We note first that it is not enough to require that some point on the candidate 
mechanism traces out a cusp, since this corresponds at most to a projection of 
the configuration space, which may be perfectly regular. 

In Fig. 3 we have an example of a mechanism whose configuration space X 
has a cusp at this position. We see that it is in fact third-order rigid by Definition 
1. The framework basically is made up of two mirror image Watt mechanisms 
joined by a horizontal rod. For a discussion of the Watt mechanism see [8]. A 
Watt mechanism is pictured in Fig. 4, where the path of the midpoint q of the 
middle bar under the motion of the framework is indicated. Note that, although 
there is a self-intersection of this path, from the configuration pictured, the motion 
of q must follow first along the arc having the vertical tangent. With some 
additional bars added to allow the attachment of an edge at this midpoint, it 
follows that the central horizontal bar of Fig. 3 is confined to the well of Fig. 5(a), 
from which position it cannot ascend, and may descend in two alternative ways 
shown in Fig. 5(b) and Fig. 5(c), depending on which endpoint falls faster. It  is 
clear that infinitesimally the two paths away from this configuration coincide, 
hence the configuration space has a cusp at the position of Fig. 3. 

Proposition 2. The framework in Fig. 3 is third-order riyid but not rioid. 

Proof The point Pl in Fig. 4 is constrained by the bar {0, 1} to move in a circle 
about Po, so the most general third-order flex at Pl satisfies 

P'I = (0, al), p'~ = ( - a  2, bl), and p~' = (--3albl, cl). 

Po 

Fig. 4. 

Pa 

The Watt mechanism. 
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F i g .  5. P o s s i b l e  c o n f i g u r a t i o n s  n e a r  t he  cusp .  

Similarly, the most  general third-order  flex at P2 satisfies 

p~ = (0, a2), p~ = (a 2, b2), and p~' = (3a262, c2), 

and the bar {1, 2}, with P2 - -  P l  = (1, 1), gives three equations: 

(1, 1)" (0, a2 - a l )  = 0, 

(1, 1)' (2a 2, b 2 - bl) = 0, 

(1, l ) ' ( 3a (bz  + bt), cz - c~) = O, 

where a 1 = a 2 = a from the first equation. Thus 

b 2 - b l  = - 2 a  2, cz - ci = - 3 a ( b z  + bO. 

It follows that all the nonpinned vertices on the left augmented Wat t  mechanism 
of Fig. 3 will have (0, a) as their first-order flex. Moreover ,  since all these vertices 
are part  of an infinitesimally rigid framework, all the higher-order pta)'s are 
determined by p]a) and p~2 a~. See [2] for a discussion of this principle. In particular, 
the point q in Fig. 4 will have its most general third-order flex (q', q", q") expressible 
as the arithmetic mean of (p'~, p~, p'~') and (p~, p~, p~'). So we may write 

q' = (0, a), 

By symmetry,  

~' = (0, ~), 

q " = ( O , ( b 2 + b O / 2 ) ,  and q " ' = ( - 6 a  3 , ( c 2 + c 0 / 2 ) .  

~" = (0, (/~2 +/~1)/2), and q" = ( 6fi3, (c2 + ~0/2). 

The central horizontal  bar, with, say, ~ / - q  = (2, 0) yields three equations. The 
first-order equat ion is already satisfied. The second-order equat ion is 

(2, 0)" (0, (/~2 + bl - b 2  - bl)/2) + (0, ~ - a) '  (0, ~ - a) = 0 

giving a = fi, and hence (el' - q') = 0. Thus the third-order  equat ion gives 

(2, 0)" (12a 3, (c2 + cl - c2 - c0/2) = 0, 

so a = 0, and the first-order flex p' = 0. []  
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We believe that  Fig. 3 is the first known example of a cusp mechanism. A 
well-known result of Kempe  [7] says that  to any compac t  subset of a plane curve 
defined by polynomial  inequalities, there corresponds a mechanism, one vertex of 
which traces out that  subset. See [6] for a careful proof. We note, however, that  
this is insufficient to guarantee the existence of a cusp mechanism, since we are 
considering the curve comprising the configuration space, which takes into account  
the mot ion  of all the vertices simultaneously. More  to the point, N. Mnev has 
recently claimed in a private communica t ion  that  any compact  algebraic set is 
equivalent to a finite number  of components  of the configuration space of some 
bar mechanism in the plane by a nonsingular  diffeomorphism with rational 
coordinate  functions. His result is constructive, and so should also yield a variety 
of cusp mechanisms,  though none perhaps so simple and direct as that  of Fig. 3. 
In any case, his result is not quite enough to ensure that  such a mechanism is also 
Nth-order  rigid, since that  would require, in addition, that any Nth-order  flex 
correspond only to the first N derivatives of some parametr izat ion of the 
configuration space. Thus it seems that, even with Mnev 's  result, the calculations 
of this section still need to be done for some particular mechanism for a complete 
proof  of Proposi t ion 2. 

4. Redefining Higher-Order Rigidity 

The problem still remains as to what kind of definition might be used for 
"higher-order  rigidity." The following properties seem to us to be necessary for 
any reasonable definition: 

1. First- and second-order  rigidity agree with Definition 1. 
2. For  N = 1, 2 . . . . .  if a f ramework  is Nth-order  rigid, then it is (N + 1)-order 

rigid (but not conversely). 
3. For  N = 1, 2 . . . . .  if a f ramework  is Nth-order  rigid, then it is rigid. 

We just saw that  Definition 1 does not satisfy Proper ty  3. The definition 
proposed in [9] on pp. 60-61 does not satisfy Proper ty  3 either. However,  
Definition 1 does satisfy the other  two properties and the following additional 
desirable propert ies  as well: 

4. I f a  given f ramework is rigid, then it is Nth-order  rigid for some N = 1, 2 . . . . .  
5. Fo r  N = 1, 2 . . . .  , for a given framework,  Nth-order  rigidity can be computed  

in a finite time. 

One idea to strengthen the previous definitions of higher-order  rigidity is to 
use Proposi t ion 1 as the model. It may  be required, say, that some fixed fraction 
of any flex be trivial. In fact, second-order  rigidity is equivalent to the condit ion 
that every flex of even order (p(l), . . . ,  p(EN)) has (p(1) . . . . .  p(N)) trivial, as was shown 
in [2] in the course of proving that  second-order  rigidity implies rigidity. Proceed- 
ing in this manner ,  a hierarchy of weaker  definitions is obtained, and it can be 
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shown that the first four conditions above are all satisfied. Unfortunately, we do 
not yet know if the necessary finiteness requirement of Property 5 can be achieved 
for N > 3. 

Lastly, we remark that much of what has been discussed here can be put in a 
more general context. For  example, the usual definition of Nth-order rigidity may 
be carried over to arbitrary systems of algebraic equations, f ( X )  = 0, by saying 
that f is nth-order rigid at the solution X if every solution of the system 
f "~ (X ,  X ~1~) . . . . .  ftn~(X . . . . .  XCn}), where ftJ} is the formal j th derivative of f,  
requires that X ~1~ = 0. It can be shown that first- and second-order rigidity implies 
rigidity. 
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