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A Flexible Sphere 
Robert Connelly 

It was conjectured for a long time that a closed polyhedral 
surface in Euclidean space E a , with hinges along the edges, 
could not be continuously deformed to give non-congruent 
surfaces, as long as each face remained congruent to itself 
("remained rigid"). In 1813 Cauchy proved that every 
convex polyhedral surface, with rigid natural faces, is in- 
flexible. 

The flexibility of  a polyhedral surface with triangular 
faces is equivalent to the flexibility of the framework of  
rigid rods along its edges, flexibly attached at their com- 
mon end points. In 1897 Bricard constructed flexible oc- 
tahedral rod frameworks. However, filling in all flat trian- 
gles of  such a flexible "octahedron" gives self-intersec- 
tions, and not a flexible surface. I finally refuted the con- 
jecture with a counter-example. What follows is a modi- 
fied version of  my construction of a flexible polyhedral 
sphere. The modification is due to N.H. Kuiper and 
Pierre Deligne. 

Construction 

The surface will be composed of three parts, a bo t tom 
part, a top part, and a crinkle. 

To understand how these pieces flex it is helpful to de- 
scribe the flexible octahedra of  Bricard. Start with a 4-gon 
aba'b'  in 3-space with equal opposite sides 

ab = a 'b ' ,  a 'b = ab'.  

Assuming a, b, a', b '  are not all on one line, one can 
easily prove that there is a unique line a meeting the diag- 
onals aa' and bb '  in their centers such that rotation by 
180 ~ about a leaves the 4 gon invariant by interchanging a 
with a' and b with b ' .  
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Figure 1. ~ )  

Choose a point c not on the line a. The framework 
c(aba 'b ' )  obtained by joining c with the vertices of  the 
4-gon will be flexible if aba 'b '  are not coplanar. So flex it 
and join to it at each instant the congruent framework 
c ' (a 'b 'ab)  obtained from the first by rotation by 180 ~ 
about a The union is one of the flexible octahedra of 
Bricard. It is easy to make with straws and strings. 

In Figure 2 a is vertical and we have an orthogonal pro- 
jection onto a horizontal plane H. Here the points a and a' 
are at a height 0, the points b and b'  at height e > 0 and 
the points c and c' at height 6 > e above H. cc' is parallel 
to ab. 
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Figure 2. b' 

Seen from above ac is under bc' ,  and a 'c '  is under b'c. 
The bot tom part of the surface is obtained by deleting c 

and the four rods incident to c and filling in the 4 remain- 
ing flat triangles except abc'.  The bot tom surface is com- 
pleted with an upside down bottomless tetrahedron on 
abc' ,  leaving a three-dimensional hole for later use. 
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Figure 3. The bottom surface. \ V 

The upper part of  the surface is obtained by first deleting 
c' and the 4 rods incident to it together with the rod ac 
from Figure 2. Next consider the pyramids d(bac) and 
d'(b 'ac) with d and d' chosen well above H so that da = dc 
= d'a = d'c. From these pyramids take the flat triangular 
faces d a b  dcb, d 'ab ' ,  d 'cb'  and obtain the upper surface. 
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Figure 4a. The upper surface. 
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Figure 4b. The upper and lower surfaces glued together. 

This is glued to the bo t tom surface along the 4-gon aba 'b '  
and yields a surface with boundary which is flexible and 

keeps the distance ac fixed. 
The straight line ca, if  drawn, would pierce the bo t tom 

surface under bc ' .  In order to avoid this self-intersection, 

we construct a new part,  the crinkle, to complete the flex- 
ible surface. Choose a 4-gon ceaf in the median p lme  K 
o f d  and d'  with opposite equal sides ce = af, ca = e fa s  in 

Figure 5. The points must satisfy 

dc = de = df = da = d'c = d'e = d ' f  = d'a 
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Figure 7. 

Then the frameworks d(cefa) and d'(cefa) flex in con- 
junction, while cefa remains coplanar. The flexible union 

of the triangular faces dce, def, dfa, d 'ce,  d'ef,  d 'fa is 
crinkle, another Bricard octahedron, but  with the two tri- 

angular faces cd'a and cda removed. Thus the distance 
from a to c remains constant during the flex. When this 
surface is f i t ted into the hole of  Figure 4 the final flexible 
surface appears, Figure 6. The last point  chosen, f, fits 

neatly into the pit left for it in the bo t t om surface. 

This flexible triangulated sphere has 11 vertices and 18 
faces. Subsequent to my construction a flexible sphere 
with a smaller number of  vertices was found by Klaus 
Steffen. I t  has 9 vertices and is constructed as shown in 

Figure 7. The arrows indicate which edges are glued and 
the following choice of  the edge lengths works well: 

u = 6, v = 5 ,w  = 2 .5 ,x  = 5 .5 ,y  = 8.5. 
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