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(I) Introduction. A set X in euclidean space is convex if the line segment joining any
two points of X is in X. If X is convex, every boundary point is on an (n— l)-plane
which contains X in one of its two closed half-spaces. Such a plane is called a support
plane for X. A simplicial complex K in R™ is called strictly convex if \K\ (the underlying
space of K) is convex and if, for every simplex <r in dK (the boundary of K) there is a
support plane for \K\ whose intersection with \K\ is precisely <x. In this case \K\ is
often called a simplicial poly tope.

If \K\ is just convex it is often desired to move the vertices of K (slightly) so that
the altered complex is strictly convex. In Theorem 2 we provide an example of a
3-complex where no such altering is possible even by a large move. In fact we show a
bit more. There is a 3-complex K such that \K\ is a tetrahedron (and thus convex)
and K is not simplicially isomorphic to a complex K' in U3, where \K'\ is convex and
the condition for strict convexity holds at the vertices of K'.

Part of the motivation for this example was the following statement made by D.
Chillingworth in (4) on page 354: ' . . . we can if necessary slightly alter the positions
of some of the vertices to obtain a complex simplicially isomorphic to K, which has
no two vertices at the same height and is such that vx is strictly higher than all the
other vertices'.

Our Theorem 1 provides a specific complex T, where \T\ is a triangle(2-simplex),
such that if T is the projection (from an appropriate point below say) of a simplicially
isomorphic complex T', which is part of the boundary of a convex surface in 3-space,
then \T'\ has to be a flat triangle, so its interior vertices violate the condition of
strict convexity. The condition needed for T to have the property that Theorem 1
holds, is that a certain interior triangle be turned or twisted sufficiently with respect
to the outer triangle. When T satisfies this condition (defined later) we say it is twisted.
It turns out that, if T is twisted, then any other complex T' simplicially isomorphic to
T with the corresponding vertices of T' close enough to T, is twisted also. Thus if
\T\ is a subset of the boundary of a tetrahedron, then it provides a counterexample to
the statement of Chillingworth. Theorem 2 gives a way of triangulating the whole
tetrahedron so that the interior simplices force the one face to be twisted, thus providing
a global counterexample to Chillingworth's statement. (We say a complex K (redi-
linearly) triangulates a space X, if X = \K\.)
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It should be borne in mind that there is no way of finding a global counterexample
just using a triangulation of the boundary of a convex 3-dimensional set. A theorem
of Steinitz (see (16) or (9), chapter 13, for example) says that, among other things,
any abstract simplicial complex topologically homeomorphic to a 2-dimensional
sphere is simplicially isomorphic to the boundary of a strictly convex complex.

Despite these counter-examples, corollaries 2 and 3 of Chillingworth are unaffected,
since the starting vertex in the theorem can be chosen appropriately anyway without
using the statement we quoted above. In fact, the main theorem itself is apparently
still true as can be seen by a slightly different argument (provided to us by Chilling-
worth in private communication).

Another motivation (and the inspiration) for the example of Theorem 1, is that it
can be interpreted in terms of frameworks in the plane. If the vertices on the boundary
of the triangle are held fixed, for any given triangulation one can ask if it is possible
to assign positive scalar tensions to the interior edges so that each interior vertex is
in equilibrium. An interpretation of Theorem 1 via the work of J. Clerk Maxwell (13)
or G. Cremona (6) (see also H. Crapo and W. Whiteley(5)) implies that if the tri-
angulation is twisted no such positive tensions exist.

Yet another use of these 3-dimensional examples is to find analogous examples in
dimensions greater than three. Previously such examples had been constructed from
a related example due to Barnette(l) following Griinbaum(9), p. 218, and Griinbaum
and Sreedharan(lO). We construct triangulations of the boundaries of convex sets of
dimensions > 4 such that they are not simplicially isomorphic to strictly convex
complexes. We can also construct the Griinbaum-Sreedharan-Barnette type of
examples as well, but with more vertices.

Lastly, we briefly discuss a hierarchy of examples such as ours, and mention some
related ideas and conjectures.

(II) The examples. Let Alt A2, A3 be the vertices of a triangle A in the plane. Let
Blt B2, B3 be three points inside A such that the triangles Ax = A2 A3Bv A2 = A3AXB2,
and A3 = AlA2B3 do not overlap except on common vertices as in Fig. 1. Consider
the three angles /LB2A1B3, LB3A2BX, LBXAZB2 regarded as (closed) subsets of A
(shaded in Figure 1). If Aj, A2, and A3 are part of a rectilinear triangulation T of A
and the three angles above do not have a point in common, we say T is twisted. Fig. 2
shows one such simple triangulation.

