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Abstract. If a finite set of balls of radius π/2 (hemispheres) in the unit sphere Sn is
rearranged so that the distance between each pair of centers does not decrease, then the
(spherical) volume of the intersection does not increase, and the (spherical) volume of the
union does not decrease. This result is a spherical analog to a conjecture by Kneser (1954)
and Poulsen (1955) in the case when the radii are all equal to π/2.

1. Introduction

Let Sn be the unit sphere in Euclidean (n + 1)-dimensional space, and let X (p) be a
finite intersection of balls of radius π/2 (closed hemispheres) in Sn whose configuration
of centers is p = (p1, . . . ,pN ). We say that another configuration q = (q1, . . . ,qN )

is a contraction of p if, for all 1 ≤ i < j ≤ N , the spherical distance between pi and
pj is not less than the spherical distance between qi and qj . We denote n-dimensional
spherical volume by Voln[ ]. Our main result is the following.

Theorem 1. If q is a configuration in Sn that is a contraction of the configuration p,
then

Voln[X (p)] ≤ Voln[X (q)].
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This result is to be compared with our previous result [2], where the ambient space
is Euclidean space En , and the set X is the intersection of balls of arbitrary radius, but
for n ≥ 3 we need to assume that there is a piecewise-analytic monotone motion of the
configuration in En+2. This uses the results of Csikós in [4] and [5], where the ambient
space En , and the balls which make up the space X , are of arbitrary radius, but there
must be a continuous contraction of the configuration p to the configuration q in En . For
a history of earlier related results and the conjectures of Kneser [9] and Poulsen [10] as
well as related conjectures, see our paper [2].

The method we use here follows the same general outline as in our paper [2]. We use a
leapfrog lemma to move one configuration to the other in an analytic and monotone way,
but only in higher-dimensions. Then the higher-dimensional balls have their combined
volume (their intersections or unions) change monotonically, a fact that we prove using
Schäfli differential formula. Then we apply an integral formula to relate the volume of
the higher dimensional object (or the volume of the boundary of the higher dimension
set in our previous case) to the volume of the lower-dimensional object, obtaining the
volume inequality for the more general discrete motions.

The following are some corollaries following from Theorem 1 and its proof. The first
one is an immediate set theoretic consequence.

Corollary 1. If a finite set of balls of radius π/2 in the unit sphere Sn is rearranged
so that the distance between each pair of centers does not increase, then the (spherical)
volume of the union does not increase.

Corollary 2. Let p = (p1, . . . ,pN ) be N points on a hemisphere of S2 (resp., points
in E2) , and let q = (q1, . . . ,qN ) be a contraction of p in S2 (resp., in E2). Then the
perimeter of the convex hull of q is less than or equal to the perimeter of the convex
hull of p.

Proof. This theorem in S2 follows from taking the spherical polar of the convex hull of
the configurations p and q, which are the intersections of the hemispheres with centers
at the vertices of the corresponding configurations. In this case the area of the polar and
the perimeter of the convex hull sum up to 2π , and the result follows. Finally, the claim
in E2 follows easily from the spherical version via a standard limiting procedure.

The Euclidean part of Corollary 2 has been proved independently by Alexander [1],
Capoyleas and Pach [3], and Sudakov[11].

Recall that the extreme points of a compact convex set X are the points that do not
lie on the relative interior of a segment joining two other points of X . The following
is a result of a compactness argument applied to a sequence of points that are dense
in X .

Corollary 3. If there is a contraction of the extreme points of a compact convex set X
in an open hemisphere of Sn , then the polar of X has volume no larger than the volume
of the polar of the convex hull of the image of the extreme points.
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2. Leapfrog Lemmas

We repeat here one of our previous lemmas from [2], the Leapfrog Lemma.

