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Abstract We describe a very simple condition that is necessary for the universal
rigidity of a complete bipartite framework (K (n,m),p,q). This condition is also
sufficient for universal rigidity under a variety of weak assumptions, such as general
position. Even without any of these assumptions, in complete generality, we extend
these ideas to obtain an efficient algorithm, based on a sequence of linear programs, that
determines whether an input framework of a complete bipartite graph is universally
rigid or not.

Keywords Rigidity · Prestress stability · Universal rigidity

1 Introduction and Definitions

1.1 Main Results

A bar and joint framework, denoted as (G,p), is a graphG together with a configuration
p = (p1, . . . ,pN ) of points in R

d . A bar and joint framework is universally rigid if
it is rigid in any Euclidean space that contains it. This is equivalent to the property
that the framework must be congruent to any other configuration of the vertices of the
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underlying graph, in any dimension, whenever the corresponding edge lengths are the
same.

In this paper, we provide a complete characterization of which realizations of a
complete bipartite graph, G = K (n,m), are universally rigid and which realizations
are not. As a necessary condition, we show (Theorem 2.2) that, except for K (1, 0)

(a single vertex) and K (1, 1), if the partitions can be strictly separated by a quadric
surface, then the framework is not universally rigid. Conversely, as a sufficient condi-
tion, we show (Corollary 4.6) that, if the vertices of the configuration are in general
(affine) position in R

d and there is no quadric surface strictly separating the partitions,
then the framework is universally rigid. Alternatively (Corollary 4.8) if there are at
least (d + 1)(d + 2)/2 + 1 vertices and no (d + 1)(d + 2)/2 of them lie in a quadric
surface and if the partitions cannot be strictly separated by a quadric surface, then the
framework is universally rigid.

Even without any of these general position assumptions, in complete generality,
we extend these ideas to obtain an efficient algorithm, based on a sequence of linear
programs, that determines whether an input framework of a complete bipartite graph
is universally rigid or not.

Surprisingly, our results are closely related to some older statements about extremal
correlation matrices due to Tsirelson, which arose in his study of quantum Bell-
type inequalities. In particular, our Theorem 2.2 is related to Tsirelson’s [19, Thm.
2.21(c)], while our Corollary 4.8 is related to Tsirelson’s in [19, Thm. 2.22]. Proofs
for these statements were not provided in [19]. This connection was pointed out in
recent work [13] which also showed that one can indeed prove Tsirelson’s statements
using our results and techniques (which were posted in an earlier draft of the current
paper).

A closely related concept to universal rigidity is global rigidity in R
d , which is

similar except that the other configurations q, where corresponding edge lengths are
the same, are restricted to be in R

d . Clearly, if (G,p) is universally rigid, then it is
automatically globally rigid in R

d . But in most results, for a framework to be globally
rigid, it is assumed that the configuration p is generic, which means that there is no
non-zero integral polynomial relation among the coordinates of p, and it may be very
hard to verify that some specific framework is acting generically. So, when possible,
the stronger condition of universal rigidity can be a useful condition that is sufficient
to show that particular configuration is globally rigid in R

d .

1.2 Definitions

The basic tool we use in this paper is a stress ω = (. . . , ωi j , . . . ), which is an assign-
ment of a real scalar ωi j = ω j i to each edge, {i, j} ∈ E(G). We assume ωi j = 0,
when {i, j} /∈ E(G). We say that a stress ω is an equilibrium stress for (G,p) if the
vector equation ∑

i

ωi j (pi − p j ) = 0 (1.1)

holds for all vertices j of G. We associate an N -by-N stress matrix � to a stress ω,
for N , the total number of vertices, by saying that i, j entry of � is −ωi j , for i �= j ,
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and the diagonal entries of � are such that the row and column sums of � are zero.
If the dimension of the affine span of the vertices p is d, then the rank of an equilibrium
stress matrix � is at most N − d − 1, but it could be less.

We say that v = {v1, . . . , vm}, a finite collection of non-zero vectors in R
d , lie on

a conic at infinity of Rd if, when regarded as points in real projective (d − 1) space
RP

d−1, they lie on a conic. This means that there is a non-zero d-by-d symmetric
matrix Q such that for all i = 1, . . . ,m, vti Qvi = 0, where ( )t is the transpose
operation.

1.3 Basic Results

Definition 1.1 A framework (G,p) in R
d is said to be universally rigid if any other

corresponding framework with the same edge lengths in R
D , for any D, is congruent

to (G,p).

The following fundamental theorem [6] is a basic tool used to establish universal
rigidity.

Theorem 1.2 Let (G,p) be a framework whose affine span of p is all of Rd , with an
equilibrium stress ω and stress matrix �. Suppose further

(i) � is positive semi-definite (PSD).
(ii) The rank of � is N − d − 1.

(iii) The edge directions of (G,p) do not lie on a conic at infinity of Rd .

Then (G,p) is universally rigid.

There are several examples of the universally rigid frameworks in [8], where con-
ditions (i) and (ii) of Theorem 1.2 do not hold, and yet they are still universally rigid.

Definition 1.3 When conditions (i), (ii), (iii) hold for a framework (G,p) with affine
span R

d , we say it is super stable.

Remark 1.4 If a framework (G,p) in R
d happens to have an affine span of some

smaller dimension d ′, then the framework can be rigidly placed inRd ′
and Theorem 1.2

can be applied if appropriate. In this case, we also say that (G,p) is super stable.

When the sign of the stressωi, j is positive (respectively negative), then the constraint
on the lengths of the edges of the possible alternative configurationsq can be weakened
to be not longer (respectively not shorter), and the conclusion of Theorem 1.2 still
holds. Those edges with a positive stress are called cables and those with a negative
stress are called struts. When possible, in the following, we will designate cables with
dashed line segments and struts with heavy solid line segments. The default is that the
edge lengths are constrained to stay the same length.

Definition 1.5 A framework (G,p) in R
d with a d ′-dimensional span is said to be

dimensionally rigid if any other corresponding framework with the same edge lengths
in R

D , for any D, has affine span at most d ′.

For completeness, we note the following from [2]:
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Theorem 1.6 If (G,p) is a dimensionally rigid framework in R
d with N vertices

whose affine span is d-dimensional and condition (iii) of Theorem 1.2 holds, then
(G,p) is universally rigid.

The following result in [1] will be important in this paper. (See also [8] for another
point of view for the proof.)

