
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=uamm20

The American Mathematical Monthly

ISSN: 0002-9890 (Print) 1930-0972 (Online) Journal homepage: http://www.tandfonline.com/loi/uamm20

Sudoku, Gerechte Designs, Resolutions, Affine
Space, Spreads, Reguli, and Hamming Codes

R. A. Bailey, Peter J. Cameron & Robert Connelly

To cite this article: R. A. Bailey, Peter J. Cameron & Robert Connelly (2008) Sudoku, Gerechte
Designs, Resolutions, Affine Space, Spreads, Reguli, and Hamming Codes, The American
Mathematical Monthly, 115:5, 383-404, DOI: 10.1080/00029890.2008.11920542

To link to this article:  https://doi.org/10.1080/00029890.2008.11920542

Published online: 31 Jan 2018.

Submit your article to this journal 

Article views: 1

View related articles 

Citing articles: 4 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=uamm20
http://www.tandfonline.com/loi/uamm20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00029890.2008.11920542
https://doi.org/10.1080/00029890.2008.11920542
http://www.tandfonline.com/action/authorSubmission?journalCode=uamm20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uamm20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00029890.2008.11920542
http://www.tandfonline.com/doi/mlt/10.1080/00029890.2008.11920542
http://www.tandfonline.com/doi/citedby/10.1080/00029890.2008.11920542#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/00029890.2008.11920542#tabModule


Sudoku, Gerechte Designs, Resolutions,
Affine Space, Spreads, Reguli,

and Hamming Codes

R. A. Bailey, Peter J. Cameron, and Robert Connelly

1. INTRODUCTION. The popular Sudoku puzzle was invented, with the name
“number place,” by Harold Garns in 1979. The puzzle consists of a 9 × 9 grid parti-
tioned into 3 × 3 subsquares, some of which contain symbols from the set {1, . . . , 9}
with no symbol occurring more than once in any row, column, or subsquare; the aim
of the puzzle is to place the symbols in the remaining grid cells subject to the same
restrictions.

The solution to a Sudoku puzzle is a special case of a “gerechte design,” in which an
n × n grid is partitioned into n regions with n squares in each, and each of the symbols
1, . . . , n occurs once in each row, column, or region. Gerechte designs originated in
statistical design of agricultural experiments, where they ensure that treatments are
fairly exposed to localised variations in the field containing the experimental plots.

In this paper, we will explain several connections between Sudoku and various parts
of mathematics and statistics. In the next section, we define gerechte designs, and ex-
plain how they can be enumerated. The third section describes their use in statistics,
and the kinds of properties that statisticians require of the designs they use. In the
fourth section we look at a special type of Sudoku solution which we call “symmetric,”
and show that there are just two types of these, using techniques from finite geome-
try and coding theory. The last section describes some other special types of Sudoku
solution and some generalizations.

2. GERECHTE DESIGNS.

2.1. Definition. A Latin square of order n is an n × n array containing the symbols
1, . . . , n in such a way that each symbol occurs once in each row and once in each
column of the array. We say that two Latin squares L1 and L2 of order n are orthogonal
to each other if, given any two symbols i and j , there is a unique pair (k, l) such that
the (k, l) entries of L1 and L2 are i and j respectively.

In 1956, W. U. Behrens [4] introduced a specialisation of Latin squares which he
called “gerechte.” The n × n grid is partitioned into n regions S1, . . . , Sn, each con-
taining n cells of the grid; we are required to place the symbols 1, . . . , n into the cells
of the grid in such a way that each symbol occurs once in each row, once in each col-
umn, and once in each region. The row and column constraints say that the solution
is a Latin square, and the last constraint restricts the possible Latin squares. Solutions
to Sudoku puzzles are examples of gerechte designs, where n = 9 and the regions are
the 3 × 3 subsquares.

Here is another example of a gerechte design. Let L be any Latin square of order n,
and let the region Si be the set of cells containing the symbol i in the square L . A
gerechte design for this partition is precisely a Latin square orthogonal to L .

This example shows that there is not always a gerechte design for a given partition.
A simpler negative example is obtained by taking one region to consist of the first
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n − 1 cells of the first row and the nth cell of the second row. We might ask: given a
grid, and a partition into regions, what is the complexity of deciding whether a gerechte
design exists?

For another example, consider the partitioned grid shown in Figure 1: this example
was considered by Behrens in 1956. (Ignore the triples to the right of the grid for a
moment.) Six solutions are shown. Up to rotations of the grid and permutations of the
symbols 1, . . . , 5, these are all the solutions, as we will explain shortly. (The complete
set of fifteen solutions is given in [3].)