Lemma 1. Suppose that p = (p1, . . . ,pN ) and q = (q1, . . . ,qN ) are two configura-
tions in En . Then the following is a continuous motion p(t) = (p1(t), . . . ,pN (t)) in E2n ,
that is analytic in t , such that p(0) = p, p(1) = q and for 0 ≤ t ≤ 1, |pi (t)− pj (t)| is
monotone:

pi (t) =
(

pi + qi

2
+ (cosπ t)

pi − qi

2
, (sinπ t)

pi − qi

2

)
, 1 ≤ i < j ≤ N . (1)

We need to apply this to a sphere, rather than Euclidean space. Here we consider the
unit spheres Sn ⊂ Sn+1 ⊂ Sn+2 · · · in such a way that each Sn is the set of points that
are a unit distance from the origin in En+1. So we need the following.

Corollary 4. Suppose that p = (p1, . . . ,pN ) and q = (q1, . . . ,qN ) are two config-
urations in Sn . Then there is a monotone analytic motion from p = (p1, . . . ,pN ) to
q = (q1, . . . ,qN ) in S2n+1.

Proof. Apply Lemma 1 to each configuration p = (p1, . . . ,pN ) and q = (q1, . . . ,qN )

with the origin as an additional configuration point for each. So for each t , the configu-
ration p(t) = (p1(t), . . . ,pN (t)) lies at a unit distance from the origin in E2n+2, which
is just S2n+1.

3. The Differentiable Case

We look at the case when there is a smooth motion of the configuration p(t) in Sn . More
precisely we consider the family X (t) = X (p(t)) of convex spherical n-polytopes in Sn

having the same combinatorial face structure with facet hyperplanes being differentiable
in the parameter t . The following classical theorem of Schläfli (see for example [8])
describes how the volume of X (t) changes as a function of its dihedral angles and the
volume of its (n − 2)-dimensional faces.

Theorem 2 (Schläfli). For each (n−2)-face Fi j (t) of the convex spherical n-polytope
X (t) in Sn , let αi j (t) represent the dihedral angle between the two facets Fi (t) and Fj (t)
meeting at Fi j (t). Then the following holds:

d

dt
Voln[X (t)] = 1

n − 1

∑
Fi j

dαi j (t)

dt
Voln−2[Fi j (t)], (2)

to be summed over all (n − 2)-faces.
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Corollary 5. If the configuration p(t) is a differentiable contraction in t , then with the
notation of Theorem 2,

d

dt
Voln[X (t)] ≥ 0.

Proof. As the distance between pi (t) and pj (t) is decreasing, the derivative of the
dihedral angle dαi j (t)/dt ≥ 0. The result then follows from (2).

4. Integral Formulas

The last piece of information that we need before we get to the main result is a way
of relating higher-dimensional volumes to lower-dimensional volumes. Let X be any
integrable set in Sn . Recall that we regard

X ⊂ Sn = Sn × {0} ⊂ En+1 × Ek+1.

Consider

{0} × Sk ⊂ En+1 × Ek+1.

Let X ∗Sk be the subset of Sn+k+1 consisting of the union of the geodesic arcs from each
point of X to each point of {0} × Sk . (So, in particular, Sn ∗ Sk = Sn+k+1.)

Theorem 3. For any integrable subset X of Sn ,

Voln+k+1[X ∗ Sk] = κn+k+1

κn
Voln[X ],

where κn = Voln[Sn], and κn+k+1 = Voln+k+1[Sn ∗ Sk] = Voln+k+1[Sn+k+1].

