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Abstract. The main purpose of this paper is to discuss how firm or steady certain known
ball packing are, thinking of them as structures. This is closely related to the property
of being locally maximally dense. Among other things we show that many of the usual
best-known candidates, for the most dense packings with congruent spherical balls, have
the property of beinguniformly stable i.e., for a sufficiently smalk > 0 every finite
rearrangement of the balls of this packing, where no ball is moved moresthiarthe
identity rearrangement. For example, the lattice packidgand Ay ford > 3in E9 are all
uniformly stable. The methods developed here can work for many other packings as well.
We also give a construction to show that the densest cubic lattice ball packEffior
d > 2 is not uniformly stable.

A packing of balls is calledinitely stablef any finite subfamily of the packing is fixed
by its neighbors. If a packing is uniformly stable, then it is finitely stable. On the other hand,
the cubic lattice packings mentioned above, which are not uniformly stable, are nevertheless
finitely stable.

* The first two authors were partially supported by the Hungarian National Science Foundation, Grant
Numbers 326-0413 and A-221/95.
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1. Definitions and Terminologies
1.1. Definitions Concerning Sphere Packings

Many of the notions we use here were first introduced by L. Fejgls in'[F1] and [F2]
and there are some taken from [C1] and [C2]. In this paper we will discuss arrangements
of d-dimensional balls in the Euclideahdimensional spacg&®. A ball packing(also
called asphere packingin E® is an arrangement af-dimensional closed balls which
have disjoint interiors.

In order to describe how firm or steady a sphere packing as a structure is, we introduce
the following notions. A sphere packirfgis said to be:

(i) Stable(alsol-stable if each ball is fixed by its neighbors.
(ii) n-Stablef each set oh balls is fixed by its neighbors.
(i) Finitely-stableif it is n-stable for everyn > 1.
(iv) Uniformly stableif there is ans > 0, such that no finite subset of the balls of
‘P can be rearranged such that each ball is moved by a distance legsahdn
the rearranged balls together with the rest of the balls form a packing different
from P.

Let us point out quickly that it is an easy exercise to show that the following is an
equivalent condition for finite stability of sphere packingsEst

(iii*) A sphere packingP of EY (d > 1) is finitely stableif and only if for any
finite subsefP’ of the balls ofP, there exists anp' > 0 such that one cannot
rearrange the balls ¥’ such that each ball is moved by a distance less4han
and the rearranged balls together with the rest of the packing form a packing
different fromP.

Thus the different stability properties of sphere packings were listed in strengthening
order, i.e., (iv)= (i) < (iiix) = (i) = (i).

1.2. Delaunay Tiling

Let P be a sphere packing & with unit balls. LetC be the family of center points of

the balls ofP. Consider al-dimensional ball whose interior does not contain any center
point from C and whose boundary interse@sin a set spanning®. The convex hull

of the intersection of thd-dimensional ball withC is aDelaunay cell It turns out that

for packings of congruent spheres not all contained in a half-space, such as we consider
here, the Delaunay cells form a tiliry of EY, the Delaunay tiling

1.3. Frameworks

The following definitions are taken from [RW]. L& be a finite or infinite graph with
no loops or multiple edges. We will refer to the vertices®by 1, 2,.... Each edge
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is labeled either aod, cable or astrut. Each vertex is labeled eithéikedor variable
A realization ofG in EY is an assignment of a poiqt in EY, for theith vertex ofG,
i =1,2,.... There is no restriction about edges crossing each other. A realizat®®n of
is denoted byG(p) wherep = (py, p2, ...). G(p) is called a tensegrity framework

Let p(t) = (p1(t), p2(b), ...), wherep;(t) is continuous for O< t < 1, p(0) = p,
andp; (t) = pi, for the fixed vertices of G, for all t. We sayp(t) is acontinuous motion
or a flexof G(p) if cables are not increased, the rods are not changed, struts are not
decreased in length, and fixed vertices remain constant during the flexpjfadmits
only the identity flex, then we sag(p) isrigid.

A frameworkG (p) with infinitely many vertices is said to dimitely rigid if labeling
all but finitely many vertices fixed always results in a rigid framework. This is the same
as saying that the framework does not allow any motion once all, but finitely many,
vertices are fixed.

An equilibrium stresso = (..., wjj, ...) of the finite frameworkG(p) is an assign-
ment of a scalaw;; = wj; for each edggi, j} of G such that the following equilibrium
equation holds for each variable verieaf G

Zwij(pi —p)=0.
j

This vector sum is taken over all verticesdjacent ta. A proper equilibrium stress

an equilibrium strese such thatw; = wj; > 01if {i, j} is a cable, andyj = wji <0

if {i, j}is a strut (no condition on rods). Note that there is no equilibrium condition for
fixed vertices.

