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Abstract We extend linkage unfolding results from the well-studied case of polygo-
nal linkages to the more general case of linkages of polygons. More precisely, we con-
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sider chains of nonoverlapping rigid planar shapes (Jordan regions) that are hinged
together sequentially at rotatable joints. Our goal is to characterize the families of
planar shapes that admit locked chains, where some configurations cannot be reached
by continuous reconfiguration without self-intersection, and which families of pla-
nar shapes guarantee universal foldability, where every chain is guaranteed to have
a connected configuration space. Previously, only obtuse triangles were known to
admit locked shapes, and only line segments were known to guarantee universal fold-
ability. We show that a surprisingly general family of planar shapes, called slender
adornments, guarantees universal foldability: roughly, the distance from each edge
along the path along the boundary of the slender adornment to each hinge should be
monotone. In contrast, we show that isosceles triangles with any desired apex angle
<90° admit locked chains, which is precisely the threshold beyond which the slender
property no longer holds.

Keywords Adornments · Carpenter’s rule · Hinged dissections · Locked chains ·
Monotone motion · Polygonal chains · Rigidity · Slender adornments · Unfolding
chains

1 Introduction

In this paper, we explore the motion-planning problem of reconfiguring or fold-
ing a hinged collection of rigid objects from one state to another while avoiding
self-intersection. This general problem has been studied since the beginnings of the
motion-planning literature when Reif [23] proved that deciding reconfigurability of
a “tree” of polyhedra, amidst fixed polyhedral obstacles, is PSPACE-hard. This re-
sult has been strengthened in various directions over the years, although the cleanest
versions were obtained only very recently: deciding reconfigurability of a tree of line
segments in the plane, and deciding reconfigurability of a chain of line segments in
3D, are both PSPACE-complete [3]. This result is tight in the sense that deciding
reconfigurability of a chain of line segments in the plane is easy, in fact, trivial: the
answer is always yes [9].

These results illustrate a rather fine line in reconfiguration problems between com-
putationally difficult and computationally trivial. The goal of our work is to charac-
terize what families of planar shapes and hingings lead to the latter outcome, a uni-
versality result that reconfiguration is always possible. The only known example of
such a result, however, is the family of chains of line segments, and that problem was
unsolved for about 25 years [9]. (A chain is a sequence of line segments joined end-
to-end that are disjoint except for consecutive endpoints, where they are hinged. It is
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Fig. 1 Simple examples of
locked chains of triangles.
(a) A locked chain of three
triangles. (b) A locked chain of
equilateral triangles of different
sizes. The gaps should be tighter
than drawn

called an open chain when the first line segment is not joined to the last and closed
when it is joined to the last segment in a closed cycle.) Even small perturbations to
the problem, such as allowing a single point where three line segments join, leads to
locked examples where reconfiguration is impossible [8].

What about chains of shapes other than line segments? It is easy to see that a shape
tucked into a “pocket” of a nonconvex shape immediately makes trivial locked chains
with two pieces. Back in January 1998, the third author showed how to simulate this
behavior with convex shapes, indeed, just three triangles; see Fig. 1(a). This example
has circulated throughout the years to many researchers (including the authors of
this paper) who have asked about chains of 2D shapes. The only really unsatisfying
feature of the example is that some of the angles are very obtuse. But with a little
more work, one can find examples with acute angles, indeed, equilateral triangles,
albeit of different size; see Fig. 1(b). What could be better than equilateral triangles?

It is therefore reasonable to expect, as we did for many years, that there is no inter-
esting class of shapes, other than line segments, with a universality result—essentially
all other shapes admit locked chains. We show in this paper, however, that this guess
is wrong.

We introduce a family of shapes, called slender adornments, and prove that all
open chains, made up of arbitrarily many different shapes from this family, can be
universally reconfigured between any two states. Indeed, we show that these chains
have a natural canonical configuration, analogs of the straight configuration of an
open chain. Our result is based on the existence of “expansive motions,” proved in [9].
Our techniques build on the theory of unfolding chains of line segments, substan-
tially generalizing and extending the results from that theory. Indeed, the results in
this paper essentially piggy-back onto the results of [9] or any of the other results
and algorithms such as [24, 25] that provide a continuous expansive motion of the
base chain. Our results go far beyond what we thought was possible (until recently).
As part of the methods that we describe here, we also consider discrete expansive
motions of the base chain that do not necessarily come from a continuous expansive
motion. (A discrete expansion of a chain C is simply another corresponding chain C′
such that if x and y are two points in C, the distance between corresponding points
x′ and y′ is not smaller than the distance between x and y.) In that case if all the slen-
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Fig. 2 Examples of slender adornments. The base is drawn bold. The examples in the top row are sym-
metric. Any two of these examples can be glued together along a common base so that the union also
becomes a slender adornment

der adornments are symmetric under the reflection about the line of the base chain,
then any expansive discrete motion of the base chain will have the property that the
attached adornments will not overlap. It turns out that the continuous case, when the
adornments are not necessarily symmetric, follows from the discrete symmetric case.

