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Abstract. By attaching cables to the centers of the balls and certain intersections 
of the boundaries of the balls of a ball covering of E d with unit balls, we can 
associate to any ball covering a collection of cabled frameworks. It turns out that a 
finite subset of balls can be moved, maintaining the covering property, if and only if 
the corresponding finite subframework in one of the cabled frameworks is not 
rigid. As an application of this cabling technique we show that the thinnest cubic 
lattice sphere covering of E d is not finitely stable. 

1. Definitions and Terminologies 

Definitions Concerning Sphere Coverings and Packings. Most of the notions we ,use 
here were first introduced by Fejes T6th and were discussed in [F1] and [F2], which 
seem to be the most often used references in the field of discrete geometry. In this 
paper we discuss the arrangements of d-dimensional balls in the Euclidean d-dimen- 
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sional space E d. A ball covering (also called a sphere covering) in E d is an 
arrangement  of d-dimensional  closed balls whose union is E d. If the centers of the 
balls of  a sphere covering form a discrete point set, then we speak about discrete 
sphere covering. The discreteness of a sphere covering with unit balls (balls with radii 
equal to 1) means that each point of E d belongs to at least one but only finitely 
many balls of the covering. 

In order  to describe how firm or steady covering as a structure is, different 
notions were introduced. 

A sphere covering C is said to be: 

(i) Stable (also 1-stable) if each ball is fixed by its neighbors, so that no ball can 
be moved separately and maintain the covering property. 

(ii) n-Stable if each set of n balls is fixed by its neighbors, so that no subset of n 
balls can be moved and maintain the covering property.  

(iii) Finitely stable if it is n-stable for every n >_ 1. 
(iv) Uniformly stable if there is an e > 0 such that no finite subset of the balls of 

C can be rearranged such that each ball is moved a distance less than e and 
the rearranged balls together with the rest of balls form a covering different 
from C. 

There are dual counterparts  of the above definitions. A ballpacking (also called a 
sphere packing) in E u is an arrangement  of d-dimensional  closed balls which have a 
disjoint interior. If  the centers of thc balls of a sphere packing form a discrete point 
set, then we speak about discrete sphere packing. A sphere packing with unit balls is 
automatically discrete. 

A sphere packing P is said to be: 

(i) Stable (also 1-stable) if each ball is fixed by its neighbors. 
(ii) n-Stable if each set of n balls is fixed by its neighbors. 

(iii) Finitely stable if it is n-stable for every n > 1. 
(iv) Uniformly stable if there is an e > 0 such that no finite subset of the balls of 

P can be rearranged such that each ball is moved a distance less than e and 
the rearranged balls together  with the rest of balls form a packing different 
from P. 

Delone Triangulat ion.  Let  C be a discrete sphere covering of E d with unit balls. 
Let  S O be the family of center points of the balls of C. Consider a d-dimensional 
ball whose interior does not contain any center point from S O and whose boundary 
intersects S O in a set spanning E u. The convex hull of  the intersection of the 
d-dimensional  ball with S o is a Delone cell. Every Delone cell can be obtained this 
way. It turns out that the Delone cells from a tiling D or  D ~, the Delone tiling. We 
illustrate the planar  case in Fig. 1, which shows the Delone tiling determined by the 
centers of a discrete circle covering of  the plane with unit circles. The circle on Fig. 
1 is to show how an empty circle determines a Delone cell. Note that, since C is a 
covering, each Delone cell of D is inscribed in a sphere of  radius < 1 and if it is 
inscribed in a sphere of radius 1, then its interior contains the center  of that sphere. 
Moreover,  a slight per turbat ion of the covering C yields a covering whose Delone 
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Fig. 1. Delone tiling. 

tiling consists only of simplices. Thus, having obtained C as a limit of sphere 
coverings of E d with unit balls whose center points lie in general position, we can 
triangulate the Delone tiling of C into simplices called Delone simplices, without 
introducing new vertices. The triangulation obtained in this way is called a Delone 
triangulation, associated with the covering C. The Delone triangulation is not 
necessarily unique. 

Frameworks. The following definitions are taken from [AR]. Let G be a finite or 
infinite graph with no loops or multiple edges. We refer to the vertices of G by 
1, 2 , . . . .  Each edge is labeled either a bar, cable, or a strut. Each vertex is labeled 
either fixed or variable. A realization of G in E d is an assignment of a point Pi in 
E d, for the ith vertex of G, i = 1, 2 , . . . .  There is no restriction about edges crossing 
each other. A realization of G is denoted by G ( p )  where p = ( P l ,  P2 . . . .  ). G ( p )  is 
called the (tensegrity) framework. 

