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Abstract. The main purpose of this paper is to discuss how firm or steady certain known
ball packing are, thinking of them as structures. This is closely related to the property
of being locally maximally dense. Among other things we show that many of the usual
best-known candidates, for the most dense packings with congruent spherical balls, have
the property of beinguniformly stable, i.e., for a sufficiently smallε > 0 every finite
rearrangement of the balls of this packing, where no ball is moved more thanε, is the
identity rearrangement. For example, the lattice packingsDd andAd for d ≥ 3 in Ed are all
uniformly stable. The methods developed here can work for many other packings as well.
We also give a construction to show that the densest cubic lattice ball packing inEd for
d ≥ 2 is not uniformly stable.

A packing of balls is calledfinitely stableif any finite subfamily of the packing is fixed
by its neighbors. If a packing is uniformly stable, then it is finitely stable. On the other hand,
the cubic lattice packings mentioned above, which are not uniformly stable, are nevertheless
finitely stable.

∗ The first two authors were partially supported by the Hungarian National Science Foundation, Grant
Numbers 326-0413 and A-221/95.
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1. Definitions and Terminologies

1.1. Definitions Concerning Sphere Packings

Many of the notions we use here were first introduced by L. Fejes T´oth in [F1] and [F2]
and there are some taken from [C1] and [C2]. In this paper we will discuss arrangements
of d-dimensional balls in the Euclideand-dimensional spaceEd. A ball packing(also
called asphere packing) in Ed is an arrangement ofd-dimensional closed balls which
have disjoint interiors.

In order to describe how firm or steady a sphere packing as a structure is, we introduce
the following notions. A sphere packingP is said to be:

(i) Stable(also1-stable) if each ball is fixed by its neighbors.
(ii) n-Stableif each set ofn balls is fixed by its neighbors.

(iii) Finitely-stableif it is n-stable for everyn ≥ 1.
(iv) Uniformly stableif there is anε > 0, such that no finite subset of the balls of
P can be rearranged such that each ball is moved by a distance less thanε and
the rearranged balls together with the rest of the balls form a packing different
fromP.

Let us point out quickly that it is an easy exercise to show that the following is an
equivalent condition for finite stability of sphere packings ofEd.

(iii*) A sphere packingP of Ed (d > 1) is finitely stableif and only if for any
finite subsetP ′ of the balls ofP, there exists anεP ′ > 0 such that one cannot
rearrange the balls ofP ′ such that each ball is moved by a distance less thanεP ′
and the rearranged balls together with the rest of the packing form a packing
different fromP.

Thus the different stability properties of sphere packings were listed in strengthening
order, i.e., (iv)⇒ (iii) ⇔ (iii ∗)⇒ (ii) ⇒ (i).

1.2. Delaunay Tiling

LetP be a sphere packing ofEd with unit balls. LetC be the family of center points of
the balls ofP. Consider ad-dimensional ball whose interior does not contain any center
point fromC and whose boundary intersectsC in a set spanningEd. The convex hull
of the intersection of thed-dimensional ball withC is aDelaunay cell. It turns out that
for packings of congruent spheres not all contained in a half-space, such as we consider
here, the Delaunay cells form a tilingD of Ed, theDelaunay tiling.

1.3. Frameworks

The following definitions are taken from [RW]. LetG be a finite or infinite graph with
no loops or multiple edges. We will refer to the vertices ofG by 1, 2,. . . . Each edge
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is labeled either arod, cable, or astrut. Each vertex is labeled eitherfixedor variable.
A realization ofG in Ed is an assignment of a pointpi in Ed, for the i th vertex ofG,
i = 1, 2, . . .. There is no restriction about edges crossing each other. A realization ofG
is denoted byG(p) wherep = (p1, p2, . . .). G(p) is called a (tensegrity) framework.

Let p(t) = (p1(t), p2(t), . . .), wherepi (t) is continuous for 0≤ t ≤ 1, p(0) = p,
andpi (t) = pi , for the fixed verticesi of G, for all t . We sayp(t) is acontinuous motion
or a flexof G(p) if cables are not increased, the rods are not changed, struts are not
decreased in length, and fixed vertices remain constant during the flex. IfG(p) admits
only the identity flex, then we sayG(p) is rigid.

A frameworkG(p) with infinitely many vertices is said to befinitely rigid if labeling
all but finitely many vertices fixed always results in a rigid framework. This is the same
as saying that the framework does not allow any motion once all, but finitely many,
vertices are fixed.

An equilibrium stressω = (. . . , ωi j , . . .) of the finite frameworkG(p) is an assign-
ment of a scalarωi j = ωj i for each edge{i, j } of G such that the following equilibrium
equation holds for each variable vertexi of G∑

j

ωi j (pi − pj ) = 0.

This vector sum is taken over all verticesj adjacent toi . A proper equilibrium stressis
an equilibrium stressω such thatωi j = ωj i ≥ 0 if {i, j } is a cable, andωi j = ωj i ≤ 0
if {i, j } is a strut (no condition on rods). Note that there is no equilibrium condition for
fixed vertices.

