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Straight line motion with rigid sets
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Abstract If one is given a rigid triangle in the plane or space, we show that the only
motion possible, where each vertex of the triangle moves along a straight line, is given
by a hypocycloid line drawer in the plane. Each point lies on a circle which rolls
around, without slipping, inside a larger circle of twice its diameter. We also prove a
natural extension in Euclidean n-space.
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1 Introduction

Consider three straight lines in the plane or in three-space.When can you continuously
move a point on each line such that all the pairwise distances between them stay
constant? One case is when the three lines are parallel. Figure 1 shows another way.
Are these the only possibilities?We answer the question affirmatively with Theorem 1
in the plane, and with Theorem 2 an analogue for higher dimensions is derived.

The example of Fig. 1 is known as a hypocycloid straight-line mechanism, and
Fig. 2 shows a model from the Cornell Reuleaux collection; see Saylor (2017).

It is easy to see from Fig. 1 that as the inner circle rolls around the central point
with a fixed radius, the triangle, formed from the other points of intersection with the
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Fig. 1 An inner circle rolling inside a larger circle, without slipping, so that each vertex of the attached
triangle traces out a straight line

Fig. 2 A mechanism at Cornell, where the point on the inner geared circular wheel traces out a straight
line

three fixed lines, has fixed internal angles, and therefore this triangle moves rigidly.
This was known at least to the Persian astronomer and mathematician Nasir al-Din
al-Tusi in 1247. See Kennedy (1966).

In dimension three, one can form a cylinder rotating inside a larger cylinder of
twice the diameter. But in the plane and three-space, the three lines all have a fourth
line that is perpendicular and incident to all three lines.

2 The planar case

Wedescribe themotion of a segment of fixed length d12 sliding between two fixed non-
parallel lines, L1 and L2, first in the plane. We assume, without loss of generality, that
L1 and L2 intersect at the origin and are determined by two unit vectors v1, v2, where
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Fig. 3 As the line segment, with fixed length, moves with one point on L1 and one point on L2 the trace
of each point is symmetric about the intersection of L1 and L2

v1 ·v2 = cosα12 = c12, α12 being the angle between v1 and v2, and−1 < c12 < 1. Let
t1, t2 be the oriented distance of the points p1,p2 from the origin, so that p1 = t1v1,
and p2 = t2v2. Then treating the square of vector as the dot product with itself,

d212 = (p1 − p2)2 = (t1v1 − t2v2)2 = t21 + t22 − 2c12t1t2. (1)

Thus in t1, t2 space the configurations of the line segment form an ellipse centered at
the origin whose major and minor axes are at 45◦ from the t1, t2 axes. Thus there are
constants a12 = d12/

√
2(1 − c12), b12 = d12/

√
2(1 + c12) such that

t1 = a12 cos θ − b12 sin θ, t2 = a12 cos θ + b12 sin θ (2)

describes the full range of motion of the line segment for 0 ≤ θ ≤ 2π . It is also clear
from Fig. 3 that the length of the image of each pi on Li , i = 1, 2, is an interval of
length 2d12/ sin α12 centered about the intersection of L1 and L2. We can now state
the situation for the plane.

Theorem 1 If a triangle, with fixed edge lengths, continuously moves with each vertex
pi on a line Li , i = 1, 2, 3 in the plane, then either all the lines are parallel or they
all intersect at a point forming a hypocycloid straight line drawer as above, with the
range of each point an interval of the same length on each line, while the midpoint of
each range is the intersection of the three lines.

Proof Choose any two of the the three lines, say L1 and L2. The parametrization
discussed above shows that any position of the d12 segment can be described by the
equations in (2). These define the positions of p1 and p2 as a function of θ , for all
0 ≤ θ ≤ 2π . Then the position of p3 is determined also as a function of θ , p3(θ),
since it is carried along rigidly. The image of p3 is a continuous curve in the plane and
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it is symmetric about the intersection of L1 and L2. Actually, it is not difficult to see
that it is an ellipse (see for example Pedoe 1975), but that is not needed for this part
of the argument. If that image is to be in a straight line L3, then L3 should intersect
the intersection of L1 and L2. So if p3(θ) satisfies the equations corresponding to (1)
for 13 and 23 replacing 12, for an interval of values of θ , then it must satisfy those
equations for all θ , and the image of each pi in Li is the same length for i = 1, 2. But
applying this argument to another pair such as 13, shows that all the images are the
same length. ��

