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A Flexible Sphere

Robert Connelly

It was conjectured for a long time that a closed polyhedral
surface in Euclidean space £, with hinges along the edges,
could not be continuously deformed to give non-congruent
surfaces, as long as each face remained congruent to itself
(“remained rigid”). In 1813 Cauchy proved that every
convex polyhedral surface, with rigid natural faces, is in-
flexible.

The flexibility of a polyhedral surface with triangular
faces is equivalent to the flexibility of the framework of
rigid rods along its edges, flexibly attached at their com-
mon end points. In 1897 Bricard constructed flexible oc-
tahedral rod frameworks. However, filling in all flat trian-
gles of such a flexible “octahedron” gives self-intersec-
tions, and not a flexible surface. I finally refuted the con-
jecture with a counter-example. What follows is a modi-
fied version of my construction of a flexible polyhedral
sphere. The modification is due to N.H. Kuiper and
Pierre Deligne.

Construction

The surface will be composed of three parts, a bottom
part, a top part, and a crinkle.

To understand how these pieces flex it is helpful to de-
scribe the flexible octahedra of Bricard. Start with a 4-gon
aba'b’ in 3-space with equal opposite sides

ab=a'b’,a'b=ab’.
Assuming a, b, a’, b are not all on one line, one can
easily prove that there is a unique line & meeting the diag-
onals aa’ and bb’ in their centers such that rotation by

180° about « leaves the 4 gon invariant by interchanging a
witha' and b with b’.
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Figure 1.

Choose a point ¢ not on the line a. The framework
c(aba'b’) obtained by joining ¢ with the vertices of the
4-gon will be flexible if aba'b’ are not coplanar. So flex it
and join to it at each instant the congruent framework
c'(a'b’ab) obtained from the first by rotation by 180°
about o The union is one of the flexible octahedra of
Bricard. It is easy to make with straws and strings.

In Figure 2 a is vertical and we have an orthogonal pro-
jection onto a horizontal plane H. Here the points a and a'
are at a height 0, the points b and b’ at height ¢ > 0 and
the points ¢ and ¢’ at height 8§ > € above H. cc’ is parallel

to ab.
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Figure 2. b

Seen from above ac is under be’, and a'c’ is under b'c.

The bottom part of the surface is obtained by deleting ¢
and the four rods incident to ¢ and filling in the 4 remain-
ing flat triangles except abc’. The bottom surface is com-
pleted with an upside down bottomless tetrahedron on
abc’, leaving a three-dimensional hole for later use.

Figure 3. The bottom surface.

The upper part of the surface is obtained by first deleting
¢’ and the 4 rods incident to it together with the rod ac
from Figure 2. Next consider the pyramids d(bac) and
d'(b'ac) with d and d' chosen well above H so that da = dc
=d'a= d’c. From these pyramids take the flat triangular
faces dab_ dcb, d'ab’, d'cb’ and obtain the upper surface.
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Figure 4a. The upper surface.
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Figure 4b. The upper and lower surfaces glued together.

This is glued to the bottom surface along the 4-gon aba'd’
and yields a surface with boundary which is flexible and
keeps the distance ac fixed.

The straight line ca, if drawn, would pierce the bottom
surface under bc'. In order to avoid this self-intersection,
we construct a new part, the crinkle, to complete the flex-
ible surface. Choose a 4-gon ceaf in the median plane K
ofd and d’ with opposite equal sides ce = af, ca = ef as in
Figure 5. The points must satisfy

dc=de=df=da=dc=de=df=da

Figure 5. f
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Then the frameworks d(cefa) and d’(cefa) flex in con-
junction, while cefa remains coplanar. The flexible union
of the triangular faces dce, def, dfa, d'ce, d'ef, d'fa is
crinkle, another Bricard octahedron, but with the two tri-
angular faces cd’a and cda removed. Thus the distance
from a to ¢ remains constant during the flex. When this
surface is fitted into the hole of Figure 4 the final flexible
surface appears, Figure 6. The last point chosen, f, fits
neatly into the pit left for it in the bottom surface.

Figure 6.

This flexible triangulated sphere has 11 vertices and 18
faces. Subsequent to my construction a flexible sphere
with a smaller number of vertices was found by Klaus
Steffen. It has 9 vertices and is constructed as shown in
Figure 7. The arrows indicate which edges are glued and
the following choice of the edge lengths works well:

u=6,vy=5w=25x=55,y=28.5.

Figure 7.
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