1.4. Outline of the Rest of the Paper

One of the purposes of this paper is to show the virtues of the property (iv), uniform
stability, and to show that it is strictly stronger than finite stability (iii). In Section 2 we
develop a method that can be used to check whether some sphere packings are uniformly
stable. Among others we show that the lattice packingsDd andAd for d ≥ 3 in Ed are
all uniformly stable. In Section 3 we give a constructive proof to show that the densest
cubic lattice packing ofEd, d ≥ 2, with unit balls, is not uniformly stable. In Section 4
we show that this packingis finitely stable, while at the same time we develop necessary
and sufficient conditions for finite stability as in [C1]. (Note that some similar results
concerning stabilities of sphere coverings are proved in [BBC].)

We believe that uniform stability is a natural and useful setting for the local stability
of packings of spheres. At first sight it might seem that finite stability would be sufficient.
However, imagine a box packed with hard spherical balls in contact, where the centers
form a part of a cubical lattice. Mathematically there is no continuous motion that will
allow the balls to move; but even the smallest amount of deformability will allow the
whole configuration to collapse, when the number of balls is large enough.

Indeed, when the Delaunay cells of the packing satisfy the conditions of Theorem 2.7.1
(stated later, where the Delaunay cells can only increase in volume, since the packing
condition constrains the vertices from getting any closer), then not only is the packing
uniformly stable, but there is no local process that would increase its density as well.
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In [R] Reynolds discusses a property of packings, where the packing density (of a
finite packing with respect to a container) decreases as the packing is perturbed while
the container maintains external pressure. He calls this property “dilatancy.” When the
Delaunay cells satisfy the volume expanding property, we have a precise explanation of
the packing’s dilatancy. However, it is not clear whether this property will hold for other
more complicated packings. There may be some need for more than one Delaunay cell
in order to provide the needed rigidity.

2. Uniform Stability and Volume

2.1. Volume

In what follows we are interested in how the volume of a polytopeP changes as we
perturb its vertices. IfP is simplicial, the perturbed polytope is easy to define. WhenP
is not simplicial there is an extra complication. We deal with this by first subdividingP
by inserting a vertex at the barycenter of each face ofP, which enables us to triangulate
the underlying space ofP. When the vertices ofP are perturbed we consider the volume
of this underlying simplicial complexK . This has the advantage thatK reflects the sym-
metries ofP, when they exist. Also, whenP is part of a tiling, the simplicial complexes
still form a tiling, because perturbed adjacent faces are subdivided consistently.

Definition 2.1.1. Let P be a convex polytope inEd with vertices p1, . . . , pn. Let
F = 〈q1, . . . ,qm〉 be a face ofP. Thebarycenterof F is

F̂ = 1

m

m∑
i=1

qi . (2.1.1)

Let F0 ⊂ F1 ⊂ · · · ⊂ Fk denote a sequence of faces, called a flag, ofP, whereF0 is
a vertex andFi−1 is a facet (a face one dimension lower) ofFi for i = 1, . . . , k. Then
the simplices of the form

〈F̂0, F̂1, . . . , F̂k〉 (2.1.2)

constitute a simplicial complexK whose underlying space is the boundary ofP. See
[H] or [RS] for a discussion of this complex.

We regard all points inEd as row vectors and useqT for the column vector that is the
transpose of the row vectorq. Moreover, [q1, . . . ,qd] is the matrix with thei th rowqi .

Choosing a(d − 1)-simplex of the simplicial complexK to be positively oriented,
one can generate a positive orientation for all(d− 1)-simplices ofK . For each(d− 1)-
simplex 〈F̂0, F̂1, . . . , F̂d−1〉 let pos〈F̂0, F̂1, . . . , F̂d−1〉 denote any permutation of the
vertices F̂0, F̂1, . . . , F̂d−1 that corresponds to a positive orientation of the(d − 1)-
simplex〈F̂0, F̂1, . . . , F̂d−1〉 in the simplicial complexK . Finally, let sign〈F̂0, . . . , F̂d−1〉
be equal to 1 (resp.−1) if the orientations of the(d−1)-simplices pos〈F̂0, F̂1, . . . , F̂d−1〉,
〈F̂0, F̂1, . . . , F̂d−1〉 are the same (resp. different) in the simplicial complexK . Then the
following is clear.
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Lemma 2.1.1. The signed volume of P is

V(P) = 1

d!

∑
F0⊂···⊂Fd−1

sign〈F̂0, . . . , F̂d−1〉 det[F̂0, . . . , F̂d−1], (2.1.3)

where the sum is taken over all flags of faces F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 of P, anddet[ ] is
the determinant function.

Here it is understood that the orientation is chosen so that the volume is positive. (It is
an easy exercise to show that the quantity defined by (2.1.3) is independent of the choice
of the origin, and that it agrees with the usual definition of volume.)

Later it will help to rewrite (2.1.3) in terms of the wedge product of vectors. So

det[F̂0, F̂1, . . . , F̂d−1] = F̂0 ∧ F̂1 ∧ · · · ∧ F̂d−1.

See [S] for a definition of the wedge product of vectors.

2.2. Infinitesimal Motions

We wish to compute the gradient of the functionalV(P), where P is regarded as a
function of its vertices. To do this we consider an arbitrary pathp(t) = p+ tp′ in the
space of configurations of the verticesp = (p1, . . . , pn), wherep′ = (p′1, . . . , p′n). We
then compute the derivative ofV(Pt ) in the directionp′, wherePt is the polytope whose
underlying space is triangulated by the simplicial complexKt whose vertices are defined
from p(t) by (2.1.1) and whose simplices are defined by (2.1.2). We compute:

V(Pt ) = 1

d!

