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Abstract
We provide a new type of proof for the Koebe–Andreev–Thurston (KAT) planar circle
packing theorembased on combinatorial edge-flips. In particular, we show that starting
from a disk packing with a maximal planar contact graph G, one can remove any
flippable edge e− of this graph and then continuously flow the disks in the plane, so
that at the end of the flow, one obtains a new disk packing whose contact graph is the
graph resulting from flipping the edge e− in G. This flow is parameterized by a single
inversive distance.

Keywords Circle packing · Rigidity · Inversive distance

Mathematics Subject Classification 52C26

1 Introduction

The well known Koebe–Andreev–Thurston (KAT) (planar) circle packing theorem
states that for every planar graph G with n vertices, there is a corresponding packing
of n disks (with mutually disjoint interiors) in the plane, whose contact graph is
isomorphic toG.Moreover, ifG ismaximal (i.e., all faces triangular), then this packing
is unique up to Möbius transformations and reflections [2,19,33]. This theorem is
important in conformal geometry [27] and has been generalized in numerous directions
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[26,30,33]. In [14], a packing whose graph is a triangulation of the plane is called a
compact packing.

There are a variety of techniques that have been used to establish the KAT theorem.
These include methods based on conformal geometry [19], combinatorial analysis of
hyperbolic polyhedra [2,28], circle geometry, cone-singularities and topology of con-
tinuous maps [24,33], variational methods [3,9,26], iterative "flattening" algorithms
[10,25,32], and combinatorial Ricci flow [8].

In this paper, we present a novel simple and constructive approach for proving the
KAT circle packing theorem based on ideas from (local) rigidity theory [6,13].

We start with any "trilaterated" packing; such a packing is constructed by starting
with three fixed disks in mutual tangential contact, and then adding in, one-by-one,
new disks that are tangential to three previously placed disks. It will be easy to estab-
lish that such a packing is unique up to Möbius transformation and reflection. (See
Fig. 3.)

Next, we use the fact that one can always combinatorially transform any maximal
planar graph to any desired target maximal planar graph G using a finite sequence of
combinatorial "edge flips" [4,31,34]. (See Fig. 4.)

Then, at the heart of this paper, we show how we can continuously flow the planar
packing in coordinationwith a single edge flip.More specifically, let P(0) be a packing
with a maximal planar contact graph G. Let H be a maximal planar graph obtained
from G by removing one edge e− and adding its "cross" edge e+ (see Fig. 4). Also
let G− be the intermediate graph G\e− such that G− has one quadrilateral face. Then
we can always find a continuous path of planar packings P(t) for t ∈ [0, 1] with the
following properties:

• The contact graph of P(0) is G.
• For t in the interval (0, 1), the contact graph of P(t) is G−.
• The contact graph of P(1) is H .

This means that we can continuously push the two disks corresponding to e− apart,
while maintaining a packing (no interior overlaps) and maintaining all of the other
contacts in G−, and we can keep doing this until the two disks across e+ come
together (see Fig. 1), giving us H as the contact graph. Moreover, up to the speed of
the parameterization and up to Möbius transformations and reflections, this path is
unique and is parameterized by a single inversive distance. The construction of this
path is our main technical result, Theorem 9.9.

Together these ingredients can be used to establish the KAT circle packing theorem.
Our construction requires the inversion of a certain Jacobian matrix at each time step
of the flow, so we do not necessarily expect it to be faster than other practical circle
packing techniques such as [10]. Interestingly, in our approach we always work with
disks in the plane and never introduce or need to deal with any cone singularities in
either the theory or the construction. Thus it provides a novel view of the circle packing
problem.
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2 Preliminaries

Definition 2.1 A (planar) disk configuration ( p, r) is a sequence (i.e., an indexed
family) of n disks placed in R

2, with centers at p := ( p1, . . . , pn) and with positive
radii r := (r1, . . . , rn). A (planar) packing ( p, r) is a disk configuration such that
their interiors are mutually disjoint. The contact graph of a packing is the graph (over
the same index set) that has one vertex corresponding to each disk and one edge
corresponding to each pair of mutually tangent disks.

Definition 2.2 Let G be any graph with n vertices, and let a point configuration p :=
( p1, . . . , pn) be a sequence of n points in the plane. Define (G, p) to be the straight
line drawing of the graph G with vertex positions determined by p.

Lemma 2.3 Let G be the contact graph of some packing ( p, r). Then G must be planar
and (G, p) is a planar embedding.

Proof This follows from the following two facts: Each of the line segments in (G, p)
must be contained within its associated two touching disks. None of the disks have
overlapping interiors. ��
Definition 2.4 A Möbius transformation of the extended complex plane is a function
of the form

φ(z) := az + b

cz + d
,

where ad − bc �= 0.

Möbius transformations are injective, orientation preserving. We can apply a
Möbius transformation to R

2 by identifying it with C (the transformation may map
one point to infinity, and infinity to another point). The generalized Möbius transfor-
mations are generated by the Möbius transformations and reflections through lines.
An inversion about a circle, is a transformation where a point is sent to the point “one
over its distance” from the center of the circle, times the square of the radius of the
circle on the ray through the center of the circle and the point. It can be shown that a
circle inversion is a generalized Möbius transformation.

A generalized Möbius transformation φ maps an input circle or a line to an output
circle or a line. If a circle Ci maps to a circle Co with the same orientation under φ,
then φ will map the interior of Ci (i.e., a disk) to the interior of Co (i.e., a disk). If a
circle Ci maps to a circle Co with the opposite orientation under φ, then φ will map
the interior of Ci (i.e., a disk) to the exterior of Co (i.e., the complement of a closed
disk). From its injectivity, we see that a Möbius transformation maps a packing to a
packing (but up to one of the disks may become a half plane or the complement of a
disk). The following theorem is standard:

Theorem 2.5 There is a unique Möbius transformation mapping any sequence of three
distinct “input” points to any other sequence of three distinct “output” points. This
map varies smoothly as we alter the desired output point locations.
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Fig. 2 A set of three mutually externally touching circles, with red center points, have three contact points
in blue. These contact points lie at a circle that is called the incircle (dashed) of the triangle determined by
the centers of the circles. The blue contact points are not contained in any half of this incircle. Going the
other way, given any three points that are not contained in any half of their incident circle, we can associate
a unique set of three mutually externally touching circles

Definition 2.6 The inversive distance between two disks, ( pi , ri ) and ( p j , r j ), is
defined as

‖ pi − p j‖2 − r2i − r2j
2rir j

.