Theorem 1.7 If (G,p) is a dimensionally rigid or universally rigid framework in Rd

with N vertices whose affine span is d ′-dimensional, d ′ ≤ N−2, then it has a non-zero
equilibrium stress with a positive semi-definite (PSD) stress matrix� (with rank≥ 1).

So, in particular, if (G,p) has no non-zero PSD equilibrium stress matrix, and the
dimension of the affine span of p is ≤ N − 2, then it is not universally rigid.

2 Bipartite Frameworks and Quadrics

Let K (n,m) be the complete bipartite graph on n and m vertices, and let
p = (p1, . . . ,pn) and q = (q1, . . . ,qm) be two configurations of points in R

d .
Then we denote by (K (n,m),p,q) the associated complete bipartite framework.

Recall that a quadric surface in R
d , is the solution to a non-zero quadratic function

in the coordinates of Rd . For the line R, a quadric surface is two points. For the plane
R

2, a quadric surface is a conic, which includes the possibility of two straight lines as
well as ellipses and a hyperbola. (We do not need to consider quadrics that consist of
just one hyperplane inRd .) By adjoining the projective spaceRPd−1, we can complete
R
d to real projective spaceRPd , and a quadric will separateRPd into two components.

For any vector x ∈ R
d , define x̂ ∈ R

d+1 by adding a 1 as the last coordinate. A quadric
can be written in the form {x ∈ R

d | x̂t Ax̂ = 0}, where A is a (d + 1)-by-(d + 1)

symmetric matrix, x̂ is a column vector, and x̂t is its transpose. So the two components
determined by the matrix A are given by x̂t Ax̂ < 0 and 0 < x̂t Ax̂.

Definition 2.1 If p = (p1, . . . ,pn) and q = (q1, . . . ,qm) are two configurations of
points in R

d , we say that they are strictly separated by a quadric, given by a matrix
A, if for each i = 1, . . . , n and j = 1, . . . ,m,

q̂tj Aq̂ j < 0 < p̂ti Ap̂i . (2.1)

A stress matrix for a complete bipartite framework (K (n,m),p,q), has the follow-
ing form, where λ1, . . . , λn and μ1, . . . , μm are the diagonal entries, whereas all the
non-diagonal entries in the upper left and lower right blocks are zero

� =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 −ω11 · · · −ω1m

0
. . . 0

...
. . .

...

0 0 λn −ωn1 · · · −ωnm

−ω11 · · · −ωn1 μ1 0 0
...

. . .
... 0

. . . 0
−ω1m . . . −ωnm 0 0 μm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2)
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So the diagonal entries are such that
∑m

j=1 ωi j = λi , and
∑n

i=1 ωi j = μ j , from the
definition of �.

Our first main result is the following necessary condition for the universal rigidity
of a complete bipartite framework.

Theorem 2.2 If (K (n,m), (p,q)) is a complete bipartite framework in R
d , with an

affine span of dimension≤ m+n−2, such that the partition vertices (p,q) are strictly
separated by a quadric, then it is not universally rigid.

Proof Let A be the (d + 1)-by-(d + 1) symmetric matrix for the separating quadric
as above, and let ω be any equilibrium stress for (K (n,m), (p,q)) with stress matrix
�. For any vertex q j in one partition, the equilibrium condition of Eq. (1.1) can be
written, for each j = 1, . . . ,m as

n∑

i=1

ωi j (p̂i − q̂ j ) = 0,

or equivalently

n∑

i=1

ωi j p̂i =
( n∑

i=1

ωi j

)
q̂ j = μ j q̂ j .

Then taking the transpose of this equation, and multiplying on the right by Aq j , we
get

n∑

i=1

ωi j p̂ti Aq̂ j = μ j q̂tj Aq̂ j .

Similarly, for pi in the other partition,

m∑

j=1

ωi j q̂tj Ap̂i = λi p̂ti Ap̂i .

Since the matrix A is symmetric,

m∑

j=1

μ j q̂tj Aq̂ j =
∑

i j

ωi j p̂ti Aq̂ j =
∑

i j

ωi j q̂tj Ap̂i =
n∑

i=1

λi p̂ti Ap̂i . (2.3)

By Theorem 1.7, if (K (n,m), (p,q)) were universally rigid, then there would be an
equilibrium stress with a stress matrix � that would be PSD and non-zero. Then
μ j ≥ 0 for all j = 1, . . . ,m, λi ≥ 0 for all i = 1, . . . , n, and we would have at least
one positive diagonal term. But then Eq. (2.3) would contradict the assumed quadric
separation condition of Eq. (2.1). ��
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This result is a generalization of, and inspired by, the main result in [15], which is
the result here for the line d = 1. We will see that the quadric separation condition
is also the critical sufficient condition for complete bipartite graphs to be universally
rigid, including in higher dimensions, but we need to use a technique that allows us
to find PSD matrices with a given kernel and appropriate rank, which we describe in
later sections.

3 The Veronese Map

Vectors in R
d will be regarded as column vectors, and in general, for any vector or

matrix X , we will denote by X̂ the same object with a row of 1’s added on the bottom.
We denote Xt as the transpose of a matrix or vector X .

If two configurations p = (p1, . . . ,pn) and q = (q1, . . . ,qm) in R
d cannot be

separated by a quadric, i.e. when the condition of Eq. (2.1) cannot be made to hold
for any A, we show here how find a certificate of this non-separability, that can help
us to establish universal rigidity.

Definition 3.1 We defineMd to be the (d+1)(d+2)/2-dimensional space of (d+1)-
by-(d + 1) symmetric matrices, which we call the matrix space.

Definition 3.2 We define the map V : Rd → Md by V(v) = v̂v̂t , which is a (d + 1)-
by-(d + 1) symmetric matrix, with a lower right-hand coordinate of 1.

So V(Rd) is a d-dimensional set embedded in a ((d + 1)(d + 2)/2 − 1)-dimensional
affine subspace of Md . The function V is called the Veronese map. See [16, p. 244],
for very similar properties that are used here.

Proposition 3.3 In R
d the vertices of the configurations p and q can be strictly sep-

arated by a quadric A as in Sect. 2, if and only if the matrix configurations V(p) and
V(q) can be strictly separated by the the hyperplane given by A in Md .