∑
F0⊂F1⊂···⊂Fd−1

sign〈F̂0(t), F̂1(t), . . . , F̂d−1(t)〉F̂0(t)∧ F̂1(t)∧· · ·∧ F̂d−1(t),

where the sum is taken over all flags of lengthd of P as before, and

F̂i (t) = 1

m

m∑
i=1

qi (t) = 1

m

m∑
i=1

(qi + tq′i ).

Then

d

dt
V(Pt )= 1

d!

∑
F0⊂···⊂Fd−1

sign〈F̂0(t), . . . , F̂d−1(t)〉
d−1∑
i=0

F̂0(t)∧· · ·∧dF̂i (t)

dt
∧· · ·∧ F̂d−1(t).

Evaluating this derivative att = 0, collecting terms, and using the anticommutativity of
the wedge product we get:

V ′ = d

dt
V(Pt )

∣∣∣∣
t=0

= 1

d!

∑
i

Ni ∧ p′i ,

where eachNi is some linear combination of wedge products of(d − 1) vectorspj ,
wherepj andpi share a common face. Figure 1 shows the way in which the polytopePt
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Fig. 1

deforms under the motion given byp′. We have indicated the barycenters of the square
faces only in the deformed polyhedron. This is because for the edges (and any face that
is a simplex), the barycenter is chosen in the line determined by the edge itself (or in
the convex hull of the deformed simplex). Thus the actual set occupied by the deformed
polyhedron does not have that barycenter as a vertex. So in order not to clutter the picture,
we have left those barycenters out.

Definition 2.2.1. We call N = (N1, . . . , Nn) thevolume forceof P.

The following are some properties ofV ′.

(1) EachNi is only a function of the vertices that share a face (or facet) withpi but
not pi itself. (To see this rewrite the formula for̂Fi (t) before differentiating in
such a way that noqi is repeated in any term, using the anticommutativity.)

(2) LetT : Ed → Ed be a congruence ofEd that is invariant onP. That is,T(P) = P
andT permutes the vertices ofP. SupposeT(pi ) = pj . ThenT(Ni ) = Nj . Note
also that ifi = j andT(pi ) = pi , thenT(Ni ) = Ni . In other wordsNi is in the
fixed set ofT . (We regard 0 as the barycenter ofP, soT is an orthogonal linear
function onEd.)

2.3. The Constraining Graph

SupposeP is a convex polytope inEd as before with verticesp = (p1, . . . , pn). Let G
be a graph defined on this vertex setp. In our applications,G may or may not consist
of edges ofP. We think of the edges ofG as defining those pairs of vertices that are
constrainednot to get closer. In the terminology of the geometry of rigid tensegrity
frameworks each edge ofG is astrut.

Let p′ = (p′1, . . . , p′n) be an infinitesimal flex ofG(p). That is for each strut{i, j }
of G we have

(pi − pj ) · (p′i − p′j ) ≥ 0. (2.3.1)

We can rewrite these inequalities in terms of a singlerigidity matrix R(p) = 1
2d fp,

where f (p) = (. . . , |pi − pj |2, . . .) ∈ Ee and wheree is equal to the number of edges
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of G, as follows:

R(p)(p′)T =


...

(pi − pj ) · (p′i − p′j )
...

 ≥ 0,

where the inequality is meant for each coordinate.
We say that the infinitesimal motionp′ = (p′1, . . . , p′n) is strictly volume increasing

if in addition to (2.3.1) we have

V ′ = 1

d!

∑
i

Ni ∧ p′i > 0 (2.3.2)

(or we sayp′ is volume preservingif (2.3.2) is equality). HereNi is regarded as ad-
dimensional vector so thatNi ∧ p′i can be interpreted as the standard inner productNi · p′i ,
with appropriate identification of bases.

For each edge{i, j } of G, letωi j be a scalar. We collect all such scalars into a single
row vector called astressω = (. . . , ωi j , . . .) corresponding to the rows of the matrix
R(p). Append one more row ontoR(p) to get a new matrixR̃(p), which we call the
augmented rigidity matrix, so that

R̃(p)(p′)T =


...

(pi − pj ) · (p′i − p′j )
...∑

i Ni · p′i

 .
We calculate:

(ω, 1)R̃(p) =
(
. . . ,

∑
j

ωi j (pi − pj )+ Ni , . . .

)
,

where each sum is taken over allpj adjacent inG to pi , and we collectd coordinates at
a time.

Definition 2.3.1. Let N = (N1, . . . , Nn) be any sequence of vectors assigned to the
verticespi of P (N not necessarily the volume force). We say the stressω resolves N
(regarded as aforce) if for eachi∑

j

ωi j (pi − pj )+ Ni = 0

or, equivalently,(ω, 1)R̃(p) = 0.

The following Theorem is the main working tool for showing our stability results. The
polytopeP mentioned can be any(d − 1)-dimensional polyhedral manifold ind-space
(or for that matter any polyhedral “(d−1)-homology cycle”), but for all the applications
that we have in mind, it enough to consider only the case whenP is a convex polytope.
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Theorem 2.3.1. Suppose that the volume force N of a polytope P can be resolved by a
stressω on the strut-framework G(p) such that for each edge{i, j } of G,ωi j < 0,where
G is a graph on the vertices of P. Let p′ = (p′1, . . . , p′n) be any infinitesimal motion on
G(p). Then the infinitesimal change in the volume, V ′ ≥ 0, and equality occurs if and
only if (pi − pj ) · (p′i − p′j ) = 0 for each edge{i, j } of G.