It evaluates to 1 when the disks have external tangential contact.

Inversive distances playwellwithMöbius transformations as the following standard
theorem states:

Theorem 2.7 The inversive distance between two disks is invariant for generalized
Möbius transformations.

3 Tridisk-Contained Packings

In this section, we will use Theorem 2.5 and a standard construction (e.g., [24]) to
mod out generalizedMöbius transformations. The basic idea is to use a transformation
to always put three chosen disks into a canonical form. We go through the details
somewhat carefully.

Definition 3.1 A tridisk is a sequence of three non-overlapping disks in mutual tan-
gential contact. (See Fig. 2.) The canonical tridisk is the tridisk made of three disks
of unit radius, where the disk centers lie at three points of a fixed equilateral triangle.
(And to make this unique, we fix an indexing of these three disks.) (See Fig. 3.) The
incircle of a tridisk is the circle touching the three contact points of the tridisk. (See
Fig. 2.)

Lemma 3.2 Given an input tridisk, there is a unique Möbius transformation mapping
it to the canonical tridisk.

Proof The input tridisk has a sequence of three contact points. There is a unique
Möbius transformation φ mapping these to the sequence of three contact points of
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the canonical tridisk (Theorem 2.5). A sequence of three externally touching circles
are uniquely determined by such a sequence of points (as in Fig. 2). So φ must map
the three input touching circles to the canonical three circles (with external tangential
contact). Now from injectivity, φ must map the interiors of the three distinct input
disks to three disjoint regions. This disjointess ensures that φ must map the interiors
of the three input circles to the interiors of the three canonical circles. ��
Note that the above transformation may map the interior of the tridisk’s incircle to
either the interior or the exterior of the canonical tridisk’s incircle. This depends on
the relative orientations of the three contact points.

Corollary 3.3 Given an input tridisk, let us select either the interior or the exterior
of the tridisk’s incircle. Then there is a unique generalized Möbius transformation
mapping the tridisk to the canonical tridisk and which maps the selected side of the
tridisk’s incircle to the interior of the canonical tridisk’s incircle.

Proof We start with the Möbius transformation of Lemma 3.2. If it has mapped the
wrong side of the input incricle to the output incricle’s exterior we follow this by
inverting through the canonical tridisk incircle. This must preserve the contact points,
and thus must leave each of the three circles invariant. ��

The following will be needed later.

Corollary 3.4 Given an input tridisk, with centers ( p1, p2, p3) and radii (r1, r2, r3),
and given any fixed displacement vector v ∈ R

2, then for sufficiently small t , there is
a unique Möbius transformation ft that maps this tridisk to an output tridisk that has
centers at ( p1, p2, p3 + tv) (the radii can change). Moreover, this transformation is
smooth in t.

Proof Given the desired three (non-colinear) centers ( p1, p2, p3+ tv), there is always
a unique set of radii (r ′

1, r ′
2, r ′

3), such that this creates an output tridisk. This output
tridisk has a sequence of three contact points, giving us the unique Möbius transfor-
mation of Lemma 3.2. All of the above steps are smooth. ��
Definition 3.5 Given a packing P with contact graph G that includes some triangular
face T , we can mark the packing by assigning, in some order, the labels 1, 2, and 3,
to the three disks corresponding to the vertices of T . This specifies a tridisk in P . We
refer to the other disks as unmarked.

Definition 3.6 Amarked packing P , where themark-specified tridisk forms the canon-
ical tridisk, and all of the unmarked disks lie inside of its “tricusp” region is called
canonical-tridisk-contained. We will shorten this to simply tridisk-contained.

The next two lemmas tell us that we can use tridisk-containment as an effective
modding process.

Lemma 3.7 Let P be a packing of n ≥ 4 disks with a 3-connected contact graph G that
includes some triangular face T . Let P be marked, specifying a tridisk. Then there
is a unique generalized Möbius transformation that maps P to a tridisk-contained
packing.
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Fig. 3 A trilaterated packing of
five disks. The outer three
(yellow) disks form the
canonical tridisk

22

3

1

Proof From Lemma 2.3, (G, p) is a planar embedding. Since the tridisk corresponds
to a triangular face of G, then in a packing, either all of the other disks lie inside this
triangle, or they all lie outside of it. The lemma then follows using Corollary 3.3. ��
Lemma 3.8 Let P be a tridisk-contained marked packing and with contact graph G.
If P is the only packing with contact graph G, up to a generalized Möbius trans-
formation, then P is the only tridisk-contained packing with this marking and with
contact graph G. The converse holds as well.

Proof The case with n = 3 is clear, so we will now assume that n ≥ 4. Suppose that P
is the only packing with contact graph G, up to a generalized Möbius transformation.
Then, from uniqueness of the transform in Lemma 3.7, it is the only tridisk-contained
packing with this contact graph and marking.

For the other direction, suppose there was a packing Q unrelated to P by a gen-
eralized Möbius transformation, but with the same contact graph, G. Let us take the
marking of P , and use this to mark Q. Then from Lemma 3.7, there is a generalized
Möbius transformation taking Q to some tridisk-contained marked packing Q′. By
the assumption of no-Möbius-relationship, Q′ cannot equal P , but both are tridisk-
contained with the same contact graph and marking. This contradicts the assumed
marked uniqueness of P . ��

4 Trilaterated Packings

Next we describe a simple family of packings where we can easily argue existence
and uniqueness.

Definition 4.1 To create a trilaterated packing with n ≥ 3 vertices we start with the
canonical tridisk. We then apply n − 3 subdivision steps. Each subdivision step adds
one packing disk, externally tangent to exactly three already-existing disks. We can
create such a packing for any n ≥ 3. (See Fig. 3.) Such a packing is naturally marked
by the canonical tridisk, and is tridisk-contained.