The family of slender adornments has several equivalent definitions. The key idea
is to distinguish the two hinge points on the boundary of the shape connecting to
the adjacent shapes in the chain and view the shape as an adornment to the line
segment connecting those two hinges, called the base. This view is without loss of
generality but provides additional information relating the shapes and how they are
attached to neighbors, which turns out to be crucial to obtaining a universality result.
An adornment is slender if the distance from either endpoint of the base to a point
moving along one side of the adornment changes monotonically. If the boundary
curve, defining the adornment, is sufficiently smooth, it is slender if and only if every
inward normal of the shape hits the base. Equivalently, an adornment is slender if it
is the union, in each half-plane having the base as a boundary, of the intersection of
pairs of disks centered at the two endpoints of the base. For the first and last edge of
an open chain, there may be some freedom in defining the base.

Slender adornments are quite general. Figure 2 shows several examples of slender
adornments. These examples are themselves slender adornments, but also any pair
can be joined along their bases so that the union makes another slender adornment.
Our results imply that one can take any of these slender adornments, link the bases
together into an open chain in any way that the chain does not self-intersect, and the
resulting chain can be unfolded without self-intersection to a straight configuration,
and thus the chain can be folded without self-intersection into every configuration.

We also demonstrate the tightness of the family of slender adornments by giving
examples of locked chains of shapes that are not slender. Specifically, we show that,
for any desired angle θ < 90◦, there is a locked chain of isosceles triangles with
apex angle θ . This is precisely the family of isosceles-triangle adornments that are
not slender. Thus, for chains of triangles, obtuseness is really desirable, contrary to
our intuition from Fig. 1(a): the key is that the apex angle opposite the base (in the
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Fig. 3 Hinged dissection of
square to equilateral triangle,
described by Dudeney [17].
Different shades show different
folded states (overlapping
slightly)

adornment view) be nonacute, not any other angle. The proof that our examples are
locked uses the self-touching theory developed for trees of line segments in [8].

1.1 Motivation

Hinged collections of rigid objects have been studied previously in many contexts,
particularly robotics. One recent body of algorithmic work by Cheong et al. [14] con-
siders how chains of polygonal objects can be immobilized or grasped by a robot with
a limited number of actuators. Grasping is a natural first step toward robotic manip-
ulation, but the latter challenge requires a better understanding of reconfigurability.
This paper offers the first theoretical underpinnings for reconfiguration of chains of
rigid objects (other than line segments).

Another potential application is to continuous folding of hinged dissections.
Hinged dissections are chains or trees of polygons that can be reconfigured into two
or more self-touching configurations with desired silhouettes. For example, Fig. 3
shows a classic hinged dissection from 1902 of a square into an equilateral triangle
of the same area. Many general families of hinged dissections have been established
in the recent literature [5, 15, 16, 18, 19]. One problem not addressed in this litera-
ture, however, is whether the reconfigurations can actually be executed without self-
intersection, as in Fig. 3. Our results provide potential tools, previously lacking, for
addressing this problem. While hinged dissections have frequently been considered
in recreational contexts, they have recently found applications in nanomanufacturing
[22] and reconfigurable robotics [16].

1.2 Outline

This paper is organized as follows. Section 2 defines the model and slender adorn-
ments more precisely and proves several basic properties. Section 3 describes the
case where each adornment is symmetric about its base and is important for proving,
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in Sect. 4, that simple chains of slender adornments can always be unfolded so that
the base is convex or straight. In Sect. 5 we discuss the situation when the adorn-
ments are permitted to overlap. Section 6 describes our examples of locked chains of
isosceles triangles, including the necessary background from self-touching trees. The
conclusion (Sect. 7) includes several closing remarks.

The results of this paper have been reviewed and sketched in the survey [11,
Sect. 4], which cites this paper (in its full form) as the source of the results and
the proofs.

2 Slender Adornments

This section provides a formal statement of the objects we consider—adorned chains
consisting of slender adornments—and proves several basic results about them.

2.1 Adorned Chains

Our object of study is a chain of nonoverlapping rigid planar shapes (Jordan regions)
that are hinged together sequentially at rotatable joints. Another way to view such
a chain is to consider the underlying polygonal chain, the core, of line segments
connecting successive joints. (For an open chain, there is some freedom in choosing
the endpoints for the first and the last bar of the chain.) On the one hand, these line
segments can be viewed as bars that move rigidly with the shapes to which they
belong. On the other hand, the shapes can be viewed as “adornments” to the bars
of an underlying polygonal chain. This view leads to the concept of an “adorned
polygonal chain,” which we now proceed to define more precisely.

An adornment is a simply connected compact region in the plane, called the shape,
together with a line segment xy connecting two boundary points, called the base.
There are two boundary arcs from x to y that enclose the shape, called sides. We
require the base to be contained in the shape; i.e., the base must be a chord of the
shape.

We say that two distinct adornments overlap when some point of one adornment
lies in the interior of the other, and we insist that the relative interiors of the base
chains be disjoint. Thus, the bases of two shapes are not allowed to touch except
at common hinges of the polygonal chain. An adorned polygonal chain is a set of
nonoverlapping adornments whose bases form a polygonal chain. We permit the
shapes to touch on their boundary and to slide along each other.

