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Abstract. The central question of this paper is the following somewhat more general
version of the well-known Tammes problem, which we call the polyhedral Tammes
problem. For given integers n ^ d� 1 ^ 3 find the maximum of the shortest distance
between any two of the n vertices of a convex d-polytope with diameter 1 in Ed. We
study this question for large n, as well as for some small values of n for fixed d.

1. Introduction and Results. Independently, Larman and Tamvakis [12], Reinhardt [13]
and Vincze [17] proved the following interesting result. If n � m2l, where m is an odd integer
greater than 1 and l is a nonnegative integer, then among all convex n-gons of diameter 1,
those with the largest perimeter are exactly the ones which have equal sides and are
inscribed in a Reuleaux polygon of constant width 1, so that the vertices of the Reuleaux
polygon are also vertices of the polygon of maximum perimeter. Somewhat surprisingly the
solution of this problem for n � 2s; s > 2 remains open (see [9]). The problem of Bateman
and ErdoÍ s [1] raises a related discrete question. Of all sets of n points with mutual distances
at least 1 in d-dimensional Euclidean space Ed, which set has the minimum diameter g�n; d�?
The solution of this problem in the plane is known up to 8 points (see [3] for the
case of 8 points in the plane and for a survey on planar results). The value

g�d� 2; d� � ���
2
p dd2e

dd2e � 1
� bd2c
bd2c � 1

 !ÿ1
2

; d ^ 2; has been independently determined by

several people [2], [4], [10], [14], [15]. Moreover, it is known [14] that g�6; 3� � ���
2
p

.
Motivated by these results, we raise the following questions.

P rob l em A. Find the minimum diameter f �n; d� of convex d-polytopes with n vertices
having edge lengths ^ 1 in Ed.

P rob l em B. Find the minimum diameter F�n; d� of convex d-polytopes with n vertices
having pairwise distances ^ 1 in Ed.

It is obvious that 1 % f �n; d� % F�n; d� and 1 % g�n; d� % F�n; d� for all n ^ d� 1 ^ 3.
Moreover, the above results imply that for d > 2, Problems A and B have a new character,
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and one can obtain only the following short list of extremal values as an immediate corollary:
f �d� 1; d� � F�d� 1; d� � g�d� 1; d� � 1; f �d� 2; d� � F�d� 2; d� � g�d� 2; d�; d ^ 3 and
g�6; 3� � F�6; 3� � ���

2
p

. In this paper, we prove the following results, the first of which is a
counterexample to Conjecture 6 in [16], and the second of which is an anologue to the main
theorem of [18] (see also [6]).

Theorem 1.1. f �n; d� % 3 for all n ^ d� 1 ^ 4.

In contrast to Theorem 1.1, the next theorem says that the limiting shape of the extremal
configurations for Problem B is spherical as n!1 . In order to phrase this properly, we
introduce a bit of notation. Let pn;d be the family of convex d-polytopes with n vertices
having pairwise distances ^ 1 which have the smallest possible diameter in Ed. Let Bd

denote the closed d-dimensional ball of radius 1 centered at the origin o in Ed. Moreover, if
P is a convex d-polytope in Ed, then let l�P� denote its sphericity ratio, defined by

l�P� � min
x2Ed; r;R

R
r

����x� rBd � P � x� RBd
� �

:

Finally, we define the smallest ratio ln;d of the radii of two concentric �dÿ 1�-dimensional
spheres between which the boundary of any convex d-polytope P 2 pn;d can be squeezed, as
follows

ln;d � max
P2pn;d

l�P�:

Theorem 1.2. lim
n!1 ln;d � 1 for all d ^ 3.

Turning to extremal configurations in E3, recall that a nice result of Schütte ([14]) says
that g�6; 3� � ���

2
p

, which is achieved by the regular octahedron of edge length 1.
Consequently, we have F�6; 3� � ���

2
p

: In connection with this we prove the following
somewhat stronger statement.

Theorem 1.3. f �6; 3� � ���
2
p

and the only extremal polyhedra are the regular octahedron of
edge length 1 and the right prism of height 1 with regular triangle base of side length 1.

Finally, it seems useful to rephrase Problem B in the following way. One can view Problem
B as a somewhat more general version of the well-known Tammes problem, which asks for
the maximum of the shortest spherical distance among n points on the unit sphere (for a
short survey on Tammes problem, see [8], for example). Thus, Problem B is equivalent to the
following problem.

The Polyhedral Tammes Problem. For given integers n ^ d� 1 ^ 3, find the maximum of the
shortest distance between any two of the n vertices of a convex d-polytope with diameter 1 in Ed.