Lemma 4.2 Let P be a trilaterated packing and C its contact graph. Then P is the
unique packing with contact graph C, up to a generalized Möbius transformation.
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Fig. 4 An edge flip

Proof Using Lemma 3.8, all we need to show is that P is the only tridisk-contained
packing with this marking and with contact graph C .

The proof then follows by induction starting with the unique canonical tridisk.
In particular, assume that n ≥ 4 and that, by induction, the lemma holds for all
trilaterated packings with n − 1 disks. A trilaterated packing on n disks is obtained
from a trilaterated packing on n − 1 disks by adding in one final disk. To result in a
packing, the final disk must be placed in the tricusp of its three neighbors (which are
fixed by induction). (If the new disk center were placed outside of the tricusp of its
three contacting circles, but inside of the canonical tricusp, then this would create a
non-embedding for the straight-line drawing, (G, p), violating Lemma 2.3.) There is
only one center and radius for this last disk that creates the three required contacts,
and is inside the tricusp of its three neighbors. ��

5 Edge Flips

Definition 5.1 A maximal planar graph is a planar graph such that adding any extra
edge on the same vertex set results in a non-planar graph.

A 3-connected planar graph with n ≥ 3 vertices has a well-defined set of faces. A
maximal planar graph is always 3-connected, and each of its faces is a triangle.

Definition 5.2 Let G be a maximal planar graph with n ≥ 5 vertices. Let e− be an
edge of G connecting two vertices, denoted by a and c. This edge bounds two triangles
in G. Denote by b and d the other two vertices of these two triangles. We say that e−
is flippable if there is no edge in G connecting b and d. (See Fig. 4.)

Lemma 5.3 Let G be a maximal planar graph and e− a flippable edge of G. Then
G− := G\e− is 3-connected.

Proof The graph G− is a triangulation of the quadrilateral on vertices a, b, c, d. Such
a triangulation must be 3-connected unless there is an edge connecting two non-
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Fig. 5 All the inequalities of
Lemma 6.1 are equalities here.
Note that the distance from p0 to
the circumference of each of the
disks of radius r is (2/

√
3 − 1)r

0

3 2

1

p p

p

p

2 3r/3

(2 3- 3)r/3
r

r

r

consecutive vertices of the quadrilateral (e.g. [21]). But we have removed the edge
connecting a and c, and flippability presumes no edge between b and d. ��
Definition 5.4 Let G be a maximal planar graph and let e− be a flippable edge. Then
we call the graph G− := G\e− an almost-maximal planar graph. All of its faces are
triangles, except for a single quadrilateral, with vertices a, b, c, and d.

Definition 5.5 Let G− be an almost maximal planar graph as above. Let H be the
graph obtained from G− by adding the edge e+ connecting b and d. Then we say that
H was obtained from G by an edge flip on e−.

If H is obtained from G by an edge flip, then H is a maximal planar graph. The
following theorem [31,34] lets us use edge flips to navigate between two graphs (and
this can be done while preserving the vertex indices).

Theorem 5.6 We can transform any maximal planar graph on n vertices to any other
maximal planar graph on n vertices through a finite sequence of edge flips.

Definition 5.7 Let G be a maximal planar graph. We call any packing ( p, r) with
contact graph G, a triangulated packing. Let G− be an almost-maximal planar graph.
We call any packing ( p, r) with contact graph G−, an almost-triangulated packing.

Given an almost-maximal packing with contact graph G−, we can mark the three
disks corresponding to any triangular face of G− and transform the packing to obtain
a tridisk-contained, almost-maximal marked packing.

6 Bounding Radii

Next we will argue that in a tridisk-contained, almost-triangulated packing, all of our
radii are bounded away from 0. We start with

Lemma 6.1 There is no configuration of four points, p0, p1, p2, p3, in the Euclidean
plane and real number r > 0 with all the following properties:
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Fig. 6 Here the point p0 is
within ε of each of three disks
all of radius at least r , the radius
of the smallest disk. The other
disks have their radii shrunk to r ,
while keeping the nearest points
to p0 the same. The pi are the
centers of the shrunken disks

0

r

< 

< 

< 

r

r

3

2

1

p

p

p
p

• For i and j in {1, 2, 3} with i �= j , we have | pi − p j | ≥ 2r .

• For i ∈ {1, 2, 3}, we have | pi − p0| ≤ (2/
√
3)r .

• At least one of the above six inequalities is strict.

The proof is by constructing a positive semi-definite (stress-energy) function whose
global minimum occurs only when the above inequalities hold as equalities. The
energy is constructed so that for any configuration where the inequalities are satisfied,
the energy value is at least as small as this minimum value. See [11,12] for a discussion
for this easy case and many other similar ones. See Fig. 5.

Lemma 6.2 Let there be three packing disks, and a point p0, whose distance to the
boundary of each of the disks is less than some ε. Then at least one of the disks has
radius ≤ ε/(2/

√
3 − 1) = ε · 6.46 . . . < 7ε.

Proof Suppose that all of the disks had radii > ε/(2/
√
3 − 1). Then we could shrink

the radii of the two largest disks to the radius r of the smallest disk, as in Fig. 6 while
maintaining a packing. Let us denote these new disk centers as p1, p2, and p3. For i
and j in {1, 2, 3} with i �= j , we would have | pi − p j | ≥ 2r . Meanwhile we would

have, for each i ∈ {1, 2, 3}, | p0 − pi | < ε + r ≤ (2/
√
3 − 1)r + r = 2r/

√
3. This

would contradict Lemma 6.1. ��

And now we can prove our proposition:

Proposition 6.3 Let G be a fixed 3-connected graph on n vertices (such as an almost-
maximal planar graph). Let ( p, r) be a packing with contact graph G. Suppose that
at least three of the disks have radii ≥ 1. Then, all of the radii are bounded away from
0 (where the bound depends only on n).