For our main result, Theorem 3, where we assume that the motion of the base
is expansive, it is not necessary to assume that the base chain is simple. It can be
any finite embedded graph with straight edges whose relative interiors are pairwise
disjoint; a vertex may touch an edge. When the base chain is simple, the results of [9]
or [25] guarantee that there is such an expansive motion. On the other hand, although
an expansive motion of the base chain of a strictly simple closed polygon to a convex
configuration can be guaranteed, it may happen that two realizations are not in the
same configuration component, as shown in Fig. 10, and in the conclusion (Sect. 7)
there is a description of a case where there are infinitely many components in the
configuration space.
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Fig. 4 (a) A half-lens in
non-symmetric adornment.
(b) A symmetric lens with a
point z in the interior of the lens
and the adornment

The viewpoint of a chain of shapes as an adorned polygonal chain is useful for two
reasons. First, we can more easily talk about the kinds of shapes, and their relation to
the locations of the incident hinges, in a family of chains: this information is captured
by the adornments. Second, the underlying polygonal chain provides a mechanism
for folding the chain of shapes, as well as a natural unfolding goal: straighten the
underlying open chain or convexify the underlying closed chain. Indeed, we show
that, in some cases, unfolding motions of the polygonal chain induce valid unfolding
motions of the chain of shapes.

2.2 Slender Adornments

An adornment is defined to be slender if, for a point moving on either side of the
shape, the distance to each endpoint of the base changes monotonically (possibly not
strictly monotonically). An adornment is called symmetric if it is symmetric about
the line through the base. An adornment is called one-sided if it lies in just one of the
closed half-planes whose boundary contains the base. Clearly, a general adornment is
the union of two one-sided adornments, and a one-sided adornment is the intersection
of a symmetric adornment with a closed half-plane whose boundary contains the
base. For a base segment [x, y] and a point z in the plane, where ‖z − x‖ ≤ ‖y − x‖
and ‖z − y‖ ≤ ‖x − y‖, let L(z) be the intersection of the two disks with z on its
boundary, centered at x and at y. We call L(z) the lens determined by z associated
to the base [x, y]. A half-lens, denoted as L̂(z), is the intersection of L(z) and the
closed half-plane through the base containing z. See Fig. 4 for a picture of a half-lens
and lens. The following are some simple, but useful, properties of lenses.

Proposition 1 For any point z in a (symmetric) slender adornment A, L̂(z) ⊂ A

(L(z) ⊂ A).

Proof Let z be a point on the defining boundary of A. Since the distance to x along
the boundary is monotone, no point along the path from z to y intersects the interior
of the circle centered at x through z. Similarly, no point along the path from z to
x intersects the interior of the circle centered at y through z. Thus, the intersection
of the circular disks centered at x and y, with z on their boundary, and the closed
half-plane containing z, L̂(z) is contained in the adornment. In the symmetric case,
the intersection of the circular disks with z on their boundary L(z) is contained in A.
See Fig. 4. �

Proposition 2 For any point z in the interior of a (symmetric) slender adornment A,
there is a half-lens L̂(z′) ⊂ A (lens L(z′) ⊂ A) that has z in its interior.
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Proof The half-lens (lens) through z is contained in A by Proposition 1. Since z is in
the interior of A, there is another point z′ in A on the line perpendicular to the base
segment slightly further away from the base. Then z is in the interior of the half-lens
(lens) defined by z′. �

Proposition 3 A symmetric adornment A of a base [x, y] is slender if and only if it
is the union of the intersection of pairs of disks centered at x and y.

Proof Assume that A is a slender adornment. By Proposition 1, the union of the
lenses L(z) for z on the boundary of A is contained in A.

To show the reverse containment, any point z in the interior of A lies on a circle
centered at x, and this circle must intersect the boundary of A in (at least) one point z′.
Then z is in L(z′). Thus, the union of the lenses L(z′) for z′ on the boundary of the
slender adornment contains A.

For the converse implication, assume that we have a symmetric adornment A

which is formed as the union of lenses, as stated in the proposition. We first show
that for two points z and z′ on the boundary of A, we cannot have ‖z− x‖ < ‖z′ − x‖
and ‖z − y‖ < ‖z′ − y‖. If this were the case, some lens on whose boundary z′ lies
would contain z in its interior, a contradiction. Since we can exchange the roles of z

and z′, we conclude

‖z − x‖ < ‖z′ − x‖ =⇒ ‖z − y‖ ≥ ‖z′ − y‖, and

‖z − x‖ > ‖z′ − x‖ =⇒ ‖z − y‖ ≤ ‖z′ − y‖. (1)

Now, if we order the points z on one boundary chain from x to y by the quantity
‖z − x‖ − ‖z − y‖, we conclude that the distance ‖z − x‖ cannot decrease and the
distance ‖z−y‖ cannot increase; otherwise we would derive a contradiction to (1). �

Proposition 4 Finite unions and arbitrary intersections of slender adornments are
slender adornments.

Proof This follows from Proposition 3 in the symmetric case, and the nonsymmet-
ric case follows from the symmetric case by intersecting with the closed half-plane
containing the line segment. �

Proposition 5 Every slender adornment is contained in the symmetric lens deter-
mined by either of the points equidistant from the endpoints of the base as in Fig. 5.

Proof Any slender adornment must be contained in the disk through the other end of
the base, and thus it is in the intersection of those two disks. �

2.3 Alternate Definitions of Slender Adornments

In the preliminary conference version of this paper [7], we used a more restricted
definition of slenderness: suppose that the boundary of an adornment consists of two
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Fig. 5 The largest slender
adornment with a given base is a
lens L(z), where
‖z − x‖ = ‖z − y‖ = ‖y − x‖

Fig. 6 The normal property for
slender shapes

differentiable curves between the base points. Then the condition of being slender
is equivalent to requiring that every inward normal of the shape intersects the base
before exiting the shape, as illustrated in Fig. 6. This property ensures that slender
adornments will not get closer together during an expansive motion of the base. Our
current slenderness definition by the monotone distance property is more general,
easier to handle, and it does not raise questions of differentiability.