In what follows we shall regard a surface (with boundary) as convex with respect to
a point p in 3-space if the 3-dimensional solid, obtained by joining all possible line
segments from p to the surface, is convex, and each ray from p intersects the surface
in at most one point.

THEOREM 1. Let T be a txoisted triangulation of A, and p a point not in the plane of
A. If T' is a triangulated surface, convex with respect to p, such that T is the projection
from pofT', then T' is planar.

Proof. Let AJ, A2, Ag be the triangles in T' carried on to A1( A2, A3 of T, respectively.
If any two of these are co-planar, then T' is planar since it is convex. (The vertices
on the boundary of T' would determine a support plane.)



A complex not isomorphic to a convex complex 301

Fig. 2

If no two of A ,̂ Ag, A3 are co-planar, the planes determined by them must intersect
at a point q'. Let q be the projection of q' into the plane of A, the twisted face.

Note that the planes determined by A^_x and A^+1 (indices mod 3) must be support
planes which interesct in the line q'A[, where A\ projects on to At.

The plane determined by p, q', Ai (i = 1,2, 3) separates A ^ and A^+1. (If not,
then one of A ^ or A^+1 is on the opposite side from p of the support plane determined
by the other, which contradicts convexity.) So the projection from p of the line q'A\
must lie in the shaded angle Z_Bi_1AiBi+1 in the plane of A. Hence q must lie in the
intersection of the shaded angles, which does not exist. Then the only possibility is
that T' is planar, as was to be shown.

Remark 1. In Shephard (15) and Supnick (17) criteria or algorithms are given for
when a 'spherical complex' is the central projection of a convex polytope. See in
particular Theorem 3 of Shephard (15). If one takes the triangulation T as above and
incorporates it as one face of a tetrahedron, then T will be the projection of a strictly
convex complex if and only if the spherical complex obtained by projecting T (from
a point inside the tetrahedron) and the rest of the triangulation of the tetrahedron
into the 2-sphere is the central projection of a polytope. Thus Shephard and Supnick's
criteria must be violated if T is twisted. Perhaps this can be seen also from just looking
at Shephard's criterion, but we think that our method is simpler for our case.

COROLLARY. // , as in Theorem 1, T is twisted, and T' is convex and simplicially
isomorphic to T, with the vertices of T' sufficiently close to the corresponding vertices of T
(but not necessarily projecting onto T), then T' is planar.

Proof. T' projects on to some other twisted triangulation of A in the plane of A
since the property of being twisted, as we defined it, is open.

Remark 2. With the triangulation of Fig. 2 it is easy to see that it is the projection
of a strictly convex triangulation if and only if the intersection of the open angles is
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Fig. 3

not empty. One could view this as a precise statement of how far the triangulation
must move to guarantee the global conclusion of Steinitz's theorem.

In the following let T be the particular twisted triangulation shown in Figure 3
where P is to the left of At Bi+l, i = 1, 2,3.

THEOREM 2. The triangulation T can be extended to a subdivision T of a tetrahedron
such that, if T is simplicially isomorphic to a convex complex T', the corresponding
twisted face T' is planar (and thus the condition for strict convexity at the vertices is
violated).

Proof. Let C be any point not in the plane of A, and consider the tetrahedron
CA1A2A3. Let Dit i = 1, 2, 3, be any point in the relative interior of the triangle
CAi_1Ai+1 (indices mod 3) such that the line determined by C, Di intersects the edge
Ai_1Ai+1 in the angle /.BtAiP and such that the lines DiAi (i = 1, 2, 3) are disjoint.
Then all the faces of

T u {CP} U U {CD, Ai+1, CD, A{_v D, At_, Ai+1, At Dt> CB%)

form a complex in 3-space, which is a triangulation of the boundary of CA1A2A3

together with seven spanning 1-simplices. By the lemma of J. H. C. Whitehead(l9)
or lemma 6 of R. H. Bing(2), this complex can be extended to a rectilinear triangulation
T of CA1A2A3. See Figs. 4 and 5.