Proof The configurations p and q are separated by the quadric given by the matrix A
when

〈A,V(q j )〉 = tr(Aq̂ j q̂tj ) = q̂tj Aq̂ j < 0 < p̂ti Ap̂i = tr(Ap̂i p̂ti ) = 〈A,V(pi )〉,

where the inner product 〈∗, ∗〉 on symmetric matrices is given by the trace operator tr
as above. ��

When the configurations p and q cannot be separated by a quadric in R
d , then from

Proposition 3.3 the convex hull of V(p) must intersect the convex hull of V(q) in Md .
This means that there are non-negative coefficients, not all 0, denoted as λ1, . . . , λn
and μ1, . . . , μm , such that

n∑

i=1

λi p̂i p̂ti =
m∑

j=1

μ j q̂ j q̂tj . (3.1)
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Definition 3.4 The matrix P̂ whose columns are p̂1, . . . , p̂n is called the configuration
matrix of p.

In terms of matrices Eq. (3.1) is the same as saying:

P̂�P̂ t = Q̂M Q̂t , (3.2)

where � is the n-by-n diagonal matrix whose entries are λ1, . . . , λn , and M is the
m-by-m diagonal matrix whose entries are μ1, . . . , μm . This is the starting point for
constructing a PSD stress matrix in Sect. 4.

4 The Singular Value Decomposition

We first show that when each of the partition’s affine span is the full Rd , we will not
need to worry about condition (iii) of Theorem 1.2.

Lemma 4.1 Suppose that the configurations p and q in R
d each have affine span

equal to all of Rd , and the bipartite framework (K (n,m), (p,q)) has a stress with
stress matrix, �, satisfying (i) and (ii) of Theorem 1.2. Then (K (n,m), (p,q)) is
super stable and universally rigid. Likewise, if, instead of (i) and (ii) of Theorem 1.2,
(K (n,m), (p,q)) is just dimensionally rigid, then it is still universally rigid.

Proof We have only to check (iii) of Theorem 1.2, that the edge directions do not lie on
a conic at infinity of Rd . Suppose there is a non-zero symmetric d-by-d matrix Q such
that (p1 −q j )Q(p1 −q j )

t = 0 and (p2 −q j )Q(p2 −q j )
t = 0, for all j = 1, . . . ,m.

Expanding these terms and subtracting we get

p1Qpt1 − 2p1Qqtj − p2Qpt2 + 2p2Qqtj = 0, which gives us

p1Qpt1 − p2Qpt2 = 2(p1 − p2)
t Qqtj ,

which is a non-trivial affine linear constraint on the vertices of q, unless for all pi
and pk ,

(pi − pk)t Q = 0.

The first case implies that the vertices of q lie in a proper affine subspace, while the
latter implies that the vertices of p lie in a proper affine subspace. ��

Alfakih and Ye in [3] show that if a configuration of a framework is in general
position and satisfies (i) and (ii) of Theorem 1.2, then it is universally rigid. Lemma
4.1 is more precise and general for complete bipartite graphs.

For any diagonal matrix X , with non-negative entries, denote X1/2 as another
diagonal matrix whose entries are the square roots of the entries of X .

Definition 4.2 For any a-by-b matrix X , a ≤ b, a singular value decomposition
(SVD) is a factoring X = USV t , where U is an a-by-a orthogonal matrix, V is a
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b-by-b orthogonal matrix, and S is the matrix of S = [D, 0], where D is an a-by-a
diagonal matrix of non-negative singular values. Such a decomposition always exists
(see e.g. [14]).

Our next step is to show that when Eq. (3.2) holds, P̂�1/2 and Q̂M1/2 must share
their singular values and their left singular structure.

Lemma 4.3 Suppose Eq. (3.2) holds where � and M are non-negative, diagonal
matrices as above. Then the SVD factors can be taken such that P̂�1/2 = USnV t

n ,
and Q̂M1/2 = USmV t

m, with a common matrix U and where SnStn = SmStm.

Proof By definition, the squared singular values and the left singular vectors of P̂�1/2

are the eigenvalues and eigenvectors of P̂�P̂ t . Likewise, the squared singular values
and the left singular vectors of Q̂M1/2 are the eigenvalues and eigenvectors of Q̂M Q̂t .

Since, by assumption, P̂�P̂ t = Q̂M Q̂t , these singular values and left singular
vectors agree. Thus we can pick a single shared (d + 1)-by-(d + 1) matrix U , along
with with appropriately sized diagonal matrices Sn and Sm , and appropriate orthogonal
matrices Vn and Vm , such that we obtain the singular value decompositions:

P̂�1/2 = USnV
t
n and Q̂M1/2 = USmV

t
m

where SnStn = SmStm . In particular

Sn = D
[
I d+1, 0n−d−1] and Sm = D

[
I d+1, 0m−d−1]

for a single shared diagonal matrix D. ��
Our next result is our main sufficient condition for the universal rigidity of a com-

plete bipartite framework. The central idea is to use the conditions of Eq. (3.2) to
directly construct �, a PSD equilibrium stress matrix for (K (n,m),p,q) that has
rank n +m − d − 1. To do this we will use the SVD provided by Lemma 4.3 in order
to transform the matrix [P̂, Q̂] into a very specific and simple canonical form. It will
be easy to see that this canonical form is annihilated by a certain simple PSD matrix
� described below. We can then reverse this transformation, thus constructing a �

with the same signature as �.

Theorem 4.4 Let p and q be configurations (in any dimension), such that Eq. (3.1)
holds with strictly positive coefficients. Then the framework (K (n,m),p,q) is super
stable, and thus universally rigid. Additionally, the affine span of p is the same as the
affine span of q.

Proof Let d be the dimension of the combined span of (p,q). Without loss of gener-
ality, we can rigidly place (p,q) in R

d and continue.
By Lemma 4.3 we have the following (d + 1)-by-(n + m) matrix equality:

[
P̂�1/2, Q̂M1/2] = [

USnV
t
n ,USmV

t
m

]
,
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where U, Vn, Vm are orthogonal matrices, of the appropriate size,

Sn = D
[
I d+1, 0n−d−1], and Sm = D

[
I d+1, 0m−d−1],

where D is a (d + 1)-by-(d + 1) diagonal matrix, I d+1 is the (d + 1)-by-(d + 1)

identity matrix, 0n−d−1 is a (d + 1)-by-(n − d − 1) zero matrix and 0m−d−1 is a
(d + 1)-by-(m − d − 1) zero matrix. Then

[
P̂, Q̂

] = [
P̂�1/2, Q̂M1/2]

[
�−1/2 0

0 M−1/2

]
(4.1)

= UD
[
I d+1, 0n−d−1, I d+1, 0m−d−1]

[
V t
n 0

0 V t
m

] [
�−1/2 0

0 M−1/2

]
.