Proof. We calculate using the associativity of matrix multiplication and the inequality
(2.3.1):

0= 0 · p′ = (ω, 1)R̃(p)(p′)T =
∑

i j

ωi j (pi − pj )(p
′
i − p′j )+

∑
i

Ni · p′i ≤ V ′.

We clearly get equality if and only if(pi − pj ) · (p′i − p′j ) = 0 for all {i, j } edges
of G.

With this theorem in mind we say the following.

Definition 2.3.2. The convex polytopeP and the graphG on the vertices ofP satisfy
the critical volume conditionif the volume forceN can be resolved by a stressω =
(. . . , ωi j , . . .) on the edges ofG so that for each edge{i, j } of G, ωi j < 0.

We will compute several examples of polytopes and graphs with and without the
critical volume condition in the next sections.

2.4. Examples with the Critical Volume Condition

Example 2.4.1. We consider first the case of the plane where “volume” becomes area,
and the polytopeP becomes a convex polygon. We first consider only deformations of
P that preserve the lengths of edges ofP. It is known that the area function is critical
if and only if the vertices of the polygon either lie on a circle or a line. See [BG]
for information about this fact. AssumeP satisfies the critical volume condition. By
Theorem 2.3.1,V ′ ≥ 0 for any first-order motion onG(p). Restricted to infinitesimal
motions which satisfy(pi − pj )(p′i − p′j ) = 0 for all edges of the polygon, Theorem
2.3.1 givesV ′ = 0. This means thatp is a critical point of the area function.

We leave it as an exercise for the reader to check that when the vertices ofP lie on a
circle C, P satisfies the critical area condition if and only if the center ofC lies in the
interior of P. Figure 2 is a diagram of the area force for a pentagon. (Notice that due to
the proper identification of bases of the vectorsNi and points inE2 each vector of the
area force is perpendicular to the proper diagonal of the pentagon pointing to the exterior
of the pentagon.)

Example 2.4.2. In any dimension, letP be a simplex and the graphG all pairs of
vertices, thenP has the critical volume condition if and only if the orthogonal projection
of each vertex lies in the interior of the opposite facet. In the plane this meansP is an
acute triangle. InE3 this meansP has all dihedral angles acute. Etc.
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Fig. 2

Example 2.4.3. In E3 the regular octahedronP has a volume forceNi that is a scalar
multiple of pi , where(p1, . . . , p8) are the vertices ofP and the origin is at the center of
P. When the graphG is the set of edges ofP, the volume force is resolved by a stress
that has all the same values on each edge.

2.5. Infinitesimal Rigidity

We briefly review some basic definitions. See [C2] for more information. Consider now
just the bar graphḠ, which is the graphG with all the struts changed to bars, and

Fig. 3
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its configurationp = (p1, . . . , pn) in Ed to get abar frameworkḠ(p). We say that
infinitesimal motionp′ = (p′1, . . . , p′n) is aninfinitesimal flexof Ḡ(p) if for all {i, j } is
an edge ofḠ, we have

(pi − pj ) · (p′i − p′j ) = 0.

This is the same as sayingR(p)(p′)T = 0 for the rigidity matrixR(p).

Definition 2.5.1. We sayp′ is atrivial infinitesimal flex ifp′ is the (directional) deriva-
tive of a congruence ofEd . We say thatG(p) (resp.Ḡ(p)) is infinitesimally rigid if
G(p) (resp.Ḡ(p)) has only trivial infinitesimal flexes.

The following combines (infinitesimal) rigidity and the critical volume condition.

Corollary 2.5.1 to Theorem 2.3.1. Suppose a convex polytope P and a graph G on
the vertices of P satisfy the critical volume condition andḠ(p) (as a bar framework)
is infinitesimally rigid. Then V′ > 0 for every nontrivial infinitesimal flex p′ of the
tensegrity framework G(p).

Proof. By Theorem 2.3.1,V ′ ≥ 0. If V ′ = 0, thenp′ is an infinitesimal flex of the bar
graphḠ(p). However, then by the infinitesimal rigidity of̄G(p), this would implyp′ is
trivial. ThusV ′ > 0.

It is a general principle that infinitesimal rigidity implies the “rigidity” of a framework.
In [C2] (see also [CW]) this is discussed in the context of second-order rigidity. Similar
principles apply in our situation to the volume function.

Corollary 2.5.2 to Theorem 2.3.1. Suppose a convex polytope P and a graph G on
the vertices of P satisfy the critical volume condition andḠ(p) is infinitesimally rigid.
Then there is anε > 0 with the following property. If q = (q1, . . . ,qn) is another
configuration of the vertices of P with

|pi − qi | < ε for all i = 1, . . . ,n, (2.5.1)

|pi − pj | ≤ |qi − qj | for edges {i, j } of G, (2.5.2)

then V(P) ≤ V(Q) with equality only when P is congruent to Q, where Q is the
polytope determined by the vertices q, and the points defining simplices by(2.1.1).