Proof Define Mε to be a maximal connected set of vertices where all radii are < ε for
any chosen ε. Claim: If ε < 1, Mε is non-empty, and M7nε is a component containing
Mε , then |M7nε | ≥ 1+|Mε |. Proof: Since the disks in Mε are connected, they fit inside
of some circle C of radius < nε. From the assumed three large disks, we know that
|Mε | ≤ n − 3 (i.e., this set is a strict subset of ( p, r)). Now we look at the neighbors
of our set Mε in G. From 3-connectivity, the set must have at least three neighbors.
From Lemma 6.2, at least one of these disks has radius less than 7nε, establishing our
claim.
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Now, let ε∗ := 1/(7n)n . If there is any disk with radius less than ε∗, then, iteratively
applying the previous paragraph, we find that all of disks have radii < 1, contradict-
ing our assumptions. Finally, an almost maximal planar graph is 3-connected from
Lemma 5.3. ��
Remark 6.4 If we just know that there is at least one large disk, and we know that
it is in the interior of a 3-connected packing, then we can use the same argument to
prove that no other disk can be arbitrarily small. (For this we need to argue that no
set of n − 1 disks, with n − 2 of them sufficiently tiny, can wrap around the known
large disk.) This then gives us a generalization of Rodin and Sullivan’s “ring-lemma”
[27]. (We only assume 3-connectivity, and there may not even be a single “ring” in
the packing.)

Lemma 6.5 Let ( p, r) be a tridisk-contained, almost-triangulated packing with con-
tact graph G−. Let i j be a vertex pair that is not an edge in G−, and is neither e− nor
e+. Then disks i and j must remain a bounded distance from each other by a constant
depending only on the number of vertices.

Proof The graph G ′ := G− ∪ ei j is an almost-maximal planar graph plus one extra
edge. But since i and j are not on some common face of G−, the edge between them
does not subdivide any face of G− and so G ′ cannot be planar. (Fixing a (topologically
unique) embedding of the 3-connected graph G ′ on the sphere, any curve starting at i
and ending at j must enter and then exit one of the faces incident to i . The crossing at
the exit point certifies non-planarity.)

From Lemma 2.3, (G−, p) is a planar embedding. Let us add in the segment con-
necting pi and p j . From non-planarity, this must cross some (contact) edge kl of
(G−, p). The radii ri , r j , rk, rl are all bounded away from zero from Proposition 6.3.
This keeps disks k and l bounded away from contact. ��

7 Infinitesimal Rigidity

In this section we prove an infinitesimal rigidity result about inversive distances on
almost-triangulated packings. This, along with Proposition 7.2, will be used to prove
an existence and global rigidity result.

Definition 7.1 Let G be a maximal planar graph on n vertices. Let f be the mapping
fromR

3n toR3n−6 that measures the inversive distance along the edges of G of a disk
configuration. (We do not require that these disks have disjoint interiors, but we do
require the radii to be positive.) Explicitly we have

f ( p, r)i j := ‖ pi − p j‖2 − r2i − r2j
2rir j

. (1)
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Let J (at ( p, r)) be the Jacobian of f . Its row corresponding to an edge i j of G has
the following pattern [6]:

( . . . pi . . . p j . . . ri . . . r j

. . . 0 . . .
pi − p j
ri r j

. . . 0 . . .
p j − pi
ri r j

. . . 0 . . .
r2j −r2i −‖ pi − p j ‖2

2r2i r j
. . . 0 . . .

r2i −r2j −‖ pi − p j ‖2
2r2j ri

)

where the first row above labels the matrix columns. When disks i and j have no
interior overlap (i.e., when pi is not inside of disk j), we can verify that

r2j − r2i − ‖ pi − p j‖2
2r2i r j

≤ 0. (2)

When disks i and j are in tangential contact, their inversive distance is 1 and we have
‖ pi − p j‖ = ri + r j , giving us

r2j − r2i − ‖ pi − p j‖2
2r2i r j

= −ri − r j

ri r j
= −‖ pi − p j‖

rir j
. (3)

In this section, we will establish the following:

Proposition 7.2 Let G and H be maximal planar graphs related by flipping an edge
e−. Let ( p, r) be a (triangulated or almost-triangulated) packing with contact graph
of either G, G−, or H. Then the Jacobian, J , (defined using the edges of G) has rank
3n − 6.

Our argument in this section is a variation on ideas explored in [6,13]. The idea is to
show that J cannot have any non-zero cokernel vector. The main extra difference here
is that when the contact graph is G− or H , then the edges of G are not in contact.
We will argue that, since G− and H are similar enough to G, this will not destroy the
argument.

Definition 7.3 Given a 3-connected planar graph G with n vertices and m edges, and
given a vector v in R

m , we assign a sign {+, 0,−} to each undirected edge i j using
the sign of vi j . This assignment gives us an associated sign vector s.

Definition 7.4 Given a sign vector s, we define the index Ii at vertex i , as the number
of times the sign changes as we traverse the edges in order around vertex i , ignoring
zeros. (We use the unique face structure of a 3-connected planar graph to define the
cyclic ordering of edges at each vertex.) The index Ii is always even.

The following is a variation on Cauchy’s index lemma, which can be proven using
Euler’s formula. For a proof, see e.g., [15, Lem. 5.2] or [1, p. 87].

Lemma 7.5 Let G be a planar 3-connected graph with n vertices. Let s be a sign
vector in R

m. Let n′ be the number of vertices that have at least one non-zero signed
edge. Then

∑
i Ii ≤ 4n′ − 8.
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Lemma 7.6 Let G be a maximal planar graph on n vertices. Let ( p, r) be a config-
uration of n disks. Let v be a non-zero cokernel vector of J , giving us an associated
sign vector. Let i be the index of a disk that has no interior overlap with its neighbors
in G and such that it has at least one non-zero signed edge in v. Then its associated
index Ii is at least 2.

Proof If vertex i has at least one non-zero sign and no sign changes, then it cannot
satisfy equations (2) while having v annihilates the column of J corresponding to ri .

��
Definition 7.7 Let G be any 3-connected planar graph on n vertices and p a configura-
tion of n points. Let (G, p) be its straight line drawing (not necessarily an embedding).
We say that a vertex has out of order edges if the drawn (either clockwise or counter-
clockwise) cyclic order of its adjacent edges does not match their combinatorial cyclic
order in G.

Definition 7.8 Let G be a maximal planar graph on n vertices. Let ( p, r) be a config-
uration of n disks. We call a disk with index i , G-like if the edges of vertex i in (G, p)
are in order and if for all of the edges i j in G incident to vertex i , the disks i and j are
in tangential contact in ( p, r).