1.4. Outline of the Rest of the Paper

One of the purposes of this paper is to show the virtues of the property (iv), uniform
stability, and to show that it is strictly stronger than finite stability (iii). In Section 2 we
develop a method that can be used to check whether some sphere packings are uniformly
stable. Among others we show that the lattice packibgsind Ay for d > 3 in EY are

all uniformly stable. In Section 3 we give a constructive proof to show that the densest
cubic lattice packing oEY, d > 2, with unit balls, is not uniformly stable. In Section 4

we show that this packinig finitely stable, while at the same time we develop necessary
and sufficient conditions for finite stability as in [C1]. (Note that some similar results
concerning stabilities of sphere coverings are proved in [BBC].)

We believe that uniform stability is a natural and useful setting for the local stability
of packings of spheres. At first sight it might seem that finite stability would be sufficient.
However, imagine a box packed with hard spherical balls in contact, where the centers
form a part of a cubical lattice. Mathematically there is no continuous motion that will
allow the balls to move; but even the smallest amount of deformability will allow the
whole configuration to collapse, when the number of balls is large enough.

Indeed, whenthe Delaunay cells of the packing satisfy the conditions of Theorem 2.7.1
(stated later, where the Delaunay cells can only increase in volume, since the packing
condition constrains the vertices from getting any closer), then not only is the packing
uniformly stable, but there is no local process that would increase its density as well.
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In [R] Reynolds discusses a property of packings, where the packing density (of a
finite packing with respect to a container) decreases as the packing is perturbed while
the container maintains external pressure. He calls this property “dilatancy.” When the
Delaunay cells satisfy the volume expanding property, we have a precise explanation of
the packing’s dilatancy. However, it is not clear whether this property will hold for other
more complicated packings. There may be some need for more than one Delaunay cell
in order to provide the needed rigidity.

2. Uniform Stability and Volume
2.1. Volume

In what follows we are interested in how the volume of a polytépehanges as we
perturb its vertices. IP is simplicial, the perturbed polytope is easy to define. WRen
is not simplicial there is an extra complication. We deal with this by first subdivigting
by inserting a vertex at the barycenter of each face of’hich enables us to triangulate
the underlying space &. When the vertices dP are perturbed we consider the volume
of this underlying simplicial compleK . This has the advantage thétreflects the sym-
metries ofP, when they exist. Also, wheR is part of a tiling, the simplicial complexes
still form a tiling, because perturbed adjacent faces are subdivided consistently.

Definition 2.1.1. Let P be a convex polytope ifE® with verticespy, ..., pn. Let
F ={(q,...,qm) be aface ofP. Thebarycenterof F is

Xm: (2.1.1)

i=1

BIH

LetFy Cc F, C --- C Fx denote a sequence of faces, called a flag? oivhereFg is
a vertex and~_1 is a facet (a face one dimension lower)gffori = 1,...,k. Then
the simplices of the form

A

(Fo, Fr..... o) 2.1.2)

constitute a simplicial compleK whose underlying space is the boundaryRofSee
[H] or [RS] for a discussion of this complex.

We regard all points ifE® as row vectors and usg for the column vector that is the
transpose of the row vectgr Moreover, fii, . . ., qq] is the matrix with theth rowg;.

Choosing ad — 1)-simplex of the simplicial compleX to be positively oriented,
one can generate a posmve 0r|entat|on for(all— 1)-simplices ofK. For each(d — 1)-
S|mplex(FO, Fl, .. Fd 1) let pos(FO, Fl, .. Fd 1) denote any permutation of the
vertices Fo, Fy, .. Fd 1 that corresponds to a positive orientation of (kﬂe 1)-
simplex(lfo, Ifl, oo Foo 1) inthe simplicial compleX . Finally, Iet5|gr(Fo, . 1)
beequaltol (res;}l) if the orientations of théd — 1)-simplices posFo, Fu, . . ., Ifd_l),
(Fo, Fi, ..., Fq_1) are the same (resp. different) in the simplicial comptexThen the
following is clear.
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Lemma 2.1.1. The signed volume of P is

1 . o ~ . A

VP =5 > sign(Fo. ..., Fa_1) detlFo. ..., Fa_al. (2.1.3)
" FoC-CFg-1

where the sum is taken over all flags of facgsd-F; C - - - C Fy_1 of P, anddet[]is

the determinant function

Here it is understood that the orientation is chosen so that the volume is positive. (Itis
an easy exercise to show that the quantity defined by (2.1.3) is independent of the choice
of the origin, and that it agrees with the usual definition of volume.)

Later it will help to rewrite (2.1.3) in terms of the wedge product of vectors. So

det[lfo, lfl, ey [fd_]_] = Ifo A lfl VANEIIVAN Ifd_]_.

See [S] for a definition of the wedge product of vectors.