Proof. The inequalities (2.5.2) define a semialgebraic setX in the space of all con-
figurations{(q1, . . . ,qn)|qi ∈ Ed, i = 1, . . . ,n}. Suppose there is noε > 0 as in the
conclusion. AddV(P) ≥ V(Q) to the constraints definingX. By Wallace [Wa] (see
[C2]) there is ananalyticpath p(t) = (p1(t), . . . , pn(t)), 0 ≤ t < 1, with p(0) = p
and p(t) ∈ X, p(t) not congruent top(0) for 0< t < 1. So

|pi − pj | ≤ |pi (t)− pj (t)| for {i, j } an edge ofG and
(2.5.3)

V(P) ≥ V(Pt ) for 0≤ t ≤ 1.
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Then after suitably adjustingp(t) by congruences (as in [C2] as well as [CW]) we can
define

p′ = dk p(t)

dtk

∣∣∣∣
t=0

,

for the smallestk that makesp′ a nontrivial infinitesimal flex. (Such ak exists by the
argument in [C2] as well as [CW]).

Since (2.5.3) holds we see thatp′ is a nontrivial infinitesimal flex ofG(p), and

V ′ = dkV(Pt )

dtk

∣∣∣∣
t=0

≤ 0,

is the infinitesimal change in the volume corresponding top′. But this contradicts
Corollary 2.5.1 to Theorem 2.3.1. Soε > 0 as in (2.5.1) exists such that the conclusion
follows.

With the above result in mind, letP be a polytope inEd and letG be a graph on the
verticesp = (p1, . . . , pn) of P.

Definition 2.5.2. We sayP, G is strictly locally volume expandingif there is anε > 0
such that for everyq satisfying (2.5.1) and (2.5.2) we haveV(P) ≤ V(Q) with strict
inequality unlessP is congruent toQ.

2.6. More Examples

In Section 2.4 we discussed some examples of polytopes with the critical volume condi-
tion. We calculate which of those examples also has an infinitesimally rigid bar frame-
work.

Example 2.4.1. This is a polygonP in the plane where all its vertices lie on a circle.
If we take the graphG to be the edges ofP, Ḡ(p) is infinitesimally rigid andP, G is
strictly locally volume expanding if and only ifP is an acute triangle.

Example 2.4.2. This is a simplexP in Ed. We takeG to be all the edges ofP. Then
Ḡ(p) will always be infinitesimally rigid. SoP, G is strictly locally volume expanding
when each vertex projects into the interior of the opposite facet.

Example 2.4.3. In Ed the regular octahedronP satisfies the critical volume condition.
We takeG to be all the edges ofP. It is a classical theorem (see Dehn [D] and Gluck
[Gl] for an easy proof) that̄G(p) is infinitesimally rigid. ThusP, G is strictly locally
volume expanding.

In what follows we will need a series of examples that will generalize Examples 2.4.2
and 2.4.3 above. Let 1≤ k < d be positive integers. LetD(k, d) be the convex hull of
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those vectors inEd that have exactlyk entries that are 1, andd − k entries that are 0.
Alternately we see that

D(k, d) = [0, 1]d ∩
{
(x1, . . . , xd)

∣∣∣∣ d∑
i=1

xi = k

}
,

where [0, 1]d is the unit cube inEd, and [0, 1]d = {(x1, . . . , xd)|0 ≤ xi ≤ 1 for all i =
1, . . . ,d}. Thus we regardD(k, d) as a subset of a(d − 1)-dimensional hyperplane.

There are two kinds of facets ofD(k, d). Let Hi = {(x1, . . . , xd)|xi = 0}, and let
Hi = {(x1, . . . , xd)|xi = 1}. Then for anyi = 1, . . . ,d, D(k, d)∩ Hi is the convex hull
of these vertices inD(k, d) whosei th coordinate is 0. ThusD(k, d) ∩ Hi is congruent
to D(k, d− 1), as long ask < d− 1 and is simply one point ifk = d− 1. Similarly for
any i = 1, . . . ,d, D(k, d) ∩ Hi is the convex hull of those vertices ofD(k, d) whose
i th coordinate is 1. ThusD(k, d)∩ Hi is congruent toD(k− 1, d− 1) as long ask > 1
and is simply one point whenk = 1.

We see thatD(1, d) is an (d − 1)-dimensional regular simplex, andD(2, 4) is a
regular octahedron, since it consists of the convex hull of

(4
2

) = 6 vertices, where all
pairs of these points are

√
2 apart except for three disjoint pairs.

We also observe that the edges of anyD(k, d) are all
√

2 in length. Two vertices
belong to the same edge if and only if they differ in exactly two coordinates and thus are√

2 distance apart. Notice alsoD(k, d) is congruent toD(d − k, d).

Example 2.6.1. In Ed−1 we take the polytope to beD(k, d) for 1 ≤ k < d. Any
permutation of thed-coordinates provides a symmetry ofD(k, d), a congruence to
itself, by permuting the coordinates. Thus for any given vertexpi of D(k, d), the group
of symmetries ofD(k, d), fixing pi , fix only the line through the center ofD(k, d) and
pi . ThusD(k, d) has the critical volume condition.

Let G be the graph determined by those vertices ofD(k, d) that are
√

2 apart, the
edges ofD(k, d).

Lemma 2.6.1. The bar framework̄G(p) is infinitesimally rigid in Ed−1.