From the many seemingly interesting open cases, we mention here, the following two only.
For d � 2 and any n �j 2s; s > 2, the Polyhedral Tammes Problem follows easily from the
results in [12], [13], [17]. But, it seems to be open for the remaining integers, that is, for all
n � 2s; s > 2 in E2. In E3, it is natural to conjecture that among convex polyhedra of
diameter 1 and of 12 vertices, the regular icosahedron has the largest minimum distance
occuring between pairs of vertices.

2. Proof of Theorem 1.1. We explain our construction in E3 only. The higher dimensional
construction is essentially the same.
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Let the positive integer n ^ 4 be given. In what follows, we inductively define n points

fa; b; c0; c1; . . . ; cnÿ3g � E3

in terms of their Cartesian coordinates such that they form the vertices of a convex
polyhedron of diameter 3 having edge lengths > 1.

S te p 0 . Let a � �0; 0; 0�; b � �3; 0; 0� and c0 � �2; 1; 0�.
S te p 1 . Let 0 < e1 <

1
2 be an arbitrary real number, and let 0 < d1 be sufficiently small.

Then let

c1 � �1; e1; d1�:
Obviously, the convex hull P1 � convfa; b; c0; c1g is a tetrahedron of diameter 3 having edge
lengths > 1.

Figure 1.

S te p 2 . Let c2 � �2; e2; d2� with e2; d2 chosen as follows. On the one hand, 0 < e2 <
1
2 e1;

and on the other hand, 0 < d2 is chosen such that the convex polyhedron
P2 � conv�fc2g [ P1� compared to P1 has an additional new vertex namely, c2 and three
more edges namely, the line segments connecting c2 to c1 as well as to a and b. Obviously, P2

is a convex polyhedron with 5 vertices having edge lengths > 1 and diameter 3.
Now, after performing Ste p nÿ 4, we arrive at the points a; b; c0; . . . ; cnÿ4 with the

property that the convex polyhedron Pnÿ4 � convfa; b; c0; . . . ; cnÿ4g has nÿ 1 vertices and
edge lengths > 1 moreover, convfa; b; cnÿ4g is a triangular face of Pnÿ4. (Figure 1 shows the
ªtop viewº of P3.) The following step then completes our construction in E3.

S te p nÿ 3. Ca s e ( i ) : n i s odd . Let cnÿ3 � �2; enÿ3; dnÿ3� with enÿ3; dnÿ3 chosen as
follows. On the one hand, 0 < enÿ3 <

1
2 enÿ4; and on the other hand, 0 < dnÿ3 is chosen such

that the convex polyhedron Pnÿ3 � conv�fcnÿ3g [ Pnÿ4� compared to Pnÿ4 has an additional
new vertex namely, cnÿ3 and three more edges namely, the line segments connecting cnÿ3 to
cnÿ4 as well as to a and b. The convex polyhedron Pnÿ3 obtained in this way is the desired
one namely, it is of diameter 3 having n vertices and edge lengths > 1.

Ca s e ( i i ) : n i s e v e n . In this case, let cnÿ3 � �1; enÿ3; dnÿ3� with enÿ3; dnÿ3 chosen
exactly in the same way as it is described in Case (i).

This completes the proof of Theorem 1.1.
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3. Proof of Theorem 1.2. Let K be a convex body in Ed (i.e. a compact convex set with
nonempty interior in Ed). Let e > 0, and let n�K; e� be the maximum number of boundary
points of K with pairwise distances ^ e. Then let fq1; q2; . . . ; qn�K;e�g � bdK be boundary
points of K such that jjqi ÿ qjjj ^ e for all 1 % i < j % n�K; e�, where of course, jj . . . jj stands
for the Euclidean norm of the given vector. Finally, let Bd�c; r� denote the closed d-
dimensional ball of radius r > 0 centered at the point c in Ed. In particular, let Bd � Bd�o; 1�.

De f i n i t i on 3 .1. The balls Bd�qi;
e
2�, 1 % i % n�K; e� generate a packing on the boundary

bdK of K, the density of which we define by

d�q1; q2; . . . ; qn�K;e�� �
Pn�K;e�

i�1
Surfdÿ1�Bd�qi;

e
2� \ bdK�

Surfdÿ1�bdK� ;

where Surfdÿ1�. . .� refers to the proper surface area measure.

De f i n i t i on 3 .2. Let d�L� be the largest (upper) density of packings of translates of the
convex body L in Ed.

Lemma 3.1. lim
e!0�

d�q1; q2; . . . ; qn�K;e�� � d�Bdÿ1�:
P roof. As Lemma 3.1 can be regarded as a variant of the following theorem of Hlawka

([11]), we sketch only the main steps of the proof of Lemma 3.1.