(The matrices �−1/2 and M−1/2 are well defined due to our assumption of strictly
positive coefficients.)

Define the following symmetric (n + m)-by-(n + m) matrix:

� =

⎡

⎢⎢⎣

I d+1 −I d+1

I n−d−1

−I d+1 I d+1

Im−d−1

⎤

⎥⎥⎦ , (4.2)

where the blank entries are zero matrices of the appropriate dimensions. It is easy to
check that

[
I d+1, 0n−d−1, I d+1, 0m−d−1]� = 0,

and that � is PSD of rank n + m − d − 1. Then we define a stress matrix

� =
[
�1/2 0

0 M1/2

] [
Vn 0
0 Vm

]
�

[
V t
n 0

0 V t
m

] [
�1/2 0

0 M1/2

]
. (4.3)

Clearly � has zero entries for all of the non edges of the complete bipartite graph.
Thus by unraveling Eqs. (4.1), (4.2), (4.3), and using the assumption that the diagonal
entries of � and M are all positive, we see that � is PSD of rank n +m − d − 1, and
[P̂, Q̂]� = 0. This is sufficient to obtain conditions (i) and (ii) of Theorem 1.2.

The equilibrium condition of Eq. (1.1) at each vertex, and the non-zero diagonal
entries in the stress matrix, imply that each pi is in the affine span of q, and similarly
each q j is in the affine span of p. So the affine span of p is the same as the affine span
of q, which by our assumptions must then be all of Rd . Lemma 4.1 then implies that
condition (iii) of Theorem 1.2 holds. ��

The next two corollaries describe partial converses to our Theorem 2.2, each requir-
ing some kind of general position for the configuration. Without any such assumptions,
the converse of Theorem 2.2 does not hold. In Sect. 8, we use our Theorem 4.4 as the
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basis of a complete algorithm for determining the universal and dimensional rigidity
of any complete bipartite framework.

Definition 4.5 A configuration p in R
d is in general position if every k + 1 of the

points of p span a k-dimensional affine subspace for k = 1, . . . , d.

Corollary 4.6 Let p and q be configurations inRd . Suppose there exists subsets of the
corresponding configurations p′ ⊂ p and q′ ⊂ q, such that that the points of (p′,q′)
are in general position in R

d , and such that there is no quadric strictly separating p′
and q′. Then (K (n,m),p,q) is universally rigid. Additionally the affine span of p and
the affine span of q must be all of Rd .

Proof Since there is no quadric strictly separating p′ and q′, the convex hulls V(p′)
andV(q′) must intersect in matrix space,Md , and Eq. (3.1) holds with strictly positive
coefficients λi , and μi for some subsets p′′ ⊂ p′ and q′′ ⊂ q′. By Theorem 4.4, that
subframework is super stable.

Also from Theorem 4.4 each vertex of p′′ must be in the affine span of the q′′, and so
due to general position assumption, the affine span of q′′ must then be d-dimensional.
Since each of the vertices of p has at least d + 1 neighbors in q′′, each p has a fixed
distance to all the vertices of q′′. The same argument applies to q. This trilateration
argument shows that all of (K (n,m),p,q) is universally rigid. ��

Note that it may be the case that, even assuming general position, the framework
is not super stable, because all the stress coefficients may vanish for some vertex. See
the example of Fig. 2 that shows this possibility, and other examples of universally
rigid frameworks.

Definition 4.7 We say that a configuration p in R
d is in quadric general position if

every k + 1 of the points of V(p) ⊂ Md span a k-dimensional affine subspace for
k = 1, . . . , (d+1)(d+2)/2−1. (The vertices of V(p) are automatically mapped into
a co-dimension one subspace of Md , where the last coordinate is one.) Essentially
this means that if there are at least (d + 1)(d + 2)/2 points, then no (d + 1)(d + 2)/2
of them lie on a quadric.

Corollary 4.8 Let p and q be configurations in R
d . Suppose there exist subsets of

the corresponding configurations p′ ⊂ p and q′ ⊂ q, such that that the points of
(p′,q′) are in quadric general position in R

d , and such that there is no quadric
strictly separating p′ and q′. Then (K (n,m),p,q) is super stable, and n + m ≥
(d + 1)(d + 2)/2 + 1. Additionally, the affine span of p is the same as the affine span
of q, which must be all of Rd .

Proof In matrix space Md , since the points V(p′) and V(q′) cannot be separated
by a hyperplane, Eq. (3.1) holds with non-negative coefficients, not all 0. But since
(V(p′),V(q′)) is in general position, then at least (d+1)(d+2)/2+1 of the coefficients
are positive, corresponding to subsets p′′ ⊂ p and q′′ ⊂ q.

This gives us n+m ≥ (d+1)(d+2)/2+1. Additionally, this lower bound together
with our quadric general position assumption, forces the combined span of (p′′,q′′)
to be all of Rd .
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By Theorem 4.4, the bipartite graph restricted to (p′′,q′′) is super stable. Addition-
ally the span of p′′ and the span of q′′ must be all of Rd .

Additionally, due to Eq. (3.1) and the quadric general position assumption, the affine
span of this (V(p′′),V(q′′)) in matrix space must be the full (d + 1)(d + 2)/2 − 1
dimensions. Thus, for any additional point, pi ∈ p, there is an affine relation non-zero
on V(pi ) and involving the V(p′′) and V(q′′). When that relation is added to both sides
of Eq. (3.1), choosing the coefficient of V(pi ) to be positive, and the whole relation
small enough, we enlarge the number of indices, where λi > 0, and μ j > 0, until all
the coefficients are positive, applying this argument to any q j ∈ q as well. Then again
Theorem 4.4 implies that all of (K (n,m),p,q) is super stable. ��
Remark 4.9 The smallest example of Corollary 4.8 in the line is K (2, 2). In the plane,
the smallest example is K (4, 3). InR3, the smallest examples are K (7, 4) and K (6, 5).
Section 5 shows some examples of these. For the first three examples, any equilibrium
stress matrix with positive diagonals will be PSD, which implies directly that they are
super stable. However, for K (6, 5) in R

3, there are always equilibrium stress matrices
with all positive diagonals but with negative eigenvalues. At first it is a little surprising
that Theorem 4.4 guarantees that there will always be some such PSD stress matrix.