2.4 Kirszbraun’s Theorem

In what follows it is very handy to have the following theorem of Kirszbraun [21].

Theorem 1 Suppose a finite set of closed circular disks in Euclidean space is re-
arranged so that no pair of centers gets strictly closer together. If the original set has
an empty intersection, so does the rearranged set.

There is a discussion and proof of this in [4] as well as references to other proofs.
We only need this result for four disks in the Euclidean plane.

3 Expanded Slender Symmetric Adornments Never Overlap

We first prove the following for the case of symmetric slender adornments. Note
that the following result is for discrete expansions of the base chain. Recall that two
adornments overlap if a point in one adornment lies in the interior of the other. This
allows their boundaries to touch, but not to penetrate each other. Note that the bases
of a chain do not cross as well, by the expansive property of a discrete motion. We do
not need the continuous expansive property for this result.
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Fig. 7 This is the situation when two adornments overlap. The four circles that used in the application of
Kirszbraun’s Theorem are indicated. Note that, in this figure, the motion from X to Y is not an expansion,
since that would contradict Theorem 2

Theorem 2 Consider two configurations X and Y of corresponding chains with sym-
metric slender adornments such that the base chain of Y is an expansion of the base
chain of X. We assume that the adornments attached to the base chain of X do not
overlap. Then, when the corresponding adornments are attached to the base chain
of Y , they also do not overlap.

Proof Suppose AX and BX are two slender adornments attached to different links of
the base chain of X, and AX and BX do not overlap. Let AY and BY be the corre-
sponding adornments for Y . Suppose that z is a point in the intersection AY ∩ BY ,
where z is in the interior of, say, AY . We wish to find a contradiction.

Let zA and zB be the corresponding distinct points in AX and BX , respectively,
that map to z under the expanding map of their bases. Thus, the lenses LA(zA) and
LB(zB) for AX and BX have disjoint interiors, since the adornments do not overlap.
Since z is in the interior of AY , we can assume that LA(zA) can be chosen so that
the closed lenses LA(zA) and LB(zB) are disjoint also. Thus the four circular disks
that correspond to the circular disks that define LA(zA) and LB(zB) have an empty
intersection. By Kirszbraun’s Theorem 1 and the expansion property of the endpoints
of the bases of AX and BX , which are the centers of the four circular disks, the inter-
section of the corresponding lenses for AY and BY must also be empty, contradicting
the assumption that AY and BY overlap. See Fig. 7. �

For discrete expansions, it is not possible to deal with nonsymmetric adornments.
Figure 8 shows an example of two chains with corresponding slender adornments,
one an expansion of the other. One starts with no overlap, and the other has such an
overlap.

4 Slender Adornments Cannot Lock

We now consider the general case, assuming a continuous expansive motion.
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Fig. 8 This shows two chains, with slender but not symmetric adornments, where one is an expansion of
the other, while there is an overlap in the expanded configuration, but not the original

Fig. 9 This presents the cases when one adornment with its base might start to overlap with the other. The
dashed lines indicate where one or both of the lens of the adornment can be extended so that it does not
intersect the relevant part of the other. The thick lines indicate the part of the adornment that is not to be
penetrated by the other lens or base. The thin lines indicate where some of the rest of the adornment might
lie, containing the point zA , say, in the proof

Theorem 3 Suppose there is a continuous expansive motion of the base chain with
slender non-overlapping, not necessarily symmetric, adornments attached. Then the
adornments never overlap during the motion.

Proof Because of the expansive property, two segments of the base chain can only
intersect at common endpoints of adjacent segments. Thus, suppose that zA, in the
interior of adornment A, intersects zB in adornment B at some time t1 during the
motion. We look for a contradiction. By Proposition 2, there is a closed half-lens LA

for A that contains zA in its interior, and there is a first time t0 < t1 when LA intersects
another half-lens LB for B that contains zB . Necessarily, that intersection must be on
the common boundary of LA and LB . (Note that LB could be a single point on a base
segment.) Then there are three cases that can occur. In each case, we will show that
when the motion is continued from t0 to t1, zA and zB cannot intersect.

Case 1: The bases of A and B intersect in the interior of at least one of the bases.
This cannot happen because the bases are initially disjoint and the motion is
expansive. See Fig. 9(a).

Case 2: The base of A or B intersects the half-lens of the other. The half lens can be
extended to a full symmetric lens without overlapping the base of the other.
Applying Theorem 2, we see that zA and zB cannot intersect upon further
expansion. See Fig. 9(b).

Case 3: The half lenses of A and B intersect. In this case both half lenses can
be extended to nonoverlapping symmetric lenses. Again we apply Theo-
rem 2 to see that zA and zB cannot intersect upon further expansion. See
Fig. 9(c). �

Corollary 4 A strictly simple polygonal chain with slender adornments attached can
always be straightened or convexified by a continuous motion.