Proof. Since the ∗ operation (a kind of spherical join) is associative, we only need to
consider the case when k = 0. Regard {0} × S0 = {N , S}, the north pole and the south
pole of Sn+1. We use polar coordinates centered at N to calculate the (n+1)-dimensional
volume of X ∗ S0. Let X (z) = X ∗ S0 ∩ [En+1 × {z}], and let θ be the angle that a point
in Sn+1 makes with N , the north pole in Sn+1. So z = z(θ) = cos θ . Then the volume
element for Sn(z) is dVn(z) = (sinn θ) dVn(0) because Sn(z) is obtained from Sn(0) by
a dilation by sin θ . Then

Voln+1[X ∗ S0] =
∫

X∗S0
dVn(z) dθ

=
∫ π

0

∫
X (z(θ))

dVn(z) dθ

=
∫ π

0
(sinn θ)Voln[X ] dθ

= Voln[X ]
∫ π

0
(sinn θ) dθ

= Voln[X ]
κn+1

κn
.
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The last integral can be seen by taking X = S
n , or by performing the integral

explicitly.

5. Proof of Theorem 1

Let the configuration q = (q1, . . . ,qN ) be a contraction of the configuration p =
(p1, . . . ,pN ) in Sn . By Corollary 4, there is an analytic motion p(t), in S2n+1 for 0 ≤
t ≤ 1, where p(0) = p, and p(1) = q, and all the pairwise distances between the points
of p(t) vary monotonically in t .

Without loss of generality we may assume that Xn(p(0)) is a convex spherical n-po-
lytope in Sn . Since p(t) is analytic in t , the intersection of the hemispheres in S2n+1,
X2n+1(p(t)), is a convex spherical (2n + 1)-polytope with a constant combinatorial
structure, except for a finite number of points in the interval [0, 1]. By Corollary 5,
Vol2n+1[X2n+1(p(t))] is monotone increasing in t .

Recall that Xn(p) and Xn(q) are the intersections of the hemispheres centered at the
points of p and q in Sn . From the definition of the spherical join ∗,

Xn(p) ∗ Sn = X2n+1(p) = X2n+1(p(0)),

Xn(q) ∗ Sn = X2n+1(q) = X2n+1(p(1)).

Hence by Theorem 3,

Voln[Xn(p)] = κn

κ2n+1
Vol[X2n+1(p(0))] ≤ κn

κ2n+1
Vol[X2n+1(p(1))] = Voln[Xn(q)].

This finishes the proof of Theorem 1.

6. Comments

We present some possible generalizations of the above theorems.
Csikós [6] very recently gave a proof of the following theorem that extends Theorem

1 of our paper [2] to spherical as well as to hyperbolic space.

Theorem 4. Let p = (p1, . . . ,pN ) and q = (q1, . . . ,qN ) be two configurations in
n-dimensional space of constant curvature (i.e., in Euclidean, spherical or hyperbolic
n-space) such that q is a piecewise-analytic contraction of p in (n+2)-dimensional space
of constant curvature. If X (p) and X (q) denote the finite intersection (resp., union) of
balls whose configuration of centers are p and q with the property that the balls centered
at the corresponding points of p and q are congruent, then the n-dimensional volumes
Voln[X (p)],Voln[X (q)] satisfy the inequality

Voln[X (p)] ≤ Voln[X (q)]

(resp.,Voln[X (p)] ≥ Voln[X (q)]).

This theorem and our proof [2] of the Kneser–Poulsen conjecture in Euclidean plane
leads us to the following conjecture.
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Leapfrog Conjecture on S2. Suppose that p = (p1, . . . ,pN ) and q = (q1, . . . ,qN )

are two configurations in S2. Then there is a monotone piecewise-analytic motion from
p = (p1, . . . ,pN ) to q = (q1, . . . ,qN ) in S4.

Obviously, our Leapfrog Conjecture and the above-mentioned theorem imply the
Kneser–Poulsen conjecture for circles in S2.

Finally, we remark that Theorem 1 as well as Theorem 4 extend to flowers of balls
as well. The notion of flowers of balls has been introduced in [7] by Gordon and Meyer
(in set theoretic sense a flower of balls is a finite union of finite intersections of balls)
and the proper technology to treat them analogously to intersections (resp., unions) of
balls has been developed by Csikós in [5]. For more information on this see also our
paper [2].
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