Let p ( t )  = (p l ( t ) ,  p2(t) . . . .  ), where pi( t)  is continuous for 0 < t < 1, p(0) = p, 
and pi( t )  = Pi, for the fixed vertices i of G, for all t. We say p ( t )  is a continuous 
motion or a flex of G ( p )  if the cables are not increased, the bars are not changed, 
and the struts are not decreased in length. If G ( p )  admits only the identity flex, then 
we say G ( p )  is rigid. 

A framework G ( p )  with infinitely many vertices is said to be finitely rigid if 
labeling all but finitely many vertices fixed always result in a rigid framework. This is 
the same as saying that the framework does not allow any motion once all but 
finitely many vertices are pinned down. Pinned vertices are not allowed to move. 

A stress w = ( . . . .  wij . . . .  ) of the finite framework G ( p )  is an assignment of a 
scalar wq = o J j i  for each edge {i, j} of G such that the following equilibrium 
equation holds for each variable vertex i of G: 

Y'~ ~ Pj - P i )  = O. 
J 

This vector sum is taken over all vertices j adjacent to i. A proper stress is a stress oJ 
such that ~oij = ooij ~ 0 of {i, j }  is a cable, and ~oij = w~i < 0 if {i, j} is a strut (no 
condition on bars). 

Outline of the Rest of the Paper. Section 2 contains the description of our cabling 
method, which leads to applying the rigidity theory to determine the finite stability of 
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discrete sphere coverings in E a with unit balls. We prove Theorem 1, which basically 
says that moving a finite subset of a sphere covering with unit balls and maintaining 
the covering property is equivalent to moving a finite subframework in one of the 
associated cabled framework. In Section 3, using Theorem 1, we show that the 
thinnest cubic lattice covering of E a with unit balls is not finitely stable (Theorem 2) 
and so is not uniformly stable. For the sake of comparison, in Section 4 we mention 
without proofs (as they are the subject of another paper under preparation) some 
analogous results concerning the stabilities of sphere packings. We also state some 
open problems (Remarks 1 and 5). 

2. Finite Stability of Sphere Coverings 

Associating an Infinite Cabled Framework with a Delone Triangulation. Let C be a 
discrete sphere covering of E a with unit balls. Let D be one of the Delone 
triangulations associated with the covering. We mentioned before that each Delone 
simplex of this triangulation D is inscribed in a sphere of radius < 1. Let S a be the 
collection of those possible degenerated d-simplices of the Delone triangulation D 
which are inscribed in a unit sphere and contain (either inside or on the boundary) 
the center of their circumscribed sphere. Let the cablestar CS a be the family of 
(d + 1) cables of length 1 that connect the vertices of a d-simplex of S a to the 
center of the circumscribed sphere. We illustrate the planar case in Fig. 2, which 
shows a Delone triangle of circumradius 1 and shows how a triplet of cables (called 
cablestar) is attached to the vertices of the Delone triangle. Finally, consider the 
cabled framework, whose vertices are the vertices of the d-simplices of S a together 
with the centers of the circumscribed spheres of the d-simplices in Sa, and whose 
cables are the cables of CS a. This infinite cabled framework is referred to as the 
Delone cabled framework associated to the Delone triangulation D generated by the 
sphere covering C. 

We show that: 

Theorem 1. A discrete sphere covering C of E d (d > 2) with unit balls is finitely stable 
if and only if all Delone cabled frameworks associated to Delone triangulations generated 
by the sphere covering are finitely rigid. 

Fig. 2. A Delone triangle in the plane with a cablestar. 
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Proof. We show first that if the covering is finitely stable, then all Delone cabled 
frameworks are finitely rigid. Suppose that there is a Delone cabled framework 
which has a nontrivial flex. Then this flex is a flex of the covering, a contradiction. 

We show next that if all of the Delone cabled frameworks are finitely rigid, then 
the covering is finitely stable. Assume that the discrete sphere covering C is not 
finitely stable. Then there is a finite subset of balls in C which can be moved and 
maintain the covering property. Reversing this motion we have that there is a 
sequence C n of sphere coverings that tend to the covering C. l e t  D n (resp. D) be 
the Delone tiling of C n (resp. C). Let P be an arbitrary Delone cell of D whose 
circumradius is 1. Obviously, P can be obtained as the limit of the union of the 
Delone cells, say, Pl,n, P2 . . . . . . .  Pro,n, where n tends to infinity and P,, ~ denotes a 
Delone cell of D~ and m is fixed. Let DSn (resp. D S )  be a Delone triangulation 
generated by the sphere covering C, (resp. C) such that the limit configuration of 
DS,, is DS. Then we have a triangulation of P that triangulates the union of the 
possible lower-dimensional polytopes lim P1, n, lim /'2 . . . . . . .  lim Pro, ~. 