{r1, c1, s1} {r1, c2, s1} {r1, c3, s1} {r1, c4, s2} {r1, c5, s2}
{r2, c1, s1} {r2, c2, s1} {r2, c3, s5} {r2, c4, s2} {r2, c5, s2}
{r3, c1, s4} {r3, c2, s5} {r3, c3, s5} {r3, c4, s5} {r3, c5, s2}
{r4, c1, s4} {r4, c2, s4} {r4, c3, s5} {r4, c4, s3} {r4, c5, s3}
{r5, c1, s4} {r5, c2, s4} {r5, c3, s3} {r5, c4, s3} {r5, c5, s3}

3 4 5 1 2

5 1 2 3 4

2 3 4 5 1

4 5 1 2 3

1 2 3 4 5

3 5 2 1 4

2 1 4 5 3

4 3 5 2 1

5 4 1 3 2

1 2 3 4 5

3 1 5 2 4

2 5 4 1 3

4 3 2 5 1

5 4 1 3 2

1 2 3 4 5

2 1 5 3 4

3 5 4 2 1

4 3 1 5 2

5 4 2 1 3

1 2 3 4 5

3 1 5 2 4

2 5 4 1 3

4 3 1 5 2

5 4 2 1 3

1 2 3 4 5

2 4 1 5 3

3 1 5 2 4

5 3 4 1 2

4 5 2 3 1

1 2 3 4 5

Figure 1. A partitioned 5 × 5 grid (top left), its representation as a block design (top right), and all inequivalent
gerechte designs (bottom).

2.2. Resolvable block designs. A block design is a structure consisting of a set of
points and a set of blocks, with an incidence relation between points and blocks. Of-
ten we identify a block with the set of points incident to it, so that a block design is
represented by a family of sets; however, the same set may occur more than once.

A block design is said to be resolvable if the set of blocks can be partitioned into
subsets C1, . . . , Cr (called replicates) such that each point is incident with just one
block in any replicate Ci . The partition of the block set is called a resolution of the
design.

The search for gerechte designs for a given partitioned grid can be transformed into
a search for resolutions of a block design, as we now show.

The basic data for a gerechte design is an n × n grid partitioned into n regions
S1, . . . , Sn, each containing n cells. We can represent this structure by a block design
as follows:

• the points are 3n objects r1, . . . , rn , c1, . . . , cn, s1, . . . , sn;
• for each of the n2 cells of the grid, there is a block {ri , c j , sk} if the cell lies in the

i th row, the j th column, and the kth region.
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Proposition 2.1. Gerechte designs on a given partitioned grid correspond, up to per-
muting the symbols 1, . . . , n, in one-to-one fashion with resolutions of the above block
design.

Proof. Given a gerechte design, let Ci be the set of cells containing the symbol i . By
definition, the blocks corresponding to these cells contain each row, column, or region
object exactly once, and so form a partition of the point set. Any cell contains a unique
symbol i , so every block occurs in just one class Ci . Thus we have a resolution. The
converse is proved in the same way.

The GAP [10] share package DESIGN [22] can find all resolutions of a block de-
sign, up to isomorphisms of the block design. In our case, isomorphisms of the block
design come from symmetries of the partitioned grid, so we can use this package to
compute all gerechte designs up to permutation of symbols and symmetries of the
partitioned grid.

For example, the partition of the 5 × 5 grid discussed in the preceding section is
represented as a block design with 15 points and 25 blocks of size 3, also shown
in Figure 1. The automorphism group of the design is the cyclic group of order 4
consisting of the rotations of the grid through multiples of π/2. The DESIGN program
quickly finds that, up to automorphisms, there are just six resolutions of this design,
corresponding to six inequivalent gerechte designs; these are shown in the figure.

The same method shows that, for a 6 × 6 square divided into 3 × 2 rectangles, there
are 49 solutions up to symmetries of the corresponding block design and permutations
of the symbols. (The number of symmetries of the block design in this case is 3456;
the group consists of all row and column permutations preserving the appropriate par-
titions.)

2.3. Orthogonal and multiple gerechte designs. We saw earlier the definition of
orthogonality of Latin squares. A set of mutually orthogonal Latin squares is a set of
Latin squares in which every pair is orthogonal. It is known that the size of a set of
mutually orthogonal Latin squares of order n is at most n − 1.

Similar definitions and results apply to gerechte designs. We say that two gerechte
designs with the same partitioned grid are orthogonal to each other if they are orthogo-
nal as Latin squares, and a set of mutually orthogonal gerechte designs is a set of such
designs in which each pair is orthogonal.

Proposition 2.2. Given a partition of the n × n grid into regions S1, . . . , Sn, each of
size n, the size of a set of mutually orthogonal gerechte designs for this partition is at
most n − d, where d is the maximum size of the intersection of a region Si and a line
(row or column) L j �= Si .

Proof. Take a cell c ∈ L j \ Si . By permuting the symbols in each square, we may
assume that all the squares have entry 1 in the cell c. Now, in each square, the symbol 1
occurs exactly once in the region Si and not in the line L j ; and all these occurrences
must be in different cells, since for each pair of squares, the pair (1, 1) of entries
already occurs in cell c. So there are at most |Si \ L j | squares in the set.