3 The higher dimensional case

Suppose one is given a rigid triangle in Euclidean n-space, where each vertex of the
triangle moves along a straight line. In dimension 3, each pair of non-parallel lines
Li , L j , i, j = 1, 2, 3, have two points qi j ∈ Li , for i �= j , such that qi j − q j i

is perpendicular to both Li and L j . The shortest distance between Li and L j is
|qi j − q j i | = Di j = Dji . We construct six variables ti j , i, j = 1, 2, 3, i �= j ,
where pi = qi j + ti jvi . Then we can project orthogonally into a plane spanned by
the vectors vi , v j to get the analog of Eq. (1), which is the following representing the
three equations for each of the three edge lengths di j = d ji of the triangle:

d2i j − D2
i j = (pi − p j )

2 = (ti jvi − t j iv j )
2 = t2i j + t2j i − 2ci j ti j t j i . (3)

Similar to Eq. (2), we define constants ai j =
√
d2i j − D2

i j/
√
2(1 − ci j ), bi j =√

d2i j − D2
i j/

√
2(1 + ci j ) such that ai j = a ji , bi j = b ji and

ti j = ai j cos θi j − bi j sin θi j , t j i = ai j cos θi j + bi j sin θi j , (4)

where θi j = θ j i is the parameter as before. This gives three separate parameterizations
for each line segment between each pair of lines. Furthermore the equations of (3)
give a complete description of position of each pi , two ways for each line, in terms
of ti j and tik , where |ti j − tik | = |qi j − qik |, a constant. So ti j = tik + ei jk , where
ei jk = ±|qi j − qik | is a constant. See Fig. 4 for a view of these coordinates.

Theorem 2 If a triangle, with fixed edge lengths, continuously moves with each vertex
pi on a line Li , i = 1, 2, 3, in a Euclidean n-space, then either all the lines are parallel
or they intersect an affine (n−2)-plane L perpendicular to all of them, with the range
of each point pi an interval of the same length on each line, while the midpoint of each
range is Li ∩ L, the intersection of the two lines.

Proof If n = 3, start with Eq. (3) for the L1, L2 lines defining the variable θ12 = θ21
which, in turn defines the positions for p1(θ12) on L1 and p2(θ12) on L2. Note that
t12 = t13 + e123 and t21 = t23 + e213. So we can regard t13 and t23 as linear functions
of t12 and t21. Similarly, t32 = t31 + e321, so we can regard t32 as a function of t31. So
if we subtract the 13 and 23 equations for (3), we are only left with linear terms in t31.
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Fig. 4 Three skew lines in three-space, and for each pair of lines, shows their pair of nearest points

Fig. 5 A large vertical cylinder with two skew lines through its axis of symmetry, which are then projected
onto two lines in the plane. A smaller parallel vertical cylinder, with half the diameter of the larger cylinder
and containing the line of symmetry of the larger cylinder, is also shown

The squared terms have cancelled. Thus either t31 has no term in the difference of the
two equations, or t31 is a non-zero rational function of t12 and t21 and thus θ12.

On this last case, the image of p1 in L1 is symmetric about q12. Also, if the linear
t31 term disappears, then the 12 and 13 equations imply the 23 equation, which means
that the 12 edge of the triangle makes a full 360◦ turn and again the image of p1 in L1
is symmetric about q12.

Applying the above argument to each equation of (3) for i j , we see that each image
of pi in Li is symmetric about qi . If all the lines lie in a three-dimensional Euclidean
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space, and no two lines Li are parallel, then the midpoints of the images of each pi
must lie on a line perpendicular to all of the Li , as claimed. So these lines are just a
three-dimensional “lift” of the two-dimensional case.

If the lines span a higher dimensional space, then there is a non-zero vector perpen-
dicular to each vi , for i = 1, 2, 3, and the lines Li can be projected orthogonally into a
three-dimensional space, and the projection of the points on the projected lines will be
a mechanism, one dimension lower. Then similarly the three-dimensional mechanism
comes from a two-dimensional mechanism, from the argument above. See Fig. 5 ��

The following are some immediate corollaries.

Corollary 1 If a polygon in the plane is continuously moves as a rigid body so that
each vertex stays on a straight line, then those vertices all lie on a circle or the three
lines are parallel.

Corollary 2 Given three lines L1, L2, L3 on a Euclidean 3-space such that they are
all perpendicular to a fourth line, then there are at most 8 configurations of a triangle
p1,p2,p3 with fixed edge lengths, that continuously moves with pi on Li , i = 1, 2, 3.

This is because each edge length is determined by a degree two equation, and
Bézout’s theorem (Kendig 2011) implies that there are at most 23 = 8 individual
solutions.
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