2.2. Infinitesimal Motions

We wish to compute the gradient of the function&lP), whereP is regarded as a
function of its vertices. To do this we consider an arbitrary gaih) = p + tp’ in the
space of configurations of the vertices= (ps, ..., pn), Wherep’ = (py, ..., py). We
then compute the derivative ¥f(P;) in the directionp’, whereP is the polytope whose
underlying space is triangulated by the simplicial comp{exvhose vertices are defined
from p(t) by (2.1.1) and whose simplices are defined by (2.1.2). We compute:

1 LA N N N N .
VP =2 )0 signFo(®), FiD), .., Faa(D)Fo(®) AFL® A+ A Fga (D),

" FocFic-CFy-1

where the sum is taken over all flags of lendthf P as before, and

. 18 18 ,
Hm:a;qm=agw+my

Then

dyvipy=2t ign(Fo(t F tHAt dFi (1) By a(t

afmpaFZsmuum,Mm;OONAdtdeJy
0C--CFg_1 i=0

Evaluating this derivative dat= 0, collecting terms, and using the anticommutativity of
the wedge product we get:

d
V' = —V(P,
T (Py)

1 /
—@ 2N
T

where each\; is some linear combination of wedge products(@f— 1) vectorsp;,
wherep; andp; share a common face. Figure 1 shows the way in which the pol\Rope

t=0
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Yoot -

’
. pi

Fig. 1

deforms under the motion given ly. We have indicated the barycenters of the square
faces only in the deformed polyhedron. This is because for the edges (and any face that
is a simplex), the barycenter is chosen in the line determined by the edge itself (or in
the convex hull of the deformed simplex). Thus the actual set occupied by the deformed
polyhedron does not have that barycenter as a vertex. So in order not to clutter the picture,
we have left those barycenters out.

Definition 2.2.1. We callN = (Ng, ..., N,) thevolume forceof P.

The following are some properties Uf.

(1) EachN; is only a function of the vertices that share a face (or facet) witbut
not p; itself. (To see this rewrite the formula fé% (t) before differentiating in
such a way that ng; is repeated in any term, using the anticommutativity.)

(2) LetT: EY — EYbeacongruence &9 thatis invariantorP. Thatis,T(P) = P
andT permutes the vertices &f. Supposé (p;) = p;. ThenT (N;) = N;. Note
also thatifi = j andT(p;) = pi, thenT (N;) = N;. In other wordsN; is in the
fixed set of T. (We regard 0 as the barycenterfsoT is an orthogonal linear
function onEY.)

2.3. The Constraining Graph

SupposeP is a convex polytope ifE? as before with verticep = (p1, ..., pn). LetG
be a graph defined on this vertex getin our applicationsG may or may not consist
of edges ofP. We think of the edges d& as defining those pairs of vertices that are
constrainedhot to get closer. In the terminology of the geometry of rigid tensegrity
frameworks each edge €f is astrut

Let p' = (pi, ..., p;) be an infinitesimal flex oG (p). That is for each strufi, j}
of G we have

(P =Py - (P = P)) = 0. (23.1)

We can rewrite these inequalities in terms of a sing@ity matrix R(p) = %d fo,
wheref(p) = (..., |pi — pj 12,...) € E® and wheree is equal to the number of edges
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of G, as follows:
RPMPY =] (B—p)-(F—p) |=0,

where the inequality is meant for each coordinate.
We say that the infinitesimal motiopl = (p3, ..., p,) is strictly volume increasing
if in addition to (2.3.1) we have

/ 1 /
v =aiZNi/\pi >0 (2.3.2)

(or we sayp’ is volume preservingf (2.3.2) is equality). HereN; is regarded as d-
dimensional vector so th&; A p/ can be interpreted as the standard inner problpap;,
with appropriate identification of bases.

For each edgé, j} of G, letw;; be a scalar. We collect all such scalars into a single
row vector called astressw = (..., wjj, ...) corresponding to the rows of the matrix
R(p). Append one more row ontB(p) to get a new matrixR(p), which we call the
augmented rigidity matrixso that

Rpyp)T = | PP (=P

YiNi-p

We calculate:
(0, DR(p) = (--~»Zwij(pi - pp)+ Ni»~-~),
j

where each sum is taken over gjladjacent inG to p;, and we collect coordinates at
atime.

Definition 2.3.1. Let N = (Ng, ..., Ny) be any sequence of vectors assigned to the
verticesp; of P (N not necessarily the volume force). We say the steesssolves N
(regarded as force) if for eachi

Zwij(pi —p)+N =0
i

or, equivalently(w, 1) R(p) = 0.

The following Theorem is the main working tool for showing our stability results. The
polytopeP mentioned can be anygl — 1)-dimensional polyhedral manifold ish-space
(or for that matter any polyhedrafd — 1)-homology cycle”), but for all the applications
that we have in mind, it enough to consider only the case whéena convex polytope.
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Theorem 2.3.1. Suppose that the volume force N of a polytope P can be resolved by a
stressw on the strut-framework @) such that for each eddg, j} of G, w;; < 0,where

G is a graph on the vertices of.Ret g = (p}, ..., p) be any infinitesimal motion on
G(p). Then the infinitesimal change in the volurié > 0, and equality occurs if and
only if (pi — pj) - (P — p]-’) = Ofor each edgdi, j} of G.