Proof. Inductively, eachD(1, d), D(d−1, d), andD(2, 4) all have their corresponding
bar frameworks infinitesimally rigid, as discussed in previous examples. Ford ≥ 5,
k = 1, . . . ,d− 1, each facet ofD(k, d) has as its corresponding bar framework another
D(k − 1, d − 1) or D(k, d − 1) which we can assume is infinitesimally rigid in their
hyperplane of dimensiond− 2, by induction. It is known (see [W], for example) that if
all the facets of a convex polytopeP in Ed−1 are infinitesimally rigid in the hyperplane
of their facet, ford ≥ 3, then the whole graph is infinitesimally rigid. Thus the bar
framework ofD(k, d) is infinitesimally rigid inEd−1. Alternatively, it is also easy to see
that the 2-skeleton (the collection of two-dimensional faces) ofD(k, d) is triangulated
for 1 ≤ k ≤ d. Then by a theorem of Whiteley [W] it is known that the 1-skeleton is
infinitesimally rigid as a bar graph.

ThenD(k, d), G for 1≤ k < d is strictly locally volume expanding.
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Remark. The polytopeD(2, d), d ≥ 4 in Ed−1 has exactly(
d

2

)
= d(d − 1)

2

vertices and

1

2

d(d − 1)

2
· 2(d − 2) = d(d − 1)(d − 2)

2

edges. In order for a bar framework withv vertices andeedges to be infinitesimally rigid
in Ed we must have

e≥ dv − d(d + 1)

2
.

In our case

e= d(d − 1)(d − 2)

2
= (d − 1)d(d − 1)

2
− (d − 1)d

2
= (d − 1)v − (d − 1)d

2
.

Thus each edge is needed with no redundancy.

2.7. Tilings and Packings

Suppose theP is a packing of spherical balls inEd. Let G be the graph ofP, where the
centers of the balls serve as the vertices ofG and an edge is placed between two vertices
when the corresponding two balls intersect. The following is a basic principle that can
be used to show that many packingsP are uniformly stable.

Theorem 2.7.1. Suppose Ed can be tiled face-to-face by congruent copies of finitely
many convex polytopes P1, . . . , Pm, such that each Pi and G restricted to the vertices of
each Pi is strictly locally volume expanding. Then the packingP is uniformly stable.

Proof. Let ε > 0 be the minimum for eachPi andG restricted toPi as guaranteed by
the strict locally volume expanding property. All but a finite number of the tiles are fixed.
The tiles thatare free to move are confined to a region of fixed volume inEd. Since each
Pi is strictly locally volume expanding, the volume of each of the tiles must be fixed.
But the strict condition implies that the motion on each tile must be a congruence. Since
the tiling is face-to-face and the vertices are given byG we conclude inductively (on the
number of tiles) that each vertex ofG must be fixed. ThusP is uniformly stable.

Let3 be a lattice inEd, generated, say, byg1, . . . , gd ∈ Ed, and letP be packing
(of balls, say) inEd. We say thatP is periodic with respect to3, if for every B ∈ P and
λ ∈ 3, the translate ofB byλ, B+λ is also inP. Indeed, we sayP is afinite packingof
thequotient space Ed/3, if every element ofP is a3 translate of one of a finite number
of packing elements ofP, i.e., theygenerateP. Note that if3̂ ⊂ 3 is a sublattice, then
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there is a corresponding covering map

Ed/3̂y
Ed/3

that also maps packing elements to packing elements.
We say that a periodic packingP with lattice3 is periodically stableif there is an

ε > 0, such that packing elements,B1, . . . , Bm ∈ P and generatorsg1, . . . , gd of 3,
we can guarantee that for any other periodic packingP, generated byB′i ε-congruent to
Bi , i = 1, . . . ,m, periodic with respect to3′ generated byg′1, . . . , g

′
d, |g′i − gi | < ε,

i = 1, . . . ,d, such that

Vol(Ed/3) ≥ Vol(Ed/3′),

then3 is congruent to3′ andP is congruent toP ′.

Theorem 2.7.2. With a packingP as before, suppose Ed can be tiled periodically
with respect to3 face-to-face by congruent copies of finitely many convex polytopes
P1, . . . , Pm, such that each Pi is strictly volume expanding, with respect to G the graph
of the packingP. ThenP with respect to3 is periodically stable.

Proof. The idea is very similar to Theorem 2.7.1. Just observe that the strict volume
expanding condition together with the volume condition for periodic stability combine
to force the congruence.

Corollary 2.7.1. With the same conditions as in Theorem2.7.2,and withP̂ a periodic
subpacking ofP given by a sublatticê3 of 3, we still have periodic stability(with
respect to the sameε > 0.)

Remark 2.7.1. Notice that periodic stability is stronger than being locally maximal
dense (see [C1] and [CS1]).

Remark 2.7.2. The techniques discussed above do not automatically provide an esti-
mate for theε > 0 that is guaranteed by uniform stability. It is possible, at least in some
cases (such as in Theorem 2.8.1 below), to extend our methods to find explicit estimates
for ε > 0, but these methods are more complicated and the effort does not seem to be
worth it.

2.8. A Uniformally Stable Packing in the Plane

Consider the well-known triangular packing of circular disks of equal radii where each
disk is adjacent to exactly six others. Remove one disk to obtain another packingP0.
See Fig. 4 for the graph ofP0. We state the following in our terminology.
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Fig. 4

Theorem 2.8.1[BD]. The packingP0 is uniformally stable.