Remark 4.10 We note that Theorem 4.4 is also gives us an alternative proof for
[5, Thm. 6], under the restriction that the coefficients λ1, . . . , λn and μ1, . . . , μm

of Eq. (3.1) are positive. This is because the proof of our Theorem 4.4 provides a con-
struction of an equilibrium stress matrix for (K (n,m),p,q) with these coefficients
on its diagonal.

Indeed, by slightly generalizing this construction, we can produce all of the equi-
librium stress matrices for (K (n,m),p,q) with all positive diagonals. To do this, all
we need to do is replace Eq. (4.2) with

� =

⎡

⎢⎢⎣

I d+1 −I d+1

I n−d−1 C
−I d+1 I d+1

Ct Im−d−1

⎤

⎥⎥⎦ ,

where C is an arbitrary diagonal (n−d −1)-by-(m−d −1) matrix, and also we need
to allow for any U , Vm and Vn such that

P̂�1/2 = USnV
t
n and Q̂M1/2 = USmV

t
m .

Additionally, whenever any of the diagonal entries in C have a magnitude equal to
1 the rank of � will drop, and whenever all of diagonal entries of C have magnitudes
less than or equal to 1, then � will be PSD.

It is less clear if we can use the ideas in this paper to prove [5, Thm. 6], when the
coefficients λ1, . . . , λn and μ1, . . . , μm include negative values.

It is easy to see how our necessity result of Theorem 2.2 fits in with the ideas
of this section. In particular we have the following Proposition, which is essentially
[5, Lem. 5].
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Proposition 4.11 Suppose that� is an equilibrium stress matrix for (K (n,m),p,q),
where � is of the form

[
� B
Bt M

]
,

where � and M are diagonal matrices of size n and m respectively. Then Eq. (3.2)
holds with this � and M.

Proof Since � is an equilibrium stress matrix we have

[
P̂, Q̂

] [
� B
Bt M

]
= 0

and so we have P̂� = −Q̂Bt and Q̂M = −P̂ B. This gives us P̂�P̂ t =
−Q̂Bt P̂ t and Q̂M Q̂t = −P̂ B Q̂t . Since these are symmetric matrices, this gives us
P̂�P̂ t = Q̂M Q̂t , which is Eq. (3.2). ��

Thus, when (K (n,m),p,q) is universally rigid, from Theorem 1.7 it must have
a non-zero equilibrium stress matrix with non-negative (and not all zero) � and M .
Then Propositions 4.11 and 3.3 imply that p and q cannot be strictly separated by a
quadric, which gives us the result of our Theorem 2.2.

5 Examples

Figure 1 shows examples of bipartite frameworks that are super stable in quadric
general position with the minimal number of vertices. Dashed edges have a positive
equilibrium stress, and for solid edges the equilibrium stress is negative. These repre-
sent cables and struts, respectively, where cables cannot increase in length, and struts
cannot decrease in length. These examples have symmetry, and for the calculation of
the separating quadric or conic, this allows us to only consider symmetric quadrics or
conics, since we can average those that separate the two partitions to get one that is
symmetric. Note that the K (6, 5) example is such that it is in quadric general posi-
tion, but since there are several sets of three vertices that collinear, it is not in general
position.

In Fig. 2 the top examples are frameworks of the graph K (3, 3) in the plane. The top
left example is super stable. It lies on a conic, which corresponds to a co-dimension two
subspace of M3. It has equilibrium stress which is PSD since it cannot be separated
by a conic. See also [6]. The top right example is not universally rigid, even though
the vertices lie on a conic, since the partitions can be separated by a conic consisting
of two lines, as shown. The bottom example is the same as the top left example, except
a red vertex is inserted and attached to the blue vertices forming a K (4, 3). The stress
on the edges on the central vertex is zero, but the entire configuration is in general
position in the plane. So Corollary 4.6 applies and it is universally rigid, but not super
stable.
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K(6,5) in 3-spaceK(7,4) in 3-space

K(4,3) in the plane

K(2,2) in the line

Fig. 1 Super stable bipartite tensegrities in quadric general position

Fig. 2 Tensegrities in the plane lying on conics. See the text
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6 Primitive Cores

Definition 6.1 Following [11, Thm. 9.1], we say that a partition (V(p),V(q)) in Md

is primitive if the convex hull of V(p) intersects the convex hull of V(q) and no proper
subset of (V(p),V(q)) has this property.

From our discussion above and [11] it is clear that if the convex hull of V(p)

intersects the convex hull of V(q), there are subsets p′ ⊂ p and q′ ⊂ q such that
the convex hull of V(p′) intersects the convex hull of V(q′) in their relative interiors
with a minimal number of vertices. We call the subframework (K (n′,m′),p′,q′) a
primitive core of (K (n,m),p,q). Here we list all the primitive cores of complete
bipartite graphs for dimensions one, two, three. It is easy to see how to extend this
higher dimensions.

Note that when K (n,m) is a primitive core with affine span of dimension d, then
n ≥ d + 1, m ≥ d + 1, and n + m − 2 is the dimension of the affine span of
(V(p),V(q)) in Md . Since (d + 1)(d + 2)/2 − 1 is the dimension of the affine
span of the image of V(Rd) in Md , the vertices of (p,q) lie in the intersection of
(d + 1)(d + 2)/2 + 1 − (n + m) quadrics, corresponding to hyperplanes in Md .
Furthermore, for a primitive core, (K (n,m),p,q) is super stable.

6.1 Dimension One

There is only one primitive core given by K (2, 2), where the partitions alternate along
the line, as in Fig. 1. This is the main result of [15].

6.2 Dimension Two

When the core vertices are in quadric general position there is only K (4, 3) as in Fig. 1.
Here the dimension of the affine span of (V(p),V(q)) is 5-dimensional.

When the Veronese images of the core vertices (V(p),V(q)) have a 4-dimensional
affine span, then there is one more example, K (3, 3) as in Fig. 2. The vertices of this
K (3, 3) lie on a single conic in the plane. This particular example was described in
[6] as well, for example.

6.3 Dimension Three

When the core vertices are in quadric general position, there are two examples, K (6, 5)

and K (7, 4) as in Fig. 1. Here the the core vertices (V(p),V(q)) have a 9-dimensional
affine span in M3.