Proof. We calculate using the associativity of matrix multiplication and the inequality
(2.3.1):

0=0-p = (@, RPN =) oij(p —p)( — P+ D Ni-p <V,
ij i

We clearly get equality if and only ifpi — pj) - (pf — pj) = O forall {i, j} edges
of G. 0

With this theorem in mind we say the following.

Definition 2.3.2. The convex polytop® and the grapl@ on the vertices oP satisfy
the critical volume conditionif the volume forceN can be resolved by a stress=
(..., wij,...)onthe edges 0B so that for each edge, j} of G, wi; < 0.

We will compute several examples of polytopes and graphs with and without the
critical volume condition in the next sections.

2.4. Examples with the Critical Volume Condition

Example 2.4.1. We consider first the case of the plane where “volume” becomes area,
and the polytopd® becomes a convex polygon. We first consider only deformations of
P that preserve the lengths of edgeshofit is known that the area function is critical

if and only if the vertices of the polygon either lie on a circle or a line. See [BG]
for information about this fact. Assume satisfies the critical volume condition. By
Theorem 2.3.1V’ > 0 for any first-order motion oG (p). Restricted to infinitesimal
motions which satisfypi — p;)(p{ — pj) = O for all edges of the polygon, Theorem
2.3.1 givesv’ = 0. This means thap is a critical point of the area function.

We leave it as an exercise for the reader to check that when the vertiBelieadn a
circle C, P satisfies the critical area condition if and only if the cente€dfes in the
interior of P. Figure 2 is a diagram of the area force for a pentagon. (Notice that due to
the proper identification of bases of the vectbksand points inE2 each vector of the
area force is perpendicular to the proper diagonal of the pentagon pointing to the exterior
of the pentagon.)

Example 2.4.2. In any dimension, leP be a simplex and the graph all pairs of
vertices, therP has the critical volume condition if and only if the orthogonal projection
of each vertex lies in the interior of the opposite facet. In the plane this nfeaman
acute triangle. IrE® this meansP has all dihedral angles acute. Etc.
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deccee=

R T

Fig. 2

Example 2.4.3. In E3 the regular octahedroR has a volume forcé\; that is a scalar
multiple of p;, where(py, ..., pg) are the vertices oP and the origin is at the center of

P. When the grapl@ is the set of edges d®, the volume force is resolved by a stress
that has all the same values on each edge.

2.5. Infinitesimal Rigidity

We briefly review some basic definitions. See [C2] for more information. Consider now
just the bar grapl, which is the graphG with all the struts changed to bars, and

N\
N4

Fig. 3
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its configurationp = (pa, ..., pn) in EY to get abar framewo_rkG(p). We say that
infinitesimal motionp” = (py, ..., py) is aninfinitesimal flexof G(p) if for all {i, j} is
an edge of5, we have

(P —p)-(pi—p)=0.
This is the same as sayiR(p)(p’)" = 0 for the rigidity matrixR(p).

Definition 2.5.1. We sayp’ is atrivial infinitesimal flex if p’ is the (directional) deriva-
tive of a congruence oEY . We say thaiG(p) (resp.G(p)) is infinitesimally rigid if
G(p) (resp.G(p)) has only trivial infinitesimal flexes.

The following combines (infinitesimal) rigidity and the critical volume condition.

Corollary 2.5.1 to Theorem 2.3.1. Suppose a convex polytope P and a graph G on
the vertices of P satisfy the critical volume condition @&(p) (as a bar framework

is infinitesimally rigid Then V > 0 for every nontrivial infinitesimal flex 'pof the
tensegrity framework Q).

Proof. By Theorem 2.3.1y" > 0. If V' = 0, thenp’ is an infinitesimal flex of the bar
graphG(p). However, then by the infinitesimal rigidity @ (p), this would implyp’ is
trivial. ThusV’ > 0. O

Itisageneral principle that infinitesimal rigidity implies the “rigidity” of a framework.
In [C2] (see also [CW]) this is discussed in the context of second-order rigidity. Similar
principles apply in our situation to the volume function.

Corollary 2.5.2 to Theorem 2.3.1. Suppose a convex polytope P and a graph G on
the vertices of P satisfy the critical volume condition @) is infinitesimally rigid
Then there is are > 0 with the following propertylf g = (qi, ..., gn) is another
configuration of the vertices of P with

Ipi —al| < ¢ forall i=1,...,n, (2.5.1)
pi — pjl < |l —q;| foredges {i,j}ofG, (2.5.2)

then V(P) < V(Q) with equality only when P is congruent to, @here Q is the
polytope determined by the verticesamd the points defining simplices (8/1.1).