Proof. The graph of Fig. 4 describes a tiling of the plane into equilateral triangles (of
side length 2r , wherer is the radius of the disks) and one regular hexagon (of side length
2r ). Each triangle has the strict volume expanding condition. However, the hexagon
does not. On the other hand, the hexagon does satisfy the critical area (two-dimensional
volume) condition. (The underlying framework is not infinitesimally rigid though). But
the hexagonis surrounded by triangles in such a way that the hexagon union on one
layer, say as in Fig. 4, is infinitesimally rigid.

We can then use this polygon and the accompanying graph (with vertices inside) as
in Theorem 2.7.1 to conclude thatP0 is uniformly stable.

This proof is almost identical in outline to that of B´arány and Dolbilin. The only
difference is in the calculation of the strict area increasing property.

Remark 2.8.1. An outstanding conjecture of L. Fejes T´oth says that the face incircles
of a regular tiling{p, 3} (that has precisely p regular triangles meeting at each vertex)
with p ≥ 6 form astrongly solidpacking. That is, if we remove any circle from the
packing then the packing of the remaining circles issolid. Recall that a circle packing is
calledsolid if no finite subset of the circles can be rearranged such that the rearranged
circles together with the rest of the circles form a packing not congruent to the original.
(Obviously, any solid circle packing is uniformly stable.) The above conjecture of L. Fejes
Tóth has been proved by Bezdek [B] for allp ≥ 8. The open cases are the proper
Euclidean circle packing forp = 6 (the uniform stability of which is proved by Theorem
2.8.1) and the corresponding hyperbolic circle packing forp = 7.
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2.9. The Lattice Packings Dd and Ad

The latticeDd in Ed is

Dd = {(x1, . . . , xd)| eachxi is an integer andx1+ · · · + xd is even},
and the latticeAd in Ed is

Ad = {(x1, . . . , xd+1)| eachxi is an integer andxi + · · · + xd+1 = 0},
whereEd is regarded as the subspace ofEd+1 given byx1+ · · · + xd+1 = 0.

For both of these lattices there is a corresponding packing of congruent balls of radius√
2/2.
For any packingP of balls consider the configuration of centersp = (p1, . . . pi , . . .)

of packing elements. LetS be any sphere that has a (locally) maximal radius with no
points of p in the interior ofS. We call such anS a Delaunaysphere. The convex hull
of the vertices ofS is called aDelaunay cell.

It is a basic fact that the Delaunay cells of a (locally finite) point configuration form
a face-to-face tiling ofEd.

According to Conway and Sloane [CS1, p. 144] the Delaunay cells ofDd are of two
types,βd thed-dimensional cross-polytope, and the “half-cube”h γd which is the same
asD(2, d + 1) in the notation of Section 2.6. Similarly, for the lattice packingAd, the
Delaunay cells areD(k, d+1) for k = 1, . . . ,d (see [CS2] for an equivalent description,
called “ambo-simplices,” for those Delaunay cells). All of the polytopes with their edge
graphs were shown to have the strict local volume expanding property (exceptβd which
follows easily ford ≥ 3 since it is triangulated) in Section 2.6. Thus we obtain:

Theorem 2.9.1. The lattice packings Dd and Ad for d ≥ 3 are uniformally stable and
periodically stable for sublattices.

Remark 2.9.1. One can show that the densest lattice packings (known up to dimension
8) A2, A3, D4, D5, E6, E7, andE8 are all uniformly stable and periodically stable for
sublattices.

3. Cubic Lattice Packings of Spheres inEd and Uniform Stability

Theorem 3.1. The densest cubic lattice packing of Ed, d ≥ 2, with unit balls is not
uniformly stable.

Proof. We explain our construction in the planar case and note that exactly the same
can be done ifd ≥ 2.

Let P be the densest square lattice packing with unit circles. Givenε > 0 we are
going to select a subset ofn circles ofP (the smallerε is, the larger the numbern will
be) and show that these circles can be rearranged such that each circle is moved by
a distance< ε and the rearranged circles together with the rest of the circles form a
packing different fromP.
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Fig. 5

To ease the description of our argument, first join the centers of the contiguous circles
by segments. What we get is a square tiling, where each square has sidelength 2. On
the edge graph of this tile choose a square Sqr2n of sidelength 2n, n odd (for a givenε
a sufficiently large oddn will be specified later), and label those vertices of the square
tile which lie on the sides of the square Sqr2n by p1, p2, . . . , p4n in a clockwise order
so thatp1 is—say—the right upper vertex of the square Sqr2n. Then delete all but a
finite number of edges and vertices to get the frameworkGn(p) shown in Fig. 5. For
completeness, here is the precise list of the edges and vertices to be deleted:

(i) delete all edges of the tiling which are not incident with the vertexpi , i =
1, . . . ,4n,

(ii) delete all edges which connect the verticesp2i+ jn, i = 1, . . . , (n− 1)/2; j =
0, 1, 2, 3, to vertices inside the square Sqr2n,

(iii) delete all edges which connect the verticesp2i−1+ jn, i = 1, . . . , (n+ 1)/2;
j = 0, 1, 2, 3, to vertices outside the square Sqr2n,

(iv) delete the edgespn pn+1, p2n p2n+1, p3n p3n+1, andp4n p1,
(v) delete all vertices of the tiling which become disconnected from the vertices

p1, . . . , p4n.