Lemma 7.9 Let G be a maximal planar graph. Let ( p, r) be a triangulated or almost-
triangulated packing with contact graph G, G−, or H. Then there are at most two
disks that are not G-like.

Proof The contact graph G ′ of ( p, r) is one of G, G−, or H . So Lemma 2.3 tells us
that (G ′, p) is embedded. G− is a subgraph of G ′ so (G−, p) is also embedded. It
is 3-connected by Lemma 5.3. Thus all the edges of (G−, p) are drawn in order and
have disks with tangential contact. The graph G includes only one more edge, which
can affect only two disks. ��
Definition 7.10 Given a graph G with n vertices and m edges, and a configuration p
of n points. A vector ω ∈ Rm satisfies the equilibrium condition at vertex i if

∑
j

ωi j ( pi − p j ) = 0, (4)

∑
j

ωi j‖ pi − p j‖ = 0. (5)

The sums in (4)–(5) are over neighbors j of i in G. We use the index i j to index one
of the m edges of G.

This notion was studied in [6,13]. See also [20].

Lemma 7.11 Let G be a maximal planar graph on n vertices. Let ( p, r) be a config-
uration of n disks. Let v be in the cokernel of J (defined using the edges of G). Let us
define the associated stress vector ω as ωi j := rir jvi j . Suppose disk i has tangential
contact with its neighbors in G. Then ω satisfies the equilibrium condition at vertex i .
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Fig. 7 Illustration of the proof of
Lemma 7.12. This vector
configuration has only two sign
changes (blue are negative signs
and red are positive)

Proof This follows from nature of the entries in the associated columns of J and
using (3). ��

Lemma 7.12 [13] Let G be a maximal planar graph on n vertices. Let ( p, r) be a
configuration of n disks. Let v be a cokernel vector of J giving us an associated sign
vector. Let i be a G-like disk. Then the index Ii is at least 4.

Proof In what follows, we ignore any edge with a zero coefficient in v. From
Lemma 7.6, Ii ≥ 2. So now we will suppose that Ii = 2 and arrive at a contra-
diction.

Using the assumed G-like property of disk i , we can apply Lemma 7.11. Thus
the associated stress vector ω, where ωi j := rir jvi j , must satisfy the equilibrium
condition at vertex i .

With the supposed two sign changes, the edges with one of the signs (say −) must
be in a cone of angle 2θ < π (for example, the dotted red cone in Fig. 7). (Here we
use the assumption that these edges are drawn in order in (G, p).)

Euclidean transforms have no effect on Eqs. (4) and (5), so, without loss of gen-
erality, we may assume that the positive part of the x-axis is the bisector of the cone.
The 2D equilibrium condition of (4) must hold after projection along any direction,
including onto the x-axis, since (4) is invariant under any affine transformation (see,
e.g., [18]).

Let N+ denote the neighbors of i connected by edges with positive sign and N−
the neighbors connected by negatively signed edges. Let px

i be the x-coordinate of
the point pi . We then get

∑
j∈N+

ωi j (px
i − px

j ) = −
∑

j∈N−
ωi j (px

i − px
j ).

But for j ∈ N+ (outside the cone), we have px
i − px

j < ‖ pi − p j‖ cos θ , while
for j ∈ N− (inside the cone), px

i − px
j > ‖ pi − p j‖ cos θ . Putting these estimates
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together we have

∑
j∈N+

ωi j‖ pi − p j‖ cos θ >
∑

j∈N+
ωi j (px

i − px
j )

= −
∑

j∈N−
ωi j (px

i − px
j ) > −

∑
j∈N−

ωi j‖ pi − p j‖ cos θ,

which means that (4) and (5) cannot hold simultaneously. ��
See Fig. 7 for an illustration of this argument. And now we can prove our proposition.

Proof of Proposition 7.2 Suppose that J has a non-zero co-kernel vector v. Let n′ be
the number of disks with at least one incident edge in G with a non-zero v value. From
Lemma 7.9, at most two of these n′ disks are non G-like, and at least n′ −2 are G-like.
Summing over the indices of n′ − 2 disks that are G-like, and using Lemma 7.12, we
obtain the value of at least 4n′ − 8. The remaining two of the n′ disks do not overlap
and so add at least 4 more to the sum using Lemma 7.6, giving us at least 4n′ − 4. But
this contradicts Lemma 7.5, which ensures

∑
i Ii ≤ 4n′ − 8. ��

7.1 Square Jacobian

The matrix J tells us how differential changes of ( p′, r ′) lead to differential changes
of f ′, in the inversive distances along the edges of a maximal planar graph G. The fact
that, for an (almost-)triangulatedpacking, J has full row rank tells us that all differential
changes of inversive distances on the edges of G are achievable. From this row rank
and thematrix size, we see that the kernel of J is 6-dimensional, corresponding exactly
to the six Möbius degrees of freedom.

Nextwewish tomod out theMöbius degrees of freedom.Wewill do this bymarking
and pinning:

Definition 7.13 Let ( p, r) be a packing with contact graph of either G, G−, or H . Pick
a triangular face of G−, and mark the corresponding three disks. (Ultimately these
three disks will form our canonical tridisk boundary.) We will also refer to the three
edges in G, corresponding to this triangle as marked. We then pin the centers (but not
radii) of our three marked disks. We call this a center-pinned packing. The effect of
center pinning on J is simply to discard the corresponding six columns, giving us a
square matrix of size 3n − 6 we call the center-pinned Jacobian Jc.

Lemma 7.14 Let ( p, r) be a center-pinned packing with contact graph of either G,
G−, or H. Then its center-pinned Jacobian (defined by edges in G) is a non-singular
matrix.

Proof From Proposition 7.2, J has rank 3n − 6. From Corollary 3.4 we can fix the
five coordinates corresponding to say, p1 and p2, and the x-coordinate of p3, and
smoothly move the y-coordinate of p3 using a family of Möbius transformations φt .
Differentiating φt in t at t = 0 gives us a vector ( p′, r ′) which, from Theorem 2.7,
must be in the kernel of J . By construction, ( p′, r ′) has zero entries corresponding
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to the five fixed coordinates. Thus the column of J corresponding to the y-coordinate
of p3 must be linearly dependent on the other 3n − 6 columns. So this column can
be removed without changing the rank of the Jacobian. The same reasoning applies
symmetrically to all six of these columns. Removing these six columns gives us the
center-pinned Jacobian, Jc, which is square and has rank 3n − 6. ��
Next, we note that Jc has a useful block form.