Proof. The inequalities (2.5.2) define a semialgebraic)seéh the space of all con-
figurations{(qy, ..., qn)|g € EY,i = 1,...,n}. Suppose there is no> 0 as in the
conclusion. AddV (P) > V(Q) to the constraints definin. By Wallace [Wa] (see
[C2]) there is amanalyticpath p(t) = (pi(t), ..., pa(t)), 0 <t < 1, with p(0) = p
andp(t) € X, p(t) not congruent tg(0) for0 <t < 1. So

A

g — pjl < pi(t) — pj(D)] for {i, j} an edge oG and
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Then after suitably adjusting(t) by congruences (as in [C2] as well as [CW]) we can
define
. d*p()
- dtk

)

t=0

for the smallesk that makesp’ a nontrivial infinitesimal flex. (Such la exists by the
argument in [C2] as well as [CW]).
Since (2.5.3) holds we see thgtis a nontrivial infinitesimal flex of5(p), and

d"V(P)
V' =
dtk

0,

t=0

is the infinitesimal change in the volume correspondingptoBut this contradicts
Corollary 2.5.1 to Theorem 2.3.1. 30> 0 as in (2.5.1) exists such that the conclusion
follows. U

With the above result in mind, l6? be a polytope irE¢ and letG be a graph on the
verticesp = (p, - .., pPn) Of P.

Definition 2.5.2. We sayP, G is strictly locally volume expandinfithere is are > 0
such that for every satisfying (2.5.1) and (2.5.2) we havgP) < V(Q) with strict
inequality unles® is congruent taQ.

2.6. More Examples

In Section 2.4 we discussed some examples of polytopes with the critical volume condi-
tion. We calculate which of those examples also has an infinitesimally rigid bar frame-
work.

Example 2.4.1. This is a polygonP in the plane where all its vertices lie on a circle.
If we take the grapl@ to be the edges dP, G(p) is infinitesimally rigid andP, G is
strictly locally volume expanding if and only P is an acute triangle.

Example 2.4.2. This is a simplexP in EY. We takeG to be all the edges dP. Then
G(p) will always be infinitesimally rigid. Sd°, G is strictly locally volume expanding
when each vertex projects into the interior of the opposite facet.

Example 2.4.3. In EY the regular octahedroR satisfies the critical volume condition.
We takeG to be all the edges dP. It is a classical theorem (see Dehn [D] and Gluck
[GI] for an easy proof) thaG(p) is infinitesimally rigid. ThusP, G is strictly locally
volume expanding

In what follows we will need a series of examples that will generalize Examples 2.4.2
and 2.4.3 above. Let ¥ k < d be positive integers. LdD (k, d) be the convex hull of
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those vectors irEY that have exactlk entries that are 1, andl — k entries that are 0.
Alternately we see that

Dk, d)=[0,1]n {(xl, o Xd)

z:k}

where [Q 1]% is the unit cube irEY, and [Q 1]¢ = {(X1, ..., Xq)|0 < x < 1foralli =
1,...,d}. Thus we regard (k, d) as a subset of @ — 1)-dimensional hyperplane.

There are two kinds of facets @ (k, d). Let Hi = {(X4, ..., Xq)|X = 0}, and let
H' = {(Xs,...,X3d)|x = 1}. Thenforany = 1, ..., d, D(k, d) N H; is the convex hull
of these vertices i (k, d) whoseith coordinate is 0. ThuB (k, d) N H; is congruent
to D(k,d — 1), aslong a& < d — 1 and is simply one point & = d — 1. Similarly for
anyi =1,...,d, D(k,d) N H' is the convex hull of those vertices Bf(k, d) whose
ith coordinate is 1. ThuB (k, d) N H; is congruenttd(k—1,d — 1) aslongak > 1
and is simply one point whek= 1.

We see thaD (1, d) is an(d — 1)-dimensional regular simplex, afd(2, 4) is a
regular octahedron, since it consists of the convex hu(I‘Z‘)sz 6 vertices, where all
pairs of these points arg2 apart except for three disjoint pairs.

We also observe that the edges of dbgk, d) are allv/2 in length. Two vertices
belong to the same edge if and only if they differ in exactly two coordinates and thus are
V2 distance apart. Notice aldd(k, d) is congruent tdD(d — k, d).

Example 2.6.1. In E9~! we take the polytope to bB(k,d) for 1 < k < d. Any
permutation of thed-coordinates provides a symmetry Bf(k, d), a congruence to
itself, by permuting the coordinates. Thus for any given vegieaf D (k, d), the group
of symmetries oD (k, d), fixing p;, fix only the line through the center @i (k, d) and
pi. ThusD(k, d) has the critical volume condition.

Let G be the graph determined by those verticeDak, d) that arev/2 apart, the
edges oD (k, d).