Proof By [9], there is a continuous expansive motion of the base chain, where the
final configuration is convex in the case of a closed chain and straight in the case



450 Discrete Comput Geom (2010) 44: 439–462

Fig. 10 Two configurations (a) and (c) of a quadrilateral with two slender adornments attached. It is
not possible to continuously move from one to the other without colliding. Part (b) shows how the two
adornments collide as the quadrilateral is deformed from (a) to (c)

Fig. 11 The base chain of
part (a) expands to part (b). But
the dark points on the
corresponding slender
adornments get closer together

of an open chain. Then Theorem 3 implies that they can be carried along without
overlap. �

Corollary 5 A strictly simple open polygonal chain with slender adornments can be
continuously reconfigured between any two states.

Proof By Corollary 4, both chains can be continuously expansively reconfigured so
that the base chains are straight. Thus, one state can be expanded to have a straight
base configuration and then contracted to the other configuration by running its ex-
pansion backwards. �

It is interesting to note that the conclusion of Corollary 5 does not hold for closed
chains, even though any two convex chains with no adornments can be continuously
reconfigured from one to the other. Figure 10 shows an example where the configu-
ration space has two components, where the base chain is a quadrilateral, and where
each adornment is a triangle attached to its base.

Indeed, in the conclusion (Sect. 7) it is shown how to create a quadrilateral with
two slender adornments such that the configuration space has infinitely many com-
ponents.

It is also interesting to note that when the base chain is expanded, it often happens
that the motion on the adorned configuration is not expansive. Figure 11 shows an
example.

5 Generalizations: Overlapping Adornments and Generalized Slender
Symmetric Adornments

In the discussion so far, we have assumed, when the adornments are attached to their
chains, that they do not overlap. What happens when the slender adornments do over-
lap? It turns out that we can apply some of the results of [6] related to problems con-
cerning areas of unions and intersections of circular disks in the plane to the case
where the adornments are all symmetric.
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Fig. 12 Three intervals with
overlapping symmetric slender
adornments

Fig. 13 An example of two
chains with non-symmetric
slender adornments, where the
expanded chain with
adornments has smaller area

Proposition 3 shows that any symmetric adornment is the infinite union of sym-
metric lenses L(z) for all z on the boundary of the adornment. To apply the theory
of [6] it is more convenient that there only be a finite number of sets involved in the
union of lenses. But it is easy to see that each adornment can be approximated by a
finite union of lenses.

We first define a flower as a set in the plane that can be described in terms of finite
unions and intersections of circular disks, where each disk appears once and only
once in the Boolean expression that describes the set. For the special case at hand, we
need only be concerned with flowers F of the following sort:

F = (B1 ∩ B2) ∪ (B3 ∩ B4) ∪ (B5 ∩ B6) ∪ · · · ∪ (BN−1 ∩ BN), (2)

where each Bi, i = 1, . . . ,N , is a circular disk in the plane. Flowers were defined
by [20], and a special case of Corollary 8 in [6] shows the following. Let B(x, r)

denote the disk in the plane of radius r centered at x.

Lemma 6 Let B(pi, ri) and B(qi, ri), i = 1, . . . ,N , be two sets of planar disks,
where ‖pi − pi+1‖ ≥ ‖qi − qi+1‖ for i odd, and ‖pi − pi+1‖ ≤ ‖qi − qj‖ for all
other pairs i < j . Then the area of the flower F in (2) defined for the configuration of
pi is less than or equal to the area of the flower F defined for the configuration of qi .

The crucial observation is that the union of the slender adornments can be approx-
imated by flowers. Each lens is the intersection of two disks, one of the terms in (2),
and Proposition 3 implies the following.

Theorem 7 Suppose that one chain is a discrete expansion of the other and that
slender symmetric adornments are attached to each chain. Then the area of the union
of the adornments does not decrease.

Figure 12 shows an example of overlapping symmetric adornments. Figure 13
shows an example of a chain with nonsymmetric adornments that expands to another
chain and the area of the slender adornments with an expanded core decreases.
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Fig. 14 A locked chain of nine
equilateral triangles. (a) Drawn
loosely. Separations should be
smaller than they appear.
(b) Drawn tightly, with no
separation, as a self-touching
configuration

Another possible generalization is to attach the analog of slender adornments to
simplicial complexes in higher dimensions. For example, a set A in three-space would
be called slender with respect to a triangle base B if for any plane P perpendicular to
the plane of A, P ∩A is slender with respect to B ∩A. Then the analog of Theorem 3
should hold using the notion of symmetric slender adornments. Even the analog of
Theorem 7 for the volumes of symmetric slender adornments would still hold, but
it could only be asserted for continuous expansions of the base chain. The higher-
dimensional version of Corollary 8 in [6], on which Lemma 6 is based, is not known
for discrete expansions. However, in [13], there is a continuous version that will suf-
fice. In higher dimensions, the idea is to assume simply that the base chain, to which
the adornments are attached, is expanded.

6 Locked Chains of Sharp Triangles

An isosceles triangle with an apex angle of ≥ 90◦ and with the nonequal side as
the base is a slender adornment. By Corollary 4, any chain of such triangles can be
straightened. In this section we show that this result is tight: for any isosceles triangle
with an apex angle of <90◦ and with the nonequal side as a base, there is a chain of
these triangles that cannot be straightened.