Definition 7.15 The three rows of Jc corresponding to the marked edges are only
supported on the three columns corresponding to the three radii corresponding to the
marked disks (the positional columns for these disks have already been removed). Let
us now also pin these three radii, resulting in a pinned packing. By removing these
three rows and columns, we obtain a square matrix of size 3n − 9. We call this the
pinned Jacobian Jp. Its rows correspond to the unmarked edges of G and its columns
correspond to the positions and radii of the unpinned vertices.

Lemma 7.16 Let ( p, r) be a pinned packing with contact graph of either G, G−, or
H. Then its pinned Jacobian (defined by the edges of G) is a non-singular matrix.

Proof This follows from Lemma 7.14 and its block form just described. ��

8 PackingManifold

Definition 8.1 Let G and H be maximal planar graphs related by flipping an edge e−,
and G− their common, almost-maximal planar graph. Pick a triangular face T of G−,
and mark (in G, G−, and H ) the corresponding three vertices, in some order, with
the labels 1, 2, and 3. We also refer to the three edges of T as marked. Given any
packing P with contact graph G, G−, or H , we mark three of its disks using these
vertex markings.

Define the packing set SG− , to be the subset of configurations of n disks that are
packings and where the contact graph is exactly the graph G− (no extra contacts), and
that are tridisk-contained under the above marking. There are three common pinned
disks in SG− . Let us consider the configuration space of the unpinned n − 3 disks
as R3n−9.

This set satisfies a set of strict radius inequalities ri > 0, strict inequalities over
the non-edges, and equalities over the contact edges. Given these constraints, the
tridisk containment can then be enforced by the strict inequality requirement that the
unmarked-disk centers are in the open interior of the tricusp region.

Definition 8.2 The frontier points of SG− are defined as SG− SG− .

Now we establish some geometric properties of SG− .

Lemma 8.3 SG− is a 1-dimensional smooth manifold.

Proof Let P be a point in SG− . In a sufficiently small neighborhood of P in configu-
ration space, all of the radii must remain positive, all non-edge connected disk pairs
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must remain disjoint, and all of the unmarked-disk centers must be inside of the tri-
cusp. (These are open conditions.) Thus locally, we need to only consider the 3n − 10
inversive distances equalities of (1).

The partials of these constraints are described in the 3n−10 rows of Jp correspond-
ing to the unmarked edges of G−. By Lemma 7.16, these rows are linearly independent
and thus, from the implicit function theorem, SG− , restricted to some neighborhood
of P , is a smooth manifold of dimension 1. ��
See [17] for some related and more general results.

Lemma 8.4 SG− is bounded, and so its closure is compact.

Proof The tridisk constraint bounds the coordinates of p and r . ��
Lemma 8.5 A frontier point of SG− can only be a tridisk-contained maximal triangu-
lated packing with contact graph G or H (either ac or bd in contact.)

Proof Let us consider the possible frontier points of SG− . From Proposition 6.3, for
a packing in SG− , every radius must be bounded above zero. From Lemma 6.5, for a
packing in SG− , every disk pair corresponding to any non-edge, except for ac or bd,
must be bounded away from contact. Meanwhile, any disk configuration with positive
radii, where some edge of G− is not in tangential contact, cannot be approached while
satisfying the (closed) equality conditions of SG− . Finally, the above conditions also
keep all of the disk centers bounded away from the tricusp boundary. The lemma
follows by this process of elimination. ��
Ultimately, we will see below as a result of our flow argument, that each connected
component of SG− has one frontier point that is a tridisk-contained packing with
contact graph G and another frontier point that is a tridisk-contained packing with the
flipped contact graph H . Moreover, a packing P with contact graph G (or resp. H ) is
in the closure of exactly one connected component of SG− .

9 Flow

In this section we will describe how to flow continuously from a tridisk-contained
marked packing P(0) with contact graph G to a tridisk-contained packing P(1) with
contact graph H (and the same marking). As above, the graph H will be obtained
from G by removing an edge e− (without loss of generality, its last edge), resulting in
the graph G−, and then adding in its cross edge e+. For t ∈ (0, 1), the packing P(t)
will have contact graph G−. Throughout the flow, the outer three disks will remain
completely pinned, and thus we will work with ( p, r) ∈ R

3n−9.
We will find this flow as the solution to an ordinary differential equation that we

set up now. Given any pinned disk configuration ( p, r), we have a pinned Jaco-
bian matrix Jp. Where Jp is non-singular, we define the velocity field: ( p′, r ′) :=
J−1

p [0, 0, . . . , 0, 1]t . Differentially, this leaves all of the inversive distances fixed
except for increasing the inversive distance corresponding to e−. The matrix Jp is
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non-singular for some ( p, r) (Lemma 7.16), thus it is non-singular over a Zariski-
open subset U of R3n−9. This defines a smooth (never zero) velocity field over U that
includes P(0), setting up a system of ODEs (ordinary differential equations). Given
this system of ODEs, we start a trajectory at P(0) and integrate forward in time. As a
smooth ODE, this defines a unique maximal trajectory ( p(t), r(t)) for some (possibly
bi-infinite) open time interval.

The following is standard. See [29, Sect. 4.1] for a readable discussion.

Theorem 9.1 Going forward in time, a maximal trajectory of a C1 system of ODEs
defined over an open set U must leave any compact set contained in U, or go on for
infinite time.

Lemma 9.2 SG− ∈ U. So too is P(0).

Proof From Lemma 8.5, all disk configurations in SG− are tridisk-contained almost-
triangulated packings with packing graph G−, or triangulated packings with contact
graph G or H . Lemma 7.16 then guarantees they are in U . In particular, it guarantees
that P(0) ∈ U . ��
Lemma 9.3 ( p(t), r(t)) ∈ SG− for sufficiently small and positive t .