When the core vertices (V(p),V(q)) have an 8-dimensional affine span inM3, then
there are two examples, K (5, 5) and K (6, 4). Figure 3 shows an example for K (6, 4)

and K (5, 5) lying on a sphere. The configuration for K (6, 4) is obtained by taking
the green vertices as the vertices of a regular tetrahedron, and the red vertices as the
midpoints of the 6 edges rescaled out to be on the circumsphere of the tetrahedron. The
configuration for K (5, 5) is obtained by taking the red and green vertices as a regular
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Fig. 3 Super stable bipartite
tensegrities in 3-space

K(5,5)K(6,4)

Fig. 4 A super stable bipartite
tensegrity cube, with struts as
long diagonals

K(4,4)

octahedron, but with the red vertices translated up and the green vertices translated
down. Then another red and green vertex is added down and up, respectively, to avoid
separating the two partitions.

When the core vertices (V(p),V(q)) have a 7-dimensional affine span in M3, then
there is an example, K (5, 4). (One can use the analysis of Theorem 4.4 to construct
examples in this range.) This configuration lies on the intersection of two quadrics.

When the core vertices (V(p),V(q)) have a 6-dimensional affine span in M3, then
there is an example, K (4, 4), which is the intersection of three quadrics. One example
is a cube with its long diagonal as in Fig. 4. This was also shown in [6].

7 Coning and Projection-Section

Here we describe some general tools that are interesting in their own right and that
we will use below in Sect. 8. See also [10] for similar results in the context of generic
global rigidity.

7.1 Coning

Definition 7.1 A coned graph is one where one of the vertices is connected to all the
others.

If a configuration for a complete bipartite graph has coincident vertices from dif-
ferent partitions, we can identify those two vertices as one, and we effectively have a
coned graph. Here we first consider a general graph, not just a bipartite graph, that has
a distinguished vertex p0 that is connected to all the vertices of a graph G. We denote
this framework as p0 ∗ (G,p). We also assume that all the vertices of p are distinct
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Fig. 5 A bipartite cone that is
universally rigid

Fig. 6 A construction joining
parallel frameworks
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from p0. The following is immediate since one can slide the vertices of G on the lines
from p0 while preserving universal and dimensional rigidity.

Lemma 7.2 Suppose that p0 ∗ (G,p) and p0 ∗ (G,q) are two coned frameworks. For
simplicity, we assume p0 = 0, the origin. Suppose that for each edge {i, j} of G,

|pi · p j |
|pi ||p j | = |qi · q j |

|qi ||q j | .

Then p0 ∗ (G,p) is universally rigid if and only if p0 ∗ (G,q) is universally rigid, and
p0 ∗ (G,p) is dimensionally rigid if and only if p0 ∗ (G,q) is dimensionally rigid.

Figure 5 shows this for a quadrilateral in the plane that is a cone over a K (2, 2)

graph on a line. The cable-strut designation is shown as well. The stress values on the
“cone edges” over the collinear K (2, 2) are zero.

The following is a general result relating universal and dimensional rigidity to their
coned frameworks.

Proposition 7.3 Suppose that p is in R
d and the cone point p0 ∈ R

d+1 − R
d . Then

the framework p0 ∗ (G,p) is dimensionally rigid if and only if (G,p) is dimensionally
rigid, and if (G,p) is universally rigid, then p0 ∗ (G,p) is universally rigid.

Proof The “if” statements are obvious.
For the other direction, suppose (G,p) is not dimensionally rigid. For now, we will

assume that G is connected. Without loss of generality, we can choose d so that the
span of p is full within R

d .
In R

d+1 construct a parallel framework (G,q) by translating each vertex pi by one
unit perpendicular to the R

d hyperplane to get qi . Then for each edge {i, j} of G,
construct the bars connecting all the pairs of vertices pi ,p j ,qi ,q j constructing a new
framework in R

d+1, (H, (p,q)), as in Fig. 6.
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Fig. 7 A coned framework
related to the construction in
Fig. 6
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It is clear that if (G,p) is not dimensionally rigid then (H, (p,q)) is not dimen-
sionally rigid. Then by [8, Sect. 13], any non-singular projective image of (H, (p,q)),
is not dimensionally rigid as well. But the lines through pi and qi are all parallel and
so in the projective image all these lines intersect at a “meeting” point in R

d+1.
For any chosen point p0, we can find a projective transformation that leaves R

d

fixed and such that the image of (H, (p,q)) has its meeting point at p0. Let us denote
this framework as (H, (p,q′)). The point p0 is on each of the lines through pi ,q′

i for
all i .

Each edge {i, j} of G corresponds to a 4-vertex universally rigid planar framework
on the verticespi ,p j ,q′

i ,q
′
j in the graph H . Each such 4-vertex framework determines

a unique “apex point”, say, using the angle-side-angle theorem in elementary geometry.
This also determines the distance from the apex point to pi and to q′

i along the line
spanned by pi and q′

i . See Fig. 7. In the framework, (H, (p,q′)) all of these apicies
coincide at p0.

Suppose there is a second framework of H with the same edge lengths as (H, (p,q′))
but with an affine span of dimension greater than d + 1. Then for each 4-vertex set in
this second framework, we can compute its apex point. Since we have assumed that
G is connected, these all must agree at a common meeting point. This means that we
can find a second framework that has the same edge lengths as the coned framework
p0 ∗ (H, (p,q′)), but with an affine span greater than d + 1.

From Lemma 7.2, this means that we can find a second framework that has the
same edge lengths as the coned framework p0 ∗ (G,p) but with an affine span greater
than d + 1, making it not dimensionally rigid.

Finally, we can look at the case that (G,p) in R
d has multiple connected compo-

nents. Suppose one of the components is not dimensionally rigid. We have just shown
that the coned framework over that component is not dimensionally rigid as well. This
can be used to certify that p0 ∗ (G,p) is not dimensionally rigid. Suppose, instead that
each of the components is dimensionally rigid but (G,p) is not. This means that we
can increase the dimension span by simply rigidly moving one of the components into
a larger space. The same will be true for p0 ∗ (G,p) using an appropriate rotation of
that component about p0 into some larger space. ��

In the setting of the above proposition, it is not true that if p0 ∗ (G,p) is universally
rigid, then (G,p) is universally rigid. In particular, the proof of the proposition above
relies on the invariance of dimensional rigidity with respect to projective transforma-
tions. This invariance does not hold for universal rigidity as having edge directions on
a conic at infinity is not invariant with respect to projective transformations! Following
the example of [8, Fig. 8], the ladder in R

2 as in Fig. 8 is not universally rigid, since it
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Fig. 8 Two frameworks that are
projective images of each other,
one universally rigid, the other
not

Orchard Ladder

Ladder

has an affine flex, but the cone over the ladder in R
3 is universally rigid, since it has a

section, the orchard ladder which is universally rigid.
But when we specialize to complete bipartite graphs, examples such as with Fig. 8

can be ruled out, and we note the following corollary (which we will not need elsewhere
in this paper).