Lemma 3.2 (Hlawka [11]). For a given convex body L � Ed, we denote by m�L;M� the
maximum number of bodies x� L; x 2 Ed which can be packed into the convex body M � Ed.
Then

lim
s!�1

m�L; sM�Vold�L�
Vold�sM� � d�L�

exists and does not depend on M, where Vold�. . .� stands for the standard d-dimensional
volume measure in Ed.

By packing a maximum number of �dÿ 1�-dimensional balls of radii e
2 into the facets of a

convex d-polytope K � Ed, one can easily see that Lemma 3.2 implies Lemma 3.1 for that K.
The general case can be obtained from this as follows. Let K � Ed be a convex body that is
contained by the convex d-polytope T and contains the convex d-polytope I. The convexity
of these sets implies that n�I; e� % n�K; e� % n�T; e� for all e > 0. Even more is true,
however. Namely, it is not hard to see that for any given � > 0, there exists a positive real
number t depending on K only, such that for the above convex d-polytopes with
distH�K; I� < t; distH�K;T� < t, we have that

d�x1; x2; . . . ; xn�I;e�� ÿ � < d�y1; y2; . . . ; yn�K;e�� < d�z1; z2; . . . ; zn�T;e�� � �
for all sufficiently small e > 0, where distH�. . . ; . . .� stands for the Hausdorff distance ([5])
between the given convex bodies. From this, Lemma 3.1 follows in a rather straightforward
way. h

Now, we turn to the proof of Theorem 1.2. For Pn 2 pn;d, let R�Pn� and r�Pn� denote the
radii of the concentric closed d-dimensional balls, the larger of which contains Pn and the
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smaller of which is in Pn such that

R�Pn�
r�Pn� � min

x2Ed
min

x�rBd�Pn�x�RBd

R
r

� �� �
:

Obviously,
1

R�Pn�Pn � Bd. Now, assume that lim
n!1 ln;d �j 1 for some d ^ 3. Then Blaschke�s

selection theorem [5] implies that there exists a sequence Pni 2 pni;d; i � 1; 2; . . . such that

lim
i!1

1
R�Pni�

Pni � Q;

where Q � Bd is a non-spherical compact convex set in Ed. Hence, based on Bieberbach�s
theorem [5], let r > 0 such that

diam�rBd� % a � diam�Q� and Surfdÿ1�rBd� ^ b � Surfdÿ1�Q�
with properly chosen 0 < a < 1; 1 < b. Thus, if i is sufficiently large, then

diam�R�Pni�rBd� < a0 � diam�Pni� and Surfdÿ1�R�Pni�rBd� > b0 � Surfdÿ1�Pni�
with some a < a0 < 1 and 1 < b0 < b independent from i. Consequently, if i is sufficiently
large, then Lemma 3.1 and Surfdÿ1�R�Pni�rBd� > b0 � Surfdÿ1�Pni� imply that
n�R�Pni�rBd; 1� ^ n�Pni ; 1� and diam�R�Pni�rBd� < diam�Pni�, a contradiction. This com-
pletes the proof of Theorem 1.2.

4. Proof of Theorem 1.3. Let Sdÿ1 � fx 2 EdjdistE�o; x� � 1g be the �dÿ 1�-dimensional
unit sphere centered at the origin o of Ed, where distE�. . . ; . . .� stands for the Euclidean
distance between two points of Ed. Recall that a subset K of Sdÿ1 is called spherically convex
if no two points of K are antipodal moreover, for any two points of K the shorter great
circular arc connecting the two points on Sdÿ1 belongs to K. The intersection of all
spherically convex sets that contain a finite pointset lying on an open �dÿ 1�-dimensional
hemisphere of Sdÿ1 is called a convex spherical polytope. A vertex of a convex spherical
polytope P � Sdÿ1 is a boundary point of P that lies on a supporting �dÿ 2�-dimensional
great sphere of P intersecting P at the given boundary point only. Any convex spherical
polytope is the spherical convex hull of its vertices, that is, any spherically convex set that
contains all the vertices of a convex spherical polytope contains the convex spherical
polytope itself. Note that the vertex set is the smallest set with this property. As usual, we
measure the spherical distance distS�u; v� between the points u; v of Sdÿ1 by the central
angle � uov.

Lemma 4.1. Let P be a convex spherical polytope on Sdÿ1; d ^ 3, and let l be the largest
spherical distance between any two vertices of P. If l < p

2, then the spherical diameter
diamS�P� � maxfdistS�x; y�jx 2 P; y 2 Pg of P is equal to l.