Proof From Lemma 9.2, the ODE is well defined at P(0). The ODE is constructed
to maintain the equality constraints along the edges of G−. Also by construction, the
velocity of our trajectory at t = 0 must destroy the contact along the edge e− for
t > 0. For small enough t , no other inequality constraints can become violated. ��
Remark 9.4 This lemma also tells us that every packing P with contact graph G must
be the frontier point of at least one connected component of SG− . By symmetry, the
same is true of every packing Q with contact graph H .

Lemma 9.5 For any trajectory starting in SG− , if the trajectory leaves SG− , it must
first hit a frontier point of SG− .

Proof The set SG− is defined by the intersection of some strict inequality (open)
conditions and some equality constraints. Our ODE is constructed to maintain these
equality constraints. To leave the set it must violate an inequality, and so, by continuity,
the trajectory must first violate this inequality with an equality. Such a point is in the
closure of SG− making it a frontier point. ��
Lemma 9.6 Any trajectory starting in SG− must leave SG− at some positive t .

Proof From Theorem 9.1, (using Lemmas 8.4 and 9.2) if the trajectory is only defined
for a finite time, then it must leave SG− . But if the trajectory goes on for infinite
time, it also must leave SG− by the following argument. Our ODE increases the
inversive distance along e− at a constant rate, and since the radii are bounded away
from zero (Proposition 6.3), their centers must be moving apart at a lower bounded
rate. Meanwhile SG− is bounded (Lemma 8.4). ��
Proposition 9.7 Any trajectory starting in SG− must hit a positive t where the edge
e+ is in contact.

123



Discrete & Computational Geometry

Proof From Lemma 9.6, the trajectory must leave SG− . From Lemma 9.5, it must
leave at a frontier point. From Lemma 8.5 this must either be contact along e− or e+.
But by construction, the inversive distance along e− is increasing away from 1, so we
cannot achieve contact along e−. ��
Remark 9.8 This proposition also tells us that every connected component of SG− must
have a frontier point Q with contact graph H . From the uniqueness of ODE solutions,
two trajectories cannot cross, and thus only one component of SG− can have Q as a
frontier point. By symmetry, every component also must have a frontier point P with
contact graph G, and no other component can hit P .

In summary, each connected component of SG− must connect one tridisk-contained
packing with contact graph G to one tridisk-contained packing with contact graph H .
And each tridisk-contained packing with contact graph G (resp. H ) is an endpoint of
exactly one component of SG− .

We will stop our flow when the edge e+ is in contact. After a time rescaling, we will
consider this t = 1. We denote this tridisk-contained packing with contact graph H
as P(1). We refer to this trajectory between t = 0 and t = 1 as our flow.

With Lemma 3.7, Proposition 9.7, and our defined flow we have just proven the
following result:

Theorem 9.9 Let P be a triangulated packing, with contact graph G. Let e− be a
flippable edge of G. Let G− := G\e− and let H be the graph resulting from flipping e−.
Then there is a continuous path of packings P(t), with t ∈ [0, 1] such that:

• P(0) = P.
• For t in the interval (0, 1), the contact graph of P(t) is G−.
• The contact graph of P(1) is H.

Now let us consider the inversive distance along e+ during this flow.

Lemma 9.10 The inversive distance along e+ monotonically decreases, with deriva-
tive bounded away from zero during the flow from P(0) to P(1).

Proof Let f + be the inversive distance along e+. If f + were to change sign, we must
have a time during our flow when d f +/dt = 0. As ( p′, r ′) �= 0 (the velocity field is
never zero), this would have to be a time where the Jacobian of the "dual flip", defined
using the edge of H , goes singular. But Lemma 7.16 can be applied just as well to
this dual flip, so this cannot happen. Thus during our flow, f + changes monotonically,
with non-zero derivative. Meanwhile, we know that f + must overall decrease from its
starting value (non-contact) down to 1 (contact). Since we are working over a compact
time interval [0, 1], this derivative is bounded away from zero. ��
Corollary 9.11 If we start with the graph H and remove the edge e+, and set up a dual
flow starting at P(1), increasing the inversive distance of this edge, then this dual
flow must drive e− to contact and give us P(0). This dual flow must travel along the
reverse path of the original forward flow, defined using the graph G and the edge e−.

Proof We can set up a dual flow starting at P(1) and increasing the inversive distance
on e+. From Theorem 9.1, Lemma 9.3, and Proposition 9.7 (applied to this dual
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differential equation) there is also a unique trajectory satisfying this dual differential
equation. But from Lemma 9.10, the reverse path from P(1) to P(0) satisfies this dual
differential equation (up to a smooth regular parameterization of the time variable). ��

10 Proving KAT

With these pieces all in place, we can now establish all of the elements of the KAT
circle packing theorem.

Theorem 10.1 Let M be a maximal planar graph on n vertices. Then there exists a
packing of n disks with contact graph M.

Proof Let P be a trilaterated packing with n disks and with contact graph C . From
Theorem 5.6 we can combinatorially transformC to M using a finite sequence of edge
flips. Starting with P , we wish to flow the packing across each of the edge flips in our
sequence.

To this end, let G and H represent two maximal planar graphs related by flipping
some edge e−. Let P be a packing with contact graph G. We mark three disks in P
corresponding to a triangle in G−. Using Lemma 3.7, we apply a Möbius transfor-
mation to P so that the resulting marked packing is tridisk-contained. Now we can
apply Proposition 9.7 to flow this packing to a new tridisk-contained marked packing
Q with contact graph H .

We can do this for each edge flip in our sequence, arriving at a packing with contact
graph M . ��
Theorem 10.2 Let M be a maximal planar graph on n vertices. Then its packing is
unique up to a generalized Möbius transformation.

Proof We will follow the same sequence of edge flips and flows as in the proof of
Theorem 10.1. From Lemma 4.2, the trilaterated packing is unique up to generalized
Möbius transformations.

Let us look at a single edge flip, flowing from a tridisk-contained marked packing
P with contact graph G to the tridisk-contained packing Q with the same marking
and with contact graph H . Let us assume (as an inductive invariant) that P was the
only packing with contact graph G up to a generalized Möbius transformation. Then
from Lemma 3.8, it is the only tridisk-contained packing with this contact graph and
marking.