Corollary 7.4 In Proposition 7.3, if we assume in addition that the graph
G = K (n,m) is a complete bipartite graph, each of p and q span R

d , and
p0 ∗ (K (n,m), (p,q)) is universally rigid, then (K (n,m), (p,q)) is universally rigid.

Proof By Proposition 7.3 since p0 ∗ (K (n,m), (p,q)) is universally rigid, (K (n,m),

(p,q)) is dimensionally rigid, and Lemma 4.1 implies that (K (n,m), (p,q)) is uni-
versally rigid. ��

7.2 Projections and Cross-Sections

Suppose that Ṽ ⊂ V is a subset of the vertices of a graph G, which induces a subgraph
G̃ where the edges E(G̃) ⊂ E(G). Ṽ thus induces p̃, a subconfiguration of the points
p. This gives us (G̃, p̃), a subframework of (G,p).

Lemma 7.5 Suppose that (G̃, p̃) is a universally rigid subframework of (G,p) inRd ,
where the dimension of the affine span of p is d, and the dimension of the affine span
of p̃ is d̃ < d. Suppose further that for each vertex not in Ṽ , the dimension of the affine

span of its neighbors in p̃ is d̃-dimensional. Let π : Rd → R
d−d̃ be the orthogonal

projection that projects all the points of p̃ to a single point, say p0.
Then (G,p) is universally rigid (respectively dimensionally rigid) if and only if

p0 ∗ (G, π(p)) is universally rigid (respectively dimensionally rigid).

Proof We are regarding R
d = R

d̃ × R
d−d̃ such that p̃ ⊂ R

d̃ . Since, for pi corre-
sponding to a vertex of V − Ṽ , the dimension of the affine span of its neighbors in p̃
is d̃-dimensional, then the distance from such pi to R

d̃ is constant for any equivalent
realization of (G,p) fixing p̃ and is equal to |p0 − π(pi )|. Additionally with p̃ fixed,
π̃(pi ) is fixed as well, where π̃ : Rd → R

d̃ is the orthogonal projection onto R
d̃ . Sim-

ilarly, for {i, j} an edge of G− G̃, |π(pi )−π(p j )|2 +|π̃(pi )− π̃ (p j )|2 = |pi −p j |2.
Then the conclusion follows. ��
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Fig. 9 A universally rigid
K (4, 4) in 3-space and some of
its projections

∼

(G)

(G)

G

G

Figure 9 shows an example of a universally rigid K (4, 4) in R
3, using Lemma 7.5

applied to K (2, 2) on a line in R
3, then Lemma 7.2 and Corollary 7.4 applied to

another K (2, 2) on a line, this time in R
2.

8 Algorithm

We can completely test dimensional and universal rigidity of any complete bipartite
framework with an efficient algorithm which we describe now. We will assume that
the input coordinates (p,q) in R

d are given as rational numbers that can be described
with L bits. Without loss of generality, we will assume that the affine span of (p,q)

is d-dimensional.
Though it is true that one can also attempt to numerically gain evidence to answer

this question using semidefinite programming [18], the lack of complexity results for
SDP feasibility [17] makes that approach theoretically less satisfying.

At the heart of our algorithm is a routine that looks for a solution to the following
set of conditions over the variables λi , μ j :

n∑

i=1

λi p̂i p̂ti =
m∑

i=1

μ j q̂ j q̂tj ,

n∑

i=1

λi = 1,

λi ≥ 0,

μ j ≥ 0.
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Fig. 10 A complete bipartite
framework in the plane that is
not universally rigid containing a
universally rigid subframework

The second condition rules out the all-zero solution. This is a linear programming
feasibility problem that can be exactly solved in worst case time that is polynomial in
(n + m, L).

Let us, for now, assume that m + n ≥ dim Span(p,q) + 2. If there is no feasible
solution, then from Theorem 2.2, the graph must be not dimensionally rigid. On the
other hand if we find a feasible solution and all of the λi and μ j have positive values,
then we know that there is a maximum rank PSD equilibrium stress matrix on the
complete bipartite framework and from Theorem 4.4, our framework must be super
stable, and thus universally rigid.

Suppose though, we find a feasible solution, where some, but not all of the λi and μ j

have positive values. We can easily determine which λi and μ j have positive values,
and we will know that there is a maximum rank PSD equilibrium stress matrix on the
complete bipartite subframework over the associated pi and q j . From Theorem 4.4,
this subframework must be super stable and universally rigid. But what can we say
about the complete input framework?

For example, Fig. 10 shows a 2-dimensional framework, where our linear pro-
gram will find a certifying PSD stress for the collinear K (2, 2) subframework. But
the vertices that are not on this common line are free to flex continuously in three
dimensions.

The idea of our algorithm is to proceed by recording the indices of our “already
known to be universally rigid subframework”, and then to apply ideas from Sect. 7, to
reduce our problem down to a smaller problem. Roughly speaking, we will project the
known universally subframework down to a cone point, slide the remaining points into
a common hyperplane, and finally remove the cone point (see e.g. Fig. 9). We can we
can then apply our linear programming approach to this smaller problem. Infeasibility
of the smaller problem will imply that the smaller problem is not dimensionally rigid
and so too is the original framework, and we can exit. A feasible solution for the
smaller problem will allow us to add even more vertices to the known universally rigid
set. We iterate this process until we either exit due to infeasiblity, or we account for
all of the vertices and conclude that our input framework is universally rigid, or we
end up with a smaller problem where the number of vertices is exactly one more than
the dimension of their affine span, in which case the smaller problem, as well as the
original framework is dimensionally but not universally rigid.
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We note that after the first stage, due to the geometric projection and sliding
operations (both which can be determined using a linear system) the input to our
linear program may require polynomially more bits than our original input size, L .
But in each stage of the iteration, we perform these geometric operations anew starting
with the input (p,q) data, so this avoids any cascading blowup in bit complexity.

8.1 Details

In this algorithm, let Ṽ ⊂ V be an index set recording the vertices of some complete
bipartite subframework of (K (n,m),p,q) in R

d , which has already been determined
to be universally rigid. We will refer to this subframework as the “known-UR set”.
The known-UR set begins as empty. During the algorithm, the known-UR set will also
maintain the “invariant” property that the affine span of its p-subset agrees with that
of its q-subset.