Suppose we have a convex complex T' in IR3 simplicially isomorphic to T. Primes
will label corresponding vertices. Project T', the image of T (the twisted face) from
C into the plane of A 'x A'2 A'3. Call the projection T". We claim this projection is twisted
also. C'A'i and C'B\ project to A[ = A, and B\, and A^D, (i = 1, 2,3) must project
into the angle LB\ A\ P". Also, D\ will project outside of or on the boundary of A'x A'2 A'z,
because T' is convex; and A^D, must be between CP' and C'B',. To see this note, for
example, that the loop C-B^-P-C links AtDt in CAXA2A3 and linking is preserved
because the correspondence from T to T' is a homeomorphism. This ensures that
T" is twisted. Thus by Theorem 1, T' is planar. (It may be helpful to construct a
model from pipe cleaners.)
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Fig. 4 Fig. 5. View from C.

Remark 3. If Ai Dt (i = 1,2,3) are woven as in Fig. 4, then the proof will go through
even if P is deleted from T. In fact it is not hard to see that Theorem 2 holds for any
twisted face T.

Remark 4. We can use the examples of Theorem 2 to provide alternative generators
for examples asserted to exist by the following theorem (stated in our terms) due to
P. Mani(i2) (his Proposition 2). This is a higher-dimensional version of Theorem 2,
but here only the sphere boundary is needed.

For a closed {n— 1)-dimensional surface in Un, we say it is convex (or strictly
convex) if the bounded domain enclosed by the surface is convex (or strictly convex).
(The interior simplices are not needed for strict convexity.)

THEOREM 3 (Mani). For each n ^ 4 there is a convex simplicial complex (a simplicial
(n— i)-sphere) K71-1 in Un stuch that Kn~x is not simplicially isomorphic to a strictly
convex complex in Un.

Actually the (n — 1 )-spheres guaranteed by Mani have only n + 4 vertices, and our
sphere will surely have many more but our methods are somewhat different.

Briefly the idea is to start with an example of Theorem 2 and then take the cone
over its boundary from a point in R4 not in R3. This defines Kz in i?4. Triangulating
the bounded domain of \K3\ without adding any new vertices to K3 and taking the
cone over K3 from a point in R5 not in R4 gives K*, etc. It is easy to show that these
Kn'$ have the desired properties for Theorem 3.

In Mani(i2) K3 is created from a complex due basically to Griinbaum and Sree-
dharan(iO) and simplified (and changed slightly) by D. Barnette(l). This is a simplicial
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subdivision of a tetrahedron (with eight vertices) that is not simplicially isomorphic
to a strictly convex complex in R4. See Griinbaum(9) chapter 11 for another version
(the first). To rephrase this, there are examples of d-diagrams for d = 3 (simplicial
subdivisions of d-simplices) that are not Schlegel diagrams (projections onto one
face of the rest of the boundary) of a polytope in Rd+1 (a strictly convex triangulated
d-dimensional surface). In all of our examples coming from Theorem 2 at least one
(d — 1)-dimensional face has a support plane that intersects the convex set in just that
face. So we could project from a point close to the face on the opposite side of the rest
of the complex to get our own examples of ^-diagrams that are not Schlegel diagrams.
I t is intriguing to compare the twisting in our examples with the twisting in Bar-
nette's(l). Our examples, however, will have many more than eight vertices.

According to Barnette, Griinbaum's example and his have the property that they
cannot be 'inverted'. That is they could be realized in various ways with different
tetrahedra as the outside tetrahedron, but not any tetrahedron can be the outside of a
representation. He even conjectures that an invertible 3-diagram is a Schlegel diagram.
I t would be interesting to know if our examples are invertible. However, see (24).

(Ill) The hierarchy and some questions. The examples discussed above fit naturally
into a hierarchy of complexes that have more and more convexity. First, there is
Cairns' example (3) (see (9) or (18) also) of a 3-complex with a subdivision isomorphic
to a subdivision of a 3-simplex, but not isomorphic itself to any complex in R3.

Second, there are examples due to Goodrick(8) of complexes in R3 which have sub-
divisions isomorphic to a subdivision of a 3-simplex, but are not themselves isomorphic
to any convex complex in R3. These are the cubes with a knotted plug, and it is possible
for them to be simplicially collapsible, also, as long as the ' bridge number' of the knot
is 2. (See Lickorish and Martin(11).) If the bridge number of the knot is high, then it
turns out that these examples cannot simplicially collapse (see Goodrick(8)) and from
Chillingworth's theorem they, therefore, cannot be simplicially isomorphic to a convex
complex in R3.