The remainder of the tiling is what we call frameworkGn(p), assuming that all the edges
are bars and the verticesp1, . . . , p4n are variable vertices while the rest of the vertices
are fixed vertices (Fig. 5). It is clear that this framework has four congruent connected
components and that each can be moved independently from the others. We call vertex
p1 thefirst and pn the last vertex of the first component. Similarly in clockwise order
pn+1, p2n+1, andp3n+1 are the first vertices andp2n, p3n, andp4n are the last vertices of
the second, third and fourth component. The integern also measures the lengths of the
components. The motions of the first vertices of the components uniquely determine the
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motions of the components. In fact, we show that

Lemma 3.1. For any ε > δ > 0 there is an n0 such that if the first vertex p1 of the
first component of the framework Gn(p), n > n0, is moved inside the squareSqr2n with
a distance< ε such that its distance from p4n is just greater than2, then the last vertex
pn of the first component moves with a distance< δ.

Proof. Denote byp∗i the position of the vertexpi for eachi = 1, 2, . . . ,n when vertex
p1 is moved by a distance< ε. Let hi be the length of the perpendicular projection of
the segmentp∗i p∗i+1 onto the linepi pi+1. It is easy to see that the projection ofp∗i onto
the linepi pi+1 lies between the verticespi andpi+1 and thathi increases asi increases.
Lemma 3.1 claims that, ifn is large enough, then the last vertexp∗n of the first component
remains as close to its original position as we wish. Notice that becausep∗i is moving
on a circle (of radius 2) tangent to the linepi pi+1 at pi it is the same as claiming that the
limit of the lengthshi asi approaches infinity is 2. Finally, assume that the limit of the
lengthshi , asi approaches infinity, is less than 2. Then for largei the projection ofp∗i
onto the linepi pi+1 would not lie between the verticespi and pi+1, a contradiction.

Let us move the first vertex of the first component inside the square Sqr2n with a
distance less thanε such that its distance fromp4n is just greater than 2, let us say it is
2+ δ, δ > 0 (Fig. 6(a)). By Lemma 3.1, ifn is a large enough, then the last vertexp∗n
of the first component remains as close to its original position as we wish. This means
that if n is a large enough odd integer, we can find a position for the first vertex of
the second component within theε neighborhood ofpn+1 inside the square Sqr2n, such
that its distance from the last vertex of the first component is equal to 2. The existence
of such a positionp∗n+1 inside the square Sqr2n is what makes this construction work
(see Fig. 6(b)). Notice for contrast that with continuous motion the vertexp∗n+1 cannot
be kept inside the square Sqr2n. By the same reasoning, ifn is large enough, then we
can find a positionp∗2n+1 for the first vertex of the third component within the square
Sqr2n, so that it is at a distance 2 from the last vertex of the second component; and
then again, ifn is large enough, then we can find a positionp∗3n+1 for the first vertex of
the fourth component within the square Sqr2n, so that it is at a distance 2 from the last
vertex of the third component and still the last vertex of the fourth component is moved
by a distance< δ. This means that it lies at a distance> 2 from the first vertex of the
first component, and thus the unit circles placed at the centersp∗1, p∗2, . . . , p∗4n neither
overlap each other nor the circles placed at the deleted vertices, which completes the
proof of Theorem 3.1. ¤

In Section 4 we discuss a general method which might help to determine finite stability
of certain packings of unit spheres. Among others it turns out that the densest cubic lattice
packing ofEd with unit spheres is finitely stable.

4. Finite Stability of Sphere Packings inEd

Let us start with the following alternate definition (iii*) in Section 1 of finite stability of
sphere packings ofEd with unit balls.
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Fig. 6

(iii*) A sphere packingP of Ed (d > 1) with unit balls is finitely stable if and only
if for any finite subsetP ′ of the balls ofP, there exists anεP ′ > 0 such that
one cannot rearrange the balls ofP ′ such that each ball is moved by a distance
less thanεP ′ and the rearranged balls together with the rest of the packing form
a packing different fromP.

Let P be a packing ofEd (d > 1) with unit balls. Though the following equivalent
condition for finite stability of sphere packings can be proved in a very trivial way it has
several applications.

Lemma 4.1. A packingP of Ed (d > 1) with unit balls is finitely stable if and only if
the strut-framework generated by the graph of the packingP is finitely rigid.

Corollary 4.1. The densest cubic lattice packing of Ed with unit balls is finitely
stable.

Proof. Let us recall the following result proved in [C1]: LetG(p) be a tensegrity frame-
work with each member a strut. ThenG(p) is rigid if and only ifG(p) is infinitesimally
rigid. Moreover, we know from [RW] that a tensegrity frameworkG(p) is infinitesi-
mally rigid if and only if (i) G(p) has a proper equilibrium stressω, such thatωi j is
nonzero for every{i, j } a strut or cable and (ii) the bar framework obtained fromG(p)
by replacing each member ofG(p) with a bar is infinitesimally rigid. Thus, in order to
obtain Corollary 4.1 from Lemma 4.1 it is sufficient to prove that the strut-framework
generated by the densest cubic lattice packing ofEd with unit balls has a negative self-
stress. Moreover, the bar framework obtained from the one generated by the packing by
replacing each strut with a bar is infinitesimally rigid. As both can be seen easily, we
omit details.
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