Finally, we take those possible degenerated d-simplices of the triangulation of P 
that contain the circumscribed center of P. We repeat this for other Delone cells of 
D whose circumradii are 1. This way we get a Delone cabling of C that has a 
discrete flex. Finally, it is easy to see that any discrete flex of a cabled framework can 
be extended to a continuous flex, a contradiction. To see that this is enough, take 
four points A 0, A 1 , B 0, and B 1 and assume that the points with indices 0 and the 
points with indices 1 are connected with cables of equal lengths. Denote by A1/2 
and B1/2 the midpoints of the segments A o A  1 and BoB 1 . It is an elementary geo- 
metrical fact that AI/2B1/2 <_ max(AoB 0, A I B I )  which implies that the distance 
between the points A t = A o + tAoA 1 and B t = B o + tBoB1, t ~ [0, 1], is also _< 
max(AoB0, AIB1). In other words A , B  t, t ~ [0, 1], can be considered a continuous 
motion between the two given cables. []  

As a simple application we point out: 

Corollary 1. The thint~st lattice covering o f  E 3 with unit balls is finitely stable. 

Proof. Recall the following result of Connelly [C1]: Given a connected pinned 
tensegrity framework G ( p )  with only cables and a proper stress nonzero on each 
cable, G ( p )  is uniquely realizable and rigid. Then notice that the Delone cabled 
framework associated to the thinnest lattice covering of E 3 with balls has a positive 
stress that is nonzero on each cable. [] 

Remark 1. It is very natural to conjecture that the thinnest lattice covering of E 3 

with unit balls is uniformly stable. 

For the sake of  completeness we state (omitting the simple proof) an equivalent 
condition for the finite stability of sphere coverings of E d with unit balls: 

Remark 2. A sphere covering C of E d with unit balls is finitely stable if and only if, 
for any finite subset C' of the balls of C, an ec' > 0 exists such that the balls of  C'  
cannot be rearranged such that each ball is moved a distance less than e c, and the 
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rearranged balls together with the rest of the covering form a covering different 
from C. 

3. Finite and Uniform Stability of Cubic-Lattice Coverings 

As an application of Theorem 1 we show: 

Theorem 2. The thinnest cubic-lattice covering of  E d with unit balls is not finitely 
stable and so is not uniformly stable for d > 2. 

Proof. In view of the structure of the cubic lattice in E d, it is enough to show 
Theorem 2 for d = 2. Notice that the Delone tiling associated to the thinnest 
square-lattice covering of the plane with circles is square-lattice tiling. Each square 
tile can be triangulated in two ways, thus, we have two possibilities of attaching a 
pair of  triads of cables in each square tile. By choosing one for each intersection 
point we generate the family of cabled frameworks. Consider the one shown in Fig. 
3(a). Among its properties we emphasize that two double cables and two single 
cables are alternatively arranged along each diagonal. 

Recall the following result proved in [C2]: If G ( p )  is a rigid framework with at 
least one cable, then G ( p )  has a nonzero proper stress. In view of this theorem, in 
order to see that six circles centered at the vertices of two neighboring square tiles 
allow a covering preserving motion, it is enough to verify that the pinned cable 
framework shown in Fig. 3(b) has only the zero stress. In fact this follows immedi- 
ately from the equilibrium equations discussed in the first section. [] 

4. Some Analogous Results Concerning Sphere Packings 

Omitting the very simple proof we mention the following equivalent condition for 
the finite stability of sphere packings of  E d with unit balls. 

Remark 3. A sphere packing P of E d (d > 1) with unit balls is finitely stable if and 
only if, for any finite subset P '  of the balls of P, an e~, > 0 exists such that the balls 

(a) (b) 

Fig. 3. (a) The thinnest square-lattice circle covering with Delone tiling. (b) The cabling associated 
with one of the Delone triangulations. 



Finite and Uniform Stability of Sphere Coverings 319 

of P '  cannot be rearranged such that each ball is moved a distance less than ee' and 
the rearranged balls together with the rest of the packing form a packing different 
from P. 

Let P be a packing of E a (d > 1) with unit balls. It is quite natural to define the 

graph of P as the graph of E a whose vertices are the centers of the unit balls of  P 
and whose edges are the segments connecting the centers of contiguous balls. In 
view of the paragraph under "Frameworks", labeling the edges struts, this graph is 
also a tensegrity framework, called the tensegrity framework generated by the packing. 
Though the following equivalent condition for the finite stability of sphere packings 
can be proved in a very trivial way it has several applications. 

Remark 4. A packing P of E a (d > 1) with unit balls is finitely stable if and only if 
the tensegrity framework generated by the graph of the packing P is finitely rigid. 

In [BBC] among others we show that: 

(i) The densest cubic-lattice packing of E 3 with unit balls is finitely stable. 
(ii) The densest cubic-lattice packing of E a with unit balls is not uniformly 

stable, but it is finitely stable. 

Finally, let us note: 

Remark 5. It may be conjectured that the densest lattice packing of E 3 with unit 
balls is uniformly stable. 
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