Third, our example of Theorem 2 is convex but not strictly convex, and in higher
dimensions it need only be defined on the boundary.

In view of our results, it is natural to make the following definition. A convex
simplicial complex K in Un is said to be k-strictly convex if, for every ^-simplex crk

in the boundary of K, there is a support plane for \K\ intersecting \K\ in only ak.
I t is easy to check that \iK is fc-strictly convex, then it is fc'-strictly convex for

every k' ^ k, and if K is (n— 2)-strictly convex, it is (n— l)-strictly convex. So (n—l)-
strict convexity is what we have been calling strict convexity.

Note that even if for every (n — 3)-simplex, an~3, in the boundary of K, a support
plane of \K\ intersects \K\ only in o~n~2, then K might be non-convex.

Theorem 2 can be interpreted as saying that the complex defined there is not
simplicially isomorphic to a O-strictly convex complex. However, Theorem 3 seems
to need (n— 1)-strict convexity.

Question. Let K be a convex O-strictly convex complex in Un. Is K simplicially
isomorphic (by a small move) to a complex K' that is (n - l)-strictly convex?
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If the answer to the question were affirmative, then there would be little essential
difference between the types of strict convexity.

For n = 3 the answer to the question is yes. A detailed proof is out of place here,
but very briefly the idea is to find a triangular face, if one is available, that is the
intersection of a support plane with \K\. By projecting the rest of K into this face
one can view the projection as a framework in equilibrium with non-negative tensions
as mentioned in-the introduction.

The edges with 0-tensions correspond to the ' flat' edges of K. By adding a very
small amount of tension to these 0-tension edges the framework then will have another
equilibrium near to the original. Then a 1-strictly convex surface (thus strictly
convex) can be recovered close to the original K. UK has no triangular face (2-simplex)
that is the intersection of a support plane with \K\, then it can be shown that K has
a vertex v with only three ' bent' edges. Then one can ' slice off' v to create a triangular
face and apply the above procedure leaving the tensions zero on the 0-tension edges
that touch this new face. This will create a triangular face outside the star of v. Then
put v back in by extending the nearby faces. The altered complex will now have a
triangular face and the above argument applies.

Remark 5. A natural question is: can a convex complex be subdivided to allow it
to be altered to a strictly convex embedding? It is easy to see that if one takes a
'stellar' subdivision of a strictly convex complex, then there is a small motion of the
star points that makes that subdivision strictly convex. (See Ewald and Shephard(7),
theorem 4, for this same observation.) Any convex n-complex K of Un has a subdivision
L (not necessarily stellar) which is isomorphic to a stellar subdivision of the n-simplex
(see Zeeman(20) or Rourke and Sanderson(l4) for instance). Thus L has a strictly
convex embedding in R™. So the answer to this question is yes.

Addendum. R. Stanley has pointed out to us that if one takes an example of M. E.
Rudin(22), which is a non-shellable triangulation of tetrahedron (see (22) for the defi-
nition of shellable), and cones over its boundary from a point in R4, not in the 3-space
spanned by the tetrahedron, then one obtains another example of a convex triangulated
three-sphere in R4 that is not simplicially isomorphic to a strictly convex embedding.
This is because if there were a strictly convex embedding in R4 an argument of P.
McMullen(23) (p. 182 in the middle), following H. Bruggesser and P. Mani(21), implies
that the complement of the star of the cone point, which is the Rudin complex, would
shell, a contradiction. Thus there is no strictly convex embedding. So this provides an
alternate example for Theorem 3.

However, there is more. Rudin's complex has the property that all its vertices are
on the boundary of the tetrahedron, and it is not hard to show that the vertices can
be moved slightly so that Rudin's example can be taken to be strictly convex in R3.
This can be seen since the subdivision of the tetrahedron when restricted to the
boundary is a stellar subdivision and Remark 5 above applies. If one now takes the
cone over the boundary of this complex, Stanley's argument still applies, and so this
triangulated three-sphere is also not simplicially isomorphic to a strictly convex
complex in R4. However, it is easily seen that this three-sphere in R4 is O-strictly
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convex. Thus the answer to our question above in the beginning of this section is that
K is not always simplicially isomorphic to a strictly convex embedding, even if it is 0-
strictly convex.
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