The complement of the known-UR set is denoted as V ′, describing a complete
bipartite subgraph K (n′,m′). Suppose the complement is empty, then the known-UR
set is the entire (p,q), and thus (K (n,m),p,q) is universally rigid. The same is true
(due to the invariant) if the complement consists of a single p, or a single q, or one p
and one q (which must be connected by an edge).

Our algorithm is the following:

RigidityTest(p,q)

Ṽ := {}
repeat

V ′ := V − Ṽ
if ( #(V ′

p) ≤ 1 and #(V ′
q) ≤ 1) output “universally rigid”

(p0,p′,q′) := πṼ (p,q)
(p′′,q′′) := σp0 (p′,q′)
if (dimspan(p′′,q′′) = (#(V ′) − 1)) output “dimensionally rigid”
S := findSuperStableSubframework(p′′,q′′, V ′)
if (#(S) = 0) output “not dimensionally rigid”
Ṽ := Ṽ ∪ S
Ṽ := affineClosurep,q(Ṽ )

Let us denote the dimension of the known-UR set as d̃. The function πṼ (p,q)

performs the orthogonal projection on the points (p,q) such that the vertices of the
known-UR set project to a single point in R

d−d̃ . We denote this single point as p0, and
the projection of the complementary vertices as (p′,q′). We can think of this result
as describing a framework p0 ∗ (K (n′,m′),p′,q′) of a cone over the complementary
complete bipartite graph in R

d−d̃ . (See Fig. 9, top.)
The function σp0(p

′,q′) slides the points in p′ and q′ along their rays from the cone
point p0 such that they all lie in a hyperplane that does not include the cone vertex (see
Fig. 9, middle). We denote the resulting points as (p′′,q′′). By discarding the cone
point, we can think of this result as describing a framework (K (n′,m′),p′′,q′′) of the
complementary complete bipartite graph in R

d−d̃−1. (See Fig. 9, bottom.)
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Suppose that (p′′,q′′) has an affine span of maximal dimension, one less then the
total number of its vertices. This, and the fact that the complementary graph is not
a simplex, makes (K (n′,m′),p′′,q′′) dimensionally but not universally rigid. (This
follows from simply counting the number of degrees of freedom vs. constraints, the
fact that the framework cannot have any non-zero equilibrium stress, and an application
of the main results of [4].)

Likewise p0 ∗ (K (n′,m′),p′′,q′′), being coned in one higher dimension, is also
of maximal dimension and not a simplex, making it dimensionally but not univer-
sally rigid. Since (p′,q′) is obtained from (p′′,q′′) using sliding through p0, then by
Lemma 7.2, p0 ∗ (K (n′,m′),p′,q′) too is dimensionally but not universally rigid.
By Lemma 7.5, (K (n,m),p,q) is dimensionally but not universally rigid. Thus we
output “dimensionally rigid”.

The next step, findSuperStableSubframework, is the heart of the algorithm. Here
we find a subframework of (K (n′,m′),p′′,q′′) such that Eq. (3.1) holds with strictly
positive coefficients. As described above, this can be found by setting up an a linear
programming feasibility problem. The output of this step is simply the indices of the
vertices, S ⊂ V ′ comprising this super stable subframework.

If S is empty, then from Theorem 1.7 (K (n′,m′),p′′,q′′) is not dimensionally rigid.
Then by Proposition 7.3, so too is p0 ∗ (K (n′,m′),p′′,q′′), then by Lemma 7.2, so
too is p0 ∗ (K (n′,m′),p′,q′), then by Lemma 7.5, so too is (K (n,m),p,q). Thus we
output “not dimensionally rigid”.

If S is not empty, then from Theorem 4.4, the subframwork of (K (n′,m′),p′′,q′′)
induced by the vertices in S is universally rigid. As before, so is the induced subframe-
works of p0 ∗ (K (n′,m′),p′′,q′′) and p0 ∗ (K (n′,m′),p′,q′). Finally, by Lemma 7.5,
and our invariant, so is the subframework of (K (n,m),p,q) induced by Ṽ ∪ S.

Likewise, from Theorem 4.4, the affine span of the S-induced subset of p′′ agrees
with that of the S-induced subset of q′′. Thus the invariant is also true for the subset of
(p,q) induced by Ṽ ∪S. Thus we now include these vertices in our updated known-UR
set.

Finally using a trilateration argument, we can also add to Ṽ any other the vertices
that are in its affine span.

Each iteration in this algorithm always makes progress so it must terminate after at
most n + m steps.

In summary:

Theorem 8.1 Given a complete bipartite framework with rational coordinates. There
is a (weakly) polynomial time algorithm that determines whether or not the framework
is dimensionally rigid, and whether or not it is universally rigid.

Running this algorithm on the example of Fig. 9, will conclude in two iterations,
that the framework is universally rigid. For the example of Fig. 10, in the second
iteration, V ′ will consist of two green vertices in R

0, making S empty, and (p,q) not
dimensionally rigid.
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9 Tensegrities and Further Work

An important consequence of our approach in this paper is that quite often we can
replace the distance equality constraints with inequality constraints as described in
Sect. 1. Each edge of the underlying graph G is designated as a cable, strut or bar
depending on whether it is constrained not to increase, not to decrease or not to change
length, respectively. In [8] we have shown that, in many cases, even though the given
framework may not support an equilibrium stress that is non-zero for a given edge, it
may still be possible to declare a given edge a cable or strut and maintain universal
rigidity. Even in the case when the graph is not bipartite, Proposition 7.3 can apply as
in Fig. 5, where due attention should be applied to the signs of the stresses. We do not
pursue that extension of the results here, though.

Another application of our approach here is in the local rigidity theory of prestress
stability as shown in [9]. There, even if the stress matrix is not PSD, it can still be useful
determine local rigidity, especially when the whole framework is not infinitesimally
rigid.

Another point is that the stress-energy function determined by the stress and stress
matrix provides a measure of how far a given configuration is from an ideal config-
uration, globally. So if a configuration has some determined edge measurements, the
stress-energy function gives an upper bound on how close any configuration is with
those edge lengths. Indeed, with the tensegrity constraints it can be possible to elimi-
nate certain edge lengths as feasible. For example, for six points p1, . . . ,p6, there is
no configuration where |pi − pi+1| ≤ 1, and |pi − pi+3| > 2, all taken modulo 6.
This is shown using the configuration K (3, 3) on a circle as in Fig. 2.
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