Figure 14(a) shows the construction for equilateral triangles (of slightly different
sizes). This figure is drawn with the pieces loosely separated, but the actual construc-
tion has arbitrarily small separations and arbitrarily closely approximates the self-
touching geometry shown in Fig. 14(b). Stretching the triangles in this self-touching
geometry, as shown in Fig. 15, defines our construction for any isosceles triangles
with an opposite angle of any value less than 90◦. In this case, however, our construc-
tion uses two different scalings of the same triangle.
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Fig. 15 Variations on the
self-touching configuration from
Fig. 14(b) to have any desired
angle <90° opposite the base of
each triangle

6.1 Theory of Self-touching Configurations

This view of the construction as a slightly separated version of a self-touching config-
uration allows us to apply the program developed in [8] for proving a configuration
locked. This theory allows us to study the rigidity of self-touching configurations,
which is easier because vertices cannot move even slightly, and obtain a strong form
of lockedness of non-self-touching perturbations drawn with sufficiently small (but
positive) separations.

To state this relation precisely, we need some terminology from [8]. Call a link-
age configuration rigid if it cannot move at all. Define a δ-perturbation of a linkage
configuration to be a repositioning of each vertex within distance δ of its original
position, without regard to preserving edge lengths (better than ±2δ), but consistent
with the combinatorial information of which vertices are on which side of which bar.
Call a linkage locked within ε if no motion that leaves some bar pinned to the plane
moves any point by more than ε. Call a self-touching linkage configuration strongly
locked if, for any desired ε > 0, there is a δ > 0 such that all δ-perturbations are
locked within ε. Thus, if a self-touching configuration is strongly locked, then the
smaller we draw the separations in a non-self-touching perturbation, the less the con-
figuration can move. In particular, if we choose ε small enough, the linkage must be
locked in the standard sense of having a disconnected configuration space locally.

Theorem 8 [8, Theorem 8.1] If a self-touching linkage configuration is rigid, then it
is strongly locked.

Therefore, if we can prove that the self-touching configuration in Fig. 14(b) (and
its variations in Fig. 15) are rigid, then sufficiently small perturbations along the lines
shown in Fig. 14(a) are rigid.

The theory of [8] also provides tools for proving rigidity of a self-touching config-
uration. Specifically, we can study infinitesimal motions, which just define the begin-
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Fig. 16 Two zero-length
connections between vertices u

and v

ning of a motion to the first order. Call a configuration infinitesimally rigid if it has
no infinitesimal motions.

Lemma 9 [8, Lemma 6.1] If a self-touching linkage configuration is infinitesimally
rigid, then it is rigid.

A final tool we need from [8] is for proving infinitesimal rigidity. For each vertex
u wedged into a convex angle between two bars {v,w1} and {v,w2}, we say that
there are two so-called zero-length connections between u and v, one perpendicular
to each of the two bars {v,wi}. Such a connection between a point u and a bar {v,w}
restricts u to one side of the line through v,w,1 see Fig. 16. These connections must
increase to the first order because u must not cross the two bars {v,wi}. In proving
infinitesimal rigidity, we can choose to discard any zero-length connections we wish,
because ignoring some of the noncrossing constraints only makes the configuration
more flexible. Together, the bars and the zero-length connections are the edges of the
configuration. Define a stress to be an assignment of real numbers (stresses) to edges
such that, for each vertex v, the vectors with directions defined by the edges incident
to v, and with magnitudes equal to the corresponding stresses, sum to the zero vector.
We denote the stress on a bar {v,w} by ωvw , and we denote the stress on a zero-length
connection between vertex u and vertex v perpendicular to {v,w} by ωu,vw .

Lemma 10 [8, Lemma 7.2] If a self-touching configuration has a stress that is neg-
ative on every zero-length connection and if the configuration is infinitesimally rigid
when every zero-length connection is treated as a bar pinning two vertices together,
then the self-touching configuration is infinitesimally rigid.

6.2 Locked Chains

We are now in the position to state the precise senses in which the chains of isosceles
triangles in Figs. 14 and 15 are locked:

1The definition of zero-length connections in [8] is more general, but this definition suffices for our pur-
poses. The term “zero-length connection” is perhaps unfortunate since it mistakenly suggests a constraint
on the distance between u and v to be zero. The zero-length connection is, however, allowed to slide freely
on the bar {v,w}.
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Fig. 17 Rule 1 for simplifying
self-touching configurations

Theorem 11 The self-touching chains of nine isosceles triangles shown in Figs. 14(b)
and 15 are rigid provided that the apex angle is <90◦.

Applying Theorem 8, we obtain the desired result:

Corollary 12 The self-touching chains of nine isosceles triangles shown in
Figs. 14(b) and 15 are strongly locked, provided that the apex angle is <90◦. There-
fore, any sufficiently small non-self-touching perturbation, similar to the one shown
in Fig. 14(a), is locked.

Sections 6.3–6.4 prove Theorem 11.

6.3 Simplifying Rules

We introduce two obvious rules that significantly restrict the allowable motions of the
self-touching configuration of isosceles triangles.

Rule 1 If a bar b is collocated with another bar b′ of equal length, and the bars
incident to b′ form angles less than 90◦ on the same side as b, then any motion must
keep b collocated with b′ for some positive time. See Fig. 17.

Proof The noncrossing constraints at the endpoints of b and b′ prevent b from mov-
ing relative to b′ until the angles at the endpoints of b′ open to ≥ 90◦, which can only
happen after a positive amount of time.