Lemma 2.6.1. The bar frameworlG(p) is infinitesimally rigid in B2,

Proof. Inductively, eactD(1, d), D(d—1, d),andD(2, 4) all have their corresponding
bar frameworks infinitesimally rigid, as discussed in previous examplesd Fer5,
k=1,...,d—1, eachfacet oD(k, d) has as its corresponding bar framework another
Dk —1,d—1) or D(k,d — 1) which we can assume is infinitesimally rigid in their
hyperplane of dimensiot — 2, by induction. It is known (see [W], for example) that if
all the facets of a convex polytogein E%-* are infinitesimally rigid in the hyperplane
of their facet, ford > 3, then the whole graph is infinitesimally rigid. Thus the bar
framework ofD (k, d) is infinitesimally rigid inE94-1. Alternatively, it is also easy to see
that the 2-skeleton (the collection of two-dimensional faced) &, d) is triangulated
for 1 < k < d. Then by a theorem of Whiteley [W] it is known that the 1-skeleton is
infinitesimally rigid as a bar graph. O

ThenD(k, d), G for 1 < k < d is strictly locally volume expanding.
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Remark. The polytopeD(2, d), d > 4 in E9~1 has exactly
dy dd-1)
2) 2

1d(d — 1) _dd-1d-2
2 2 =T

edges. In order for a bar framework witlvertices ane edges to be infinitesimally rigid
in E9 we must have

vertices and

ezdv—d(d;b.
In our case
_d(d—l)(d—2)_(d—l)d(d—l)_(d—l)d_ B _(d—l)d
e= > = > > =(d - D —

Thus each edge is needed with no redundancy.

2.7. Tilings and Packings

Suppose th@ is a packing of spherical balls ®. Let G be the graph oP, where the
centers of the balls serve as the vertice&a@ind an edge is placed between two vertices
when the corresponding two balls intersect. The following is a basic principle that can
be used to show that many packirf@sre uniformly stable.

Theorem 2.7.1. Suppose E can be tiled face-to-face by congruent copies of finitely
many convex polytopes P. ., Py, such that each jRand G restricted to the vertices of
each R is strictly locally volume expandinghen the packin@ is uniformly stable

Proof. Lete > 0 be the minimum for eacR; andG restricted toP, as guaranteed by

the strict locally volume expanding property. All but a finite number of the tiles are fixed.
The tiles thatre free to move are confined to a region of fixed volum&fh Since each

P, is strictly locally volume expanding, the volume of each of the tiles must be fixed.
But the strict condition implies that the motion on each tile must be a congruence. Since
the tiling is face-to-face and the vertices are givere conclude inductively (on the
number of tiles) that each vertex &f must be fixed. Thu® is uniformly stable. O

Let A be a lattice inEY, generated, say, by, ..., gq € E9, and letP be packing
(of balls, say) inEY. We say thaP is periodic with respect ta\, if for every B € P and
A € A, the translate oB by A, B+ A is also inP. Indeed, we saf is afinite packingof
thequotient space &/ A, if every element of? is aA translate of one of a finite number
of packing elements @P, i.e., theygenerateP. Note that ifA C A is a sublattice, then
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there is a corresponding covering map

Ed/A

Ed/A

that also maps packing elements to packing elements.
We say that a periodic packirfg with lattice A is periodically stableif there is an

¢ > 0, such that packing elemen®;, ..., By, € P and generatorgy, ..., gq of A,
we can guarantee that for any other periodic pacingenerated by e-congruent to
Bi,i =1,..., m, periodic with respect t&\" generated by, ..., g}, |9/ — gi| < &,

i =1,...,d, suchthat
Vol(EY/A) > VoI(EY/A),

thenA is congruent taA” andP is congruent tg>’.

Theorem 2.7.2. With a packingP as before suppose E can be tiled periodically
with respect toA face-to-face by congruent copies of finitely many convex polytopes
P1, ..., Pm, such that each As strictly volume expandingvith respect to G the graph

of the packingP. ThenP with respect taA is periodically stable

Proof. The idea is very similar to Theorem 2.7.1. Just observe that the strict volume
expanding condition together with the volume condition for periodic stability combine
to force the congruence. O

Corollary 2.7.1.  With the same conditions as in Theor2.2, and with? a periodic
subpacking ofP given by a sublattice\ of A, we still have periodic stabilitfwith
respect to the same> 0.)

Remark 2.7.1. Notice that periodic stability is stronger than being locally maximal
dense (see [C1] and [CS1]).

Remark 2.7.2. The techniques discussed above do not automatically provide an esti-
mate for thes > 0O that is guaranteed by uniform stability. It is possible, at least in some
cases (such as in Theorem 2.8.1 below), to extend our methods to find explicit estimates
for ¢ > 0, but these methods are more complicated and the effort does not seem to be
worth it.

2.8. A Uniformally Stable Packing in the Plane
Consider the well-known triangular packing of circular disks of equal radii where each

disk is adjacent to exactly six others. Remove one disk to obtain another pgeking
See Fig. 4 for the graph &%. We state the following in our terminology.
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Theorem 2.8.1[BD]. The packingP, is uniformally stable

Proof. The graph of Fig. 4 describes a tiling of the plane into equilateral triangles (of
side length B, wherer is the radius of the disks) and one regular hexagon (of side length
2r). Each triangle has the strict volume expanding condition. However, the hexagon
does not. On the other hand, the hexagon does satisfy the critical area (two-dimensional
volume) condition. (The underlying framework is not infinitesimally rigid though). But
the hexagons surrounded by triangles in such a way that the hexagon union on one
layer, say as in Fig. 4, is infinitesimally rigid.