P roof. Suppose that the claim does not hold. Then there exist p1 2 P; p2 2 P such that
distS�p1; p2� > l. Let M � fx 2 Sdÿ1jdistS�p1; x� % lg. Since l < p

2 , the set M is spherically
convex. Note that since distS�p1; p2� > l, the point p2 is not in M. Thus, there exists a vertex
v1 of P which does not lie in M. (One can see this as follows. Suppose that all vertices of P lie
in M. Then, as M is spherically convex and P is the convex hull of its vertices, we get that
P �M, but p2 2 P and p22j M, a contradiction.) Now, let M0 � fx 2 Sdÿ1jdistS�v1; x� % lg.
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Note that p12j M0, and by the same argument, there exists a vertex v2 of P such that v22j M0.
But then distS�v1; v2� > l, a contradiction. h

Re ma r k 4 . 1. If l > p
2 , then Lemma 4.1 does not hold. (For example, take an isosceles

spherical triangle of side lengths p
2 � e; p

2 � e; e on S2, where 0 < e is a small real number.)
Moreover, using the same argument, it is easy to extend Lemma 4.1 for l � p

2.

Lemma 4.2. Let Q be a convex polytope in Ed, d ^ 3, and let m be largest angle between any
two adjacent edges of Q. If m % p

2, then the angles of any triangle spanned by three vertices of
Q are less than or equal to m.

P roof. Suppose that the claim does not hold. Then there exist three vertices say, v1; v2

and v3 of Q, such that � v2v1v3 is strictly larger than m. Without loss of generality, we may
assume that v1 � o. Then let P be the central projection of Q from the center point o onto
the �dÿ 1�-dimensional unit sphere Sdÿ1. By assumption, P is a convex spherical polytope on
Sdÿ1 with the property that the spherical distance between any two of its vertices is at most m.
As m % p

2 , Lemma 4.1 implies that diamS�P� % m. In particular, distS�u2; u3� % m, where u2

(resp., u3) denotes the central projection of the vertex v2 (resp., v3) of Q from the center
point o onto Sdÿ1. But, distS�u2; u3� � �v2v1v3 > m, a contradiction. h

Now, we are in a position to prove f �6; 3� � ���
2
p

in a rather short way. Let Q be a convex
polyhedron with 6 vertices having edge lengths ^ 1 in E3. Then Q must have two adjacent
edges whose angle is not an acute angle. We prove this as follows. If the angle of any two
adjacent edges of Q is an acute angle, then Lemma 4.2 implies that any triangle spanned by
three vertices of Q is an acute triangle. But, a theorem of Croft ([7]) states that the maximum
number of points in E3 having the property that the triangles determined by them are all
acute, is 5, a contradiction. So, there exist three vertices say, v1; v2 and v3 of Q, such that
p
2 % �v2v1v3. As 1 % distE�v2; v1� and 1 % distE�v3; v1�, we get that

���
2
p

% distE�v2; v3� and so
the diameter of Q is at least

���
2
p

. This implies that
���
2
p

% f �6; 3�. Finally, recall that the regular
octahedron of edge length 1 has diameter

���
2
p

. Thus, f �6; 3� � ���
2
p

.
Next, let Q� be a convex polyhedron with 6 vertices having edge lengths ^ 1 and diameter���

2
p

in E3. Obviously, the angle of any two adjacent edges of Q� is % p
2, and so, Lemma 4.2

implies that there is no obtuse triangle among the triangles spanned by the vertices of Q�.
Moreover, an elegant result of Croft ([7]) says that the following are the only six-point
configurations with right or acute angles and no obtuse ones spanned by triplets of six points:

(a) The vertices of two right sections of a triangular right prism, the cross sections being
congruent acute- or right-angled triangles;

(b) The four vertices of a rectangle, together with two points an equal distance vertically
above two opposite corners of the rectangle;

(g) A configuration formed of two vertices of two congruent triangles in parallel planes,
such that if D abc be one triangle, x�; y�; z� the orthogonal projections of the other vertices
upon it, the circumcircles of D abc; D x�y�z� coincide, and distE�a; x�� � distE�b; y�� �
distE�c; z�� is the diameter of it.

If we apply the above result to the vertex set of Q�, it is immediate that �b� is simply not
possible to have. For the remaining part notice that if four vertices of Q� are coplanar, then
they must form the vertex set of a unit square. Thus, in the case of �a�, Q� must be a right
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prism of height 1 with regular triangle base of side length 1, and in the case of �g�, we get that
Q� is a regular octahedron of edge length 1.

This finishes the proof of Theorem 1.3.
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