More formally, suppose without generality of loss that the endpoints of b and b′
are initially (−1,0) and (1,0) with b below b′ as in Fig. 17. Let α,β < 90◦ denote
the angles at the endpoints of b′. We attach the coordinate system to b′ and denote by
(−1 + x, y) and (1 + u,v) the (moving) endpoints of b. Then we have

y ≤ 0, v ≤ 0, y ≥ −x tanα, v ≥ u tanβ, (3)

and
(
(x − 1) − (1 + u)

)2 + (y − v)2 = 4. (4)

From (3) we conclude that x ≥ 0, u ≤ 0, and hence x − u ≥ 0, and furthermore

0 ≤ −y − v ≤ d(x − u) (5)
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Fig. 18 Applying Rule 1 to the
chain of nine equilateral
triangles from Fig. 14

Fig. 19 Rule 2 for simplifying
self-touching configurations

with d = max{tanα, tanβ} ≥ 0. From (4) we obtain

(x − u)2 − 4(x − u) = −(y − v)2 ≥ −(y − v)2 − 4yv = −(−y − v)2

≥ −d2(x − u)2. (6)

The last inequality is based on (5). Now if x − u �= 0, we can divide by x − u, know-
ing from (5) that x − u > 0, and obtain x − u ≥ 4/(1 + d2). Since x and u have
to move continuously from their starting values x = u = 0, this is impossible. We
conclude that x − u = 0, and hence x = u = 0. Substituting this into (6), we see
that −(−y − v)2 = 0 is sandwiched between two expressions which are 0. Therefore
−y − v = 0, and hence y = v = 0. �

We can apply this rule to the region shown in Fig. 18, resulting in a simpler linkage
with the same infinitesimal behavior. Although the figure shows positive separations
for visual clarity, we are in fact acting on the self-touching configuration of Fig. 14(b).

Rule 2 If a bar b is collocated with an incident bar b′ of the same length whose other
incident bar b′′ forms a convex angle with b′ surrounding b, then any motion must
keep b collocated with b′ for some positive time. See Fig. 19.

Proof The noncrossing constraints at the endpoint of b surrounded by the convex
angle formed by b′ and b′′ prevent b from moving relative to b′ until the convex
angle opens to ≥ 90◦, which can only happen after a positive amount of time. The
formal proof is similar (and simpler) as for Rule 1. �
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Fig. 20 Applying Rule 2 twice to the configuration from Fig. 18

Fig. 21 The simplified
configuration from Fig. 20

We can apply this rule twice, as shown in Fig. 20, to further simplify the linkage.
The final simplification comes from realizing that the central quadrangle gap be-

tween triangles is effectively a triangle because the right pair of edges are a rigid unit.
Thus the gap forms a rigid linkage (though it is not infinitesimally rigid, because a
horizontal movement of the central vertex would maintain distances to the first or-
der), so we can treat it as part of a large rigid block. Figure 21 shows a simplified
drawing of this self-touching configuration, which is rigid if and only if the original
self-touching configuration is rigid.

6.4 Stress Argument

Finally we argue that the simplified configuration of Fig. 21 is infinitesimally rigid
using Lemma 10. The configuration is clearly infinitesimally rigid if B is pinned
against B ′, C is pinned against C′, and D is pinned against D′. It remains to con-
struct a stress that is negative on all length-zero connections. The stress we construct
is nonzero only on the edges connecting points with labels in Fig. 21; we also set
ωAD = 0.
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We start by assigning the stresses incident to A. We choose ωAB < 0 arbitrarily
and set ωAB ′ := −ωAB > 0. A is now in equilibrium because these stress directions
are parallel.

We symmetrically assign ωBC := ωAB < 0 and ωB ′C′ = ωA′B ′ > 0. The resulting
forces on B and B ′ are vertical. They can be balanced by an appropriate choice of
the stresses ωB,B ′A = ωB,B ′C′ < 0, which, taken together, also point in the vertical
direction.

Vertex D′ has exactly three incident stresses—ωC′D′ , ωD′,DC , and ωD′,DE—
which do not lie in a halfplane. Thus there is an equilibrium assignment to these
stresses, unique up to scaling, and the stresses all have the same sign. Because zero-
length connections must be negative, we are forced to make all three of these stresses
negative. We also choose this scale factor to be substantially smaller than the stresses
that have been assigned so far.

By assigning ωCD = −ωC′D′ , we establish equilibrium at vertex D as well: the
forces at D are the same as at D′, only with reversed signs.

Vertex C feels two stresses assigned so far—ωCD > 0 and ωBC < 0. By the choice
of scale factors, the latter force dominates, leaving us with a negative force in the
direction close to CB , and two stresses ωC,C′B ′ and ωC,C′D′ which can be used to
balance this force. The three directions do not lie in a halfplane. Therefore ωC,C′B ′
and ωC,C′D′ can be assigned negative stresses.

Finally, vertex C′ is also in equilibrium because ωB ′C′ = −ωBC , ωC′D′ = −ωCD ,
and the stresses from the zero-length connections are the same as for C but in the
opposite direction.

In summary, we have shown the existence of a stress that is positive on all zero-
length connections. By Lemma 10, the self-touching configuration is infinitesimally
rigid; so by Lemma 9, the configuration is rigid. By the simplification arguments
above, the original self-touching configuration is also rigid. By Theorem 8, the orig-
inal self-touching configuration is strongly locked, so sufficiently perturbations are
locked.