We can then use this polygon and the accompanying graph (with vertices inside) as
in Theorem 2.7.1 to conclude th&p is uniformly stable. O

This proof is almost identical in outline to that ofaBiny and Dolbilin. The only
difference is in the calculation of the strict area increasing property.

Remark 2.8.1. An outstanding conjecture of L. Fejesth’'says that the face incircles

of a regular tiling{ p, 3} (that has precisely p regular triangles meeting at each vertex)
with p > 6 form astrongly solidpacking. That is, if we remove any circle from the
packing then the packing of the remaining circlesaid. Recall that a circle packing is
calledsolid if no finite subset of the circles can be rearranged such that the rearranged
circles together with the rest of the circles form a packing not congruent to the original.
(Obviously, any solid circle packing is uniformly stable.) The above conjecture of L. Fejes
Toth has been proved by Bezdek [B] for gl > 8. The open cases are the proper
Euclidean circle packing fagp = 6 (the uniform stability of which is proved by Theorem
2.8.1) and the corresponding hyperbolic circle packingdfet 7.
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2.9. The Lattice Packings pand Ay

The latticeDq in EY is

Dg = {(X1, ..., Xg)| €achx; is an integer and; + - - - + Xq IS ever,
and the latticefy in EY is

Ag = {(Xq, ..., X44+1)| €achx; is an integer andj + - - - + Xg41 = O},

whereEY is regarded as the subspaceEdf* given byx; + - - - + Xg11 = O.

For both of these lattices there is a corresponding packing of congruent balls of radius
V2/2.

For any packingP of balls consider the configuration of cent@rs= (pg, ... pi,...)
of packing elements. Leb be any sphere that has a (locally) maximal radius with no
points of p in the interior ofS. We call such ars a Delaunaysphere. The convex hull
of the vertices ofSis called aDelaunay cell

It is a basic fact that the Delaunay cells of a (locally finite) point configuration form
a face-to-face tiling oEY.

According to Conway and Sloane [CS1, p. 144] the Delaunay cel¥yaire of two
types,Bq thed-dimensional cross-polytope, and the “half-cube’y which is the same
asD(2, d + 1) in the notation of Section 2.6. Similarly, for the lattice packifyg the
Delaunay cellsar®(k,d+1)fork =1, ..., d (see [CS2] for an equivalent description,
called “ambo-simplices,” for those Delaunay cells). All of the polytopes with their edge
graphs were shown to have the strict local volume expanding property (e8cespbich
follows easily ford > 3 since it is triangulated) in Section 2.6. Thus we obtain:

Theorem 2.9.1. The lattice packings Pand Ay for d > 3 are uniformally stable and
periodically stable for sublattices

Remark 2.9.1. One can show that the densest lattice packings (known up to dimension
8) A, Az, D4, Ds, Eg, E7, andEg are all uniformly stable and periodically stable for
sublattices.

3. Cubic Lattice Packings of Spheres irE® and Uniform Stability

Theorem 3.1. The densest cubic lattice packing of B > 2, with unit balls is not
uniformly stable

Proof. We explain our construction in the planar case and note that exactly the same
can be done i@l > 2.

Let P be the densest square lattice packing with unit circles. Given0 we are
going to select a subset pfcircles of P (the smallek is, the larger the number will
be) and show that these circles can be rearranged such that each circle is moved by
a distance< ¢ and the rearranged circles together with the rest of the circles form a
packing different fronpP.



Finite and Uniform Stability of Sphere Packings 127

p3n+1-1-].1.1l4n

$ . é é p1
— —
- e
~— ~—
L O—0
o~—t *~—
s ] el
— — D
Pans4’ Pon l ° l y l ° 1 °Pn+1
Fig. 5

To ease the description of our argument, first join the centers of the contiguous circles
by segments. What we get is a square tiling, where each square has sidelength 2. On
the edge graph of this tile choose a square,Saoff sidelength B, n odd (for a givere
a sufficiently large odah will be specified later), and label those vertices of the square
tile which lie on the sides of the square $aby p1, P2, - .., Pan in & clockwise order
so thatp; is—say—the right upper vertex of the square j5qThen delete all but a
finite number of edges and vertices to get the framew@kp) shown in Fig. 5. For
completeness, here is the precise list of the edges and vertices to be deleted:

() delete all edges of the tiling which are not incident with the venpgxi =

1,...,4n,

(i) delete all edges which connect the vertiges, jn, i = 1,...,(n—1)/2; ]
0, 1, 2, 3, to vertices inside the square §gr

(iii) delete all edges which connect the verticgg_1+jn, i = 1,...,(N+1)/2;
i =0,1,2, 3, to vertices outside the square $qr

(iv) delete the edgepn Pni1, Pan Pzn+1, PanPan+1, aNdPan P1,

(v) delete all vertices of the tiling which become disconnected from the vertices
P, ..., Pan.