Now let Q′ be any tridisk-contained packing with this marking and contact graph
H . Then, from Proposition 9.7, the dual differential equation starting from Q′ must
flow to some tridisk-contained marked packing P ′ with contact graph G. Setting up
the double dual ODE (which is just our original ODE), starting from P ′ and using
Corollary 9.11, the double dual flow must lead us back to the marked packing Q′. But
from our assumed marked uniqueness, P = P ′. And since our double dual ODE is
just our original ODE, then Q = Q′ (as marked packings). Thus from Lemma 3.8, Q
is the only packing with contact graph H up to a generalized Möbius transformation.
(See also Remark 9.8 for the geometric point of view.)
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In summary, the number of distinct packings, up to generalized Möbius transfor-
mations, cannot increase across an edge flip, maintaining our inductive invariant, and
proving the theorem. ��
Remark 10.3 If we fix G, but extend our configuration space to allow non-edge disk
pairs to overlap, and thus allow (G, p) to be a non-embedding, then all bets (such
as Lemma 7.16) are off. Indeed, global uniqueness no longer holds. (For example,
smallest disk in Fig. 3 can be changed to be identical to the disk labeled 1 in the
figure, while maintaining all of the necessary external tangential contact.) This leads
to especially interesting situations when using general inversive distance constraints
on the sphere [23].

Theorem 10.4 Let G be a planar graph on n vertices. Then there exists a packing of
n disks with contact graph G.

Proof We can always add edges to G to obtain a maximal planar graph M . From
Theorem 10.1, there must be a tridisk-contained (using Lemma 3.7) packing P with
contact graph M . To remove the extraneous contacts, all we need to do is create a short
lived flow starting at P that increases the inversive distances along the added edges,
while maintaining contact along the edges of G.

Note that in this setting, we may also need to separate the three outer disks of P
(as there may be no triangles at all in G). To do this we will work in the (3n − 6)-
dimensional configuration space, where the three outer radii, but not their centers, are
variable.

From Lemma 7.14, the center-pinned Jacobian Jc, defined using the edges of M ,
is non-singular at P . From upper semi-continuity of rank, it remains non-singular in
a sufficiently small neighborhood U of P .

We define our velocity field as ( p′, r ′) := J−1
c f ′, where f ′

i j > 0 for the added
edges, and f ′

i j = 0 for the edges of G. Finally, we integrate this flow from t = 0 to
t = ε for a sufficiently small positive ε. ��
The KAT circle packing theorem is simply the union of Theorems 10.1, 10.2, and
10.4.

11 Generalizations

11.1 Other Powerful Tools

This proof of the KAT circle packing theorem is based on establishing the infinitesimal
rigidity of the inversive distances along the edges of amaximal planar graph G, for any
( p, r) that is an almost-triangulated packing with contact graph G−. We established
this in Sect. 7 using the equilibrium condition. In particular, we use the fact that all
but one of the edges of G represent tangential contact.

Another set of tools for proving such infinitesimal rigidity results comes from the
work of Guo [16]. Although he works in the intrinsic setting of polyhedral metrics,
his result can also be applied to any set of disks ( p, r), with any inversive distances in
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[0,∞] along the edges of G, whenever the extrinsic R2 drawing, (G, p), is a planar
embedding.

Now in our setting, we know that (G−, p) is a planar embedding, but we still have
one pesky edge e−, which might become out of order during the flow. And at some
time, one of the triangles with this edge can become degenerate. Luckily, it seems
that one can always find a Möbius transformation (that does not invert any disks)
under which (G, p) does become an embedding. The existence of such an embedded
drawing should be enough to argue the non-singularity of Jp for the packing under
consideration.

11.2 More General Inversive Distance Targets

The full KAT theorem covers configurations of disks that are allowed some amount
of overlap [7,33]. One fixes each of the inversive distances along the edges i j of a
maximal planar graph G to some target value fi j in the interval [0, 1] (instead of equal
to 1). This allows the disks across an edge to intersect with some fixed angle ≤ π/2.
Disks not connected by an edge are still not allowed to overlap. In this setting, for
existence, onemust also add in an assumption about the sums of the overlapping angles
in 3-cycles that are not triangles in G, and also on the sums over 4-cycles. It would be
interesting to see if we can use our flow-based approach to start with a packing with
tangential contact along the edges of G, and then flow the disks together to overlap
by the desired amount. For this, it might be useful to apply the tools of Sect. 11.1.

Work starting with Rivin [26] has investigated the situation with fi j ∈ (−1, 1]
(allowing disk intersections up to π ). Existence and uniqueness can be shown under
some additional assumptions. Again, it would be interesting to see if we can apply our
flow-based approach to this setting.

If one has a set of disks ( p, r), with some set of inversive distances fi j ∈ [0,∞]
along the edges of a maximal planar graph G, the story gets even more complicated. If
wework in the category of diskswhere (G, p) is a planar embedding, then infinitesimal
rigidity follows from [16,35] and global uniqueness follows from [22,35] (though see
[5,23] for non-uniqueness in the spherical embedded setting). But when we place such
general inversive distance targets on the edges of G, then existence conditions are not
well understood.

11.3 Higher Genus

The KAT theorem also generalizes to higher genus settings [33]. We conjecture that
given a graph G that triangulates the torus, and a packing on a flat torus with this
contact graph, we can flip an edge, and smoothly flow the packing across this flip
(this necessarily requires us to also flow the shape of the torus). For example, in his
book, "Regular Figures" [14] László Fejes Tóth takes the periodic packing on the left
in Fig. 8, which is triangulated, and continuously deforms the packing. This is a flip-
and-flow motion as we have described in this paper, applied to the edge between the
blue and yellow regions, but now on a torus. This flow changes the radii as well as the
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Fig. 8 This shows a continuous flip of an edge of a triangulated packing of a torus as used by László Fejes
Tóth. The packing on the left is the start of the continuous motion of the packing. The middle packing was
used because the relative ratio of the packing radii were closer to one, and the packing on the right is the
standard triangulated packing with all the radii the same. Three fundamental regions are shown, each in a
different color

density of the packing. If one continues the motion, the packing eventually moves to
the standard packing with all radii the same as in the right of the figure.

We would also be interested in seeing if our method extends to surfaces of higher
genus in the hyperbolic setting.

Acknowledgements The authors would like to thank Louis Theran for many helpful discussions along the
way.
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