We remark that an argument similar to the one above, using an assignment of
stresses, can also be used for proving Rules 1 and 2, with an appropriate modification
of Lemma 10; however, the direct argument that we have given is simpler.

The argument relied on the isosceles triangles having an apex angle of <90◦ (but
no more) in order to guarantee that particular triples of stress directions are or are not
in a halfplane. It also relies on the symmetry of the configuration through a vertical
line (excluding the triangle in the upper right). Thus the argument generalizes to all
isosceles triangles sharper than 90◦.

6.5 Locked Equilateral Triangles

Figure 22 shows another, simpler example of a locked chain of equilateral triangles,
using just seven triangles instead of nine. However, this example cannot be stretched
into a locked chain of triangles with an arbitrary apex angle of <90◦, as in Fig. 15.

To prove that this example is locked, we first apply Rule 1 and then Rule 2, as
shown in Fig. 23. Unlike the previous example, the resulting simplified configuration
is not infinitesimally rigid (the middle vertex can move infinitesimally horizontally),
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Fig. 22 A locked chain of
seven equilateral triangles.
(a) Drawn loosely. Separations
should be smaller than they
appear. (b) Drawn tightly, with
no separation, as a self-touching
configuration

Fig. 23 Applying Rules 1 and 2 to the chain of seven equilateral triangles from Fig. 22

so we cannot use a stress argument. In this case, however, we can use a more direct
argument to prove rigidity of the simplified configuration (and thus of the original
self-touching configuration).

Let � denote the side length of the triangles in any of the self-touching configura-
tions. Consider the two dashed chains connecting vertices A and B in the simplified
configuration. The left chain of two bars forces the distance between A and B to be
at most 2�, with equality as in the original configuration only if the angle between
the two bars remains straight. The right chain of three bars can only open its angles,
because of the three triangles on the inside, so the right chain acts as a Cauchy arm.
The Cauchy–Steinitz Arm Lemma (see, e.g., [10] or [26]) proves that the endpoints of
such a chain can only get farther away from each other. Thus the distance between A

and B is at least 2�, with equality only if the angles in the right chain do not change.
These upper and lower bounds of 2� on the distance between A and B force the
bounds to hold with equality, which prevents any angles from changing except pos-
sibly for the angles at A and B . However, it is impossible to change fewer than four
angles of a closed chain such as the one formed by the left and right dashed chains.
(This simple fact was also proved by Cauchy [12].) Therefore, the configuration is
rigid.
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Fig. 24 Chains of squares that
appear to be locked: (a) an open
chain, and (b) a closed chain.
The squares are self-touching;
the drawing includes gaps only
for clarity of illustration

Applying Theorem 8, we obtain that the self-touching configuration is strongly
locked:

Theorem 13 The self-touching chain of seven equilateral triangles shown in
Fig. 22(b) is rigid and thus strongly locked. Therefore, any sufficiently small non-
self-touching perturbation, similar to the one shown in Fig. 22(a), is locked.

7 Conclusion

In the time since we first reported some of our results in the form of an extended
abstract [7], a number of further extensions have been explored. Abbott et al. [1] have
utilized our results in proving that hinged dissections exist. Abbott, Demaine, and
Gassend [2] provided a generalization for the restricted case of open chains of strictly
slender adornments: even when self-touching configurations are allowed, every chain
can be opened.

A variety of open questions and extensions remain to be studied. It may be inter-
esting to consider the algorithmic question of computing, for a given configuration of
an adorned chain (whose adornments are not slender), whether or not there exists a
motion that opens it.

Our results have application to hinged dissections of polyregulars, e.g., polyomi-
noes; this includes the (slender) case of squares connected at opposite corners. An
interesting question arising in this context is whether every hinged dissection can be
subdivided so that the pieces are slender.

We note that there are examples of open and closed chains of self-touching squares
(some of which are attached at adjacent corners) that we conjecture to be locked
(Fig. 24); while we have been unable so far to prove that they are, the methods we
employed for the locked chains of sharp triangles (Sect. 6) may be applicable.

One difficulty of exploring the space of adorned chains is highlighted by the fol-
lowing construction. It consists of a closed chain, a convex parallelogram, with slen-
der adornments attached, where each adornment together with its base is convex,
such that the configuration space has infinitely many components. We attach a single
obtuse triangle as a slender adornment to the top base segment, as with Fig. 10. If the
bottom segment is fixed, the path of the bottom vertex in the upper adornment traces
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Fig. 25 Part (a) shows the
overall set-up of a parallelogram
with two convex slender
adornments attached such that
the configuration space has
infinitely many components.
Part (b) is an exaggerated
close-up of where the two
adornments are close

out a circle, which is shown as a dashed circular arc C in Fig. 25(a). The second slen-
der adornment is attached to the bottom segment and is the convex hull of infinitely
many points, each slightly above C. The points form an infinite sequence p1,p2, . . .

converging to a point on the right p∞, and they are chosen so that the straight line
interval from pi to pi+1 intersects the lower portion of C (the open circular disk de-
termined by C). An exaggerated picture of this construction is in Fig. 25(b). Thus,
the upper slender adornment intersects the lower adornment and misses it alternately
infinitely often.
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