The remainder of the tiling is what we call framewdsk(p), assuming that all the edges

are bars and the vertices, .. ., psn are variable vertices while the rest of the vertices

are fixed vertices (Fig. 5). It is clear that this framework has four congruent connected
components and that each can be moved independently from the others. We call vertex
p: thefirst and p, the last vertex of the first component. Similarly in clockwise order
Pn+1, Pont1, @Ndpanyg are the first vertices angbn, psn, andpa, are the last vertices of

the second, third and fourth component. The integalso measures the lengths of the
components. The motions of the first vertices of the components uniquely determine the
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motions of the components. In fact, we show that

Lemma 3.1. Foranye > § > O there is an g such that if the first vertexpof the
first component of the framework,&), n > ng, is moved inside the squaggr,,, with
a distance< ¢ such that its distance fromypis just greater thar2, then the last vertex
p, of the first component moves with a distarcé.

Proof. Denote byp;* the position of the verteg; for eachi =1, 2, ..., n when vertex

p: is moved by a distance ¢. Let h; be the length of the perpendicular projection of
the segmenp;* p*, ; onto the linep; pi 1. Itis easy to see that the projectiongf onto

the linep; pi+1 lies between the verticgg and p;+1 and thath; increases aisincreases.
Lemma 3.1 claims that, if is large enough, then the last verigiof the first component
remains as close to its original position as we wish. Notice that beqatise moving

on a circle (of radius 2) tangent to the lipep; 1 at p; itis the same as claiming that the
limit of the lengthsh; asi approaches infinity is 2. Finally, assume that the limit of the
lengthsh;, asi approaches infinity, is less than 2. Then for lardkee projection ofp;
onto the linep; pi+1 would not lie between the vertices and p; 1, a contradiction.]

Let us move the first vertex of the first component inside the squarg $h a
distance less thafnisuch that its distance frompy, is just greater than 2, let us say it is
246,68 > 0 (Fig. 6(a)). By Lemma 3.1, ifi is a large enough, then the last verigx
of the first component remains as close to its original position as we wish. This means
that if n is a large enough odd integer, we can find a position for the first vertex of
the second component within theneighborhood of,1 inside the square Sg, such
that its distance from the last vertex of the first component is equal to 2. The existence
of such a positiorp;;, ; inside the square Sgris what makes this construction work
(see Fig. 6(b)). Notice for contrast that with continuous motion the vegtex cannot
be kept inside the square $grBy the same reasoning, iifis large enough, then we
can find a positiorpj,,, , for the first vertex of the third component within the square
Sar,,, so that it is at a distance 2 from the last vertex of the second component; and
then again, ih is large enough, then we can find a positigf, , for the first vertex of
the fourth component within the square ggiso that it is at a distance 2 from the last
vertex of the third component and still the last vertex of the fourth component is moved
by a distance< §. This means that it lies at a distanse2 from the first vertex of the

first component, and thus the unit circles placed at the cepters;, ..., pj, neither
overlap each other nor the circles placed at the deleted vertices, which completes the
proof of Theorem 3.1. O

In Section 4 we discuss a general method which might help to determine finite stability
of certain packings of unit spheres. Among others it turns out that the densest cubic lattice
packing of EY with unit spheres is finitely stable.

4. Finite Stability of Sphere Packings inEY

Let us start with the following alternate definition (iii*) in Section 1 of finite stability of
sphere packings dE¢ with unit balls.
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(iii*) A sphere packingP of E9 (d > 1) with unit balls is finitely stable if and only
if for any finite subse®’ of the balls ofP, there exists aap > 0 such that
one cannot rearrange the ballsf@fsuch that each ball is moved by a distance

less tharep and the rearranged balls together with the rest of the packing form
a packing different fron®P.

Let P be a packing oE? (d > 1) with unit balls. Though the following equivalent

condition for finite stability of sphere packings can be proved in a very trivial way it has
several applications.

Lemma 4.1. A packingP of EY (d > 1) with unit balls is finitely stable if and only if
the strut-framework generated by the graph of the paclgrig finitely rigid.

Corollary 4.1. The densest cubic lattice packing of Evith unit balls is finitely
stable

Proof. Letusrecall the following result proved in [C1]: L&t p) be a tensegrity frame-
work with each member a strut. Th&t(p) is rigid if and only if G(p) is infinitesimally

rigid. Moreover, we know from [RW] that a tensegrity framewdBK p) is infinitesi-

mally rigid if and only if (i) G(p) has a proper equilibrium stregs such that;; is
nonzero for everyi, j} a strut or cable and (ii) the bar framework obtained frGtip)

by replacing each member &f(p) with a bar is infinitesimally rigid. Thus, in order to
obtain Corollary 4.1 from Lemma 4.1 it is sufficient to prove that the strut-framework
generated by the densest cubic lattice packing®fvith unit balls has a negative self-
stress. Moreover, the bar framework obtained from the one generated by the packing by

replacing each strut with a bar is infinitesimally rigid. As both can be seen easily, we
omit details. O
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