This bound is not always attained. Consider the 5 × 5 gerechte designs given ear-
lier. The maximum intersection size of a line and a region is clearly 3, so the bound
for the number of mutually orthogonal designs is 2. But by inspection, each design has
the property that the entries in cells (2, 3) and (3, 5) are equal. (The reader is invited
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to discover the simple argument to show that this must be so, independent of the enu-
meration of the designs.) Hence no pair of orthogonal designs is possible. Similarly,
for the 6 × 6 square divided into 3 × 2 rectangles, there cannot exist two orthogonal
gerechte designs, since it is well known that there cannot exist two orthogonal Latin
squares of order 6.

Proposition 2.2 gives an upper bound of 6 for the number of mutually orthogonal
Sudoku solutions. In Section 4.4, we will see that this bound is attained.

The concept of a gerechte design can be generalized. Suppose that we are given a
set of r partitions of the cells of an n × n grid into n regions each of size n. A multiple
gerechte design for this partition is a Latin square which is simultaneously a gerechte
design for all of the partitions.

For example, given a set of Latin squares, the symbols in each square define a
partition of the n × n array into regions. A Latin square is a multiple gerechte design
for all of these partitions if and only if it is orthogonal to all the given Latin squares.

The problem of finding a multiple gerechte design can be cast into the form of
finding a resolution of a block design, in the same way as for a single gerechte design.
The block design has (r + 2)n points, and each cell of the grid is represented by a block
containing the objects indexing its row, its column, and the region of each partition
which contains it. Again, we can use the DESIGN program to classify such designs up
to symmetries of the grid.

For example, Federer [9], in a section which he attributed to G. M. Cox, called a
m1m2 × m1m2 Latin square magic if it is a gerechte design for the regions forming the
obvious partition into m1 × m2 rectangles, and super magic if it is simultaneously a
gerechte design for the partition into m2 × m1 rectangles, where m1 �= m2. He consid-
ered the problem of finding multiple gerechte designs (which he called “super magic
Latin squares”) for the 6 × 6 square partitioned into 3 × 2 rectangles and 2 × 3 rect-
angles. The DESIGN package finds that there are 26 such designs up to symmetries.

We can also define a set of mutually orthogonal multiple gerechte designs in the
obvious way, and prove a similar bound for the size of such a set. We will see examples
of these things in Section 4.4.

3. STATISTICAL CONSIDERATIONS. In this section, we consider the use of
gerechte designs in statistical design theory, and some additional properties which are
important there.

3.1. Agricultural experiments in Latin squares. The statistician R. A. Fisher sug-
gested the use of Latin squares in agricultural experiments. If n “treatments” (crop
varieties, quantities of fertilizer, etc.) are to be compared on plots forming an n × n
grid in a field, then arranging the treatments as the symbols of a Latin square ensures
that any systematic change in fertility, drainage, etc. across the field affects all treat-
ments equally. Figure 2 shows two experiments laid out as Latin squares.

If a Latin square experiment is to be conducted on land that has recently been used
for another Latin square experiment, it is sensible to regard the previous treatments
as relevant and so to use a Latin square orthogonal to the previous one. As explained
above, this is technically a sort of gerechte design, but no agricultural statistician would
call it that.

The purpose of a gerechte design in agricultural experimentation is to ensure
that all treatments are fairly exposed to any different conditions in the field. In fact,
“gerecht(e)” is the German for “fair” in the sense of “just.” Rows and columns are
good for capturing differences such as distance from a wood, but not for marking
out stony patches or other features that tend to clump in compact areas. Thus, in the
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Figure 2. Two experiments using Latin squares. Left: a 5 × 5 forestry experiment in Beddgelert in Wales,
to compare varieties of tree; designed by R. A. Fisher, laid out in 1929, and photographed in 1952. Right: a
current 6 × 6 experiment to compare methods of controlling aphids; conducted by Lesley Smart at Rothamsted
Research, photographed in 2004.

statistical and agronomic literature, the regions of a gerechte design are always taken
to be “spatially compact” areas.

3.2. Randomization. Before a design is used for an experiment, it is randomized.
This means that a permutation of the cells is chosen at random from among all those
that preserve the three partitions: into rows, into columns, and into regions. It is by no
means common for the cells to be actually square plots on the ground; when they are,
it is also possible to transpose rows and columns, if the regions are unchanged by this
action. This random permutation is applied to the chosen gerechte design before it is
laid out in the field.

One important statistical principle is lack of bias. This means that every plot in the
field should be equally likely to be matched, by the randomization, to each abstract
cell in the gerechte design, so that any individual plot with strange characteristics is
equally likely to affect any of the treatments. This lack of bias is achieved if and only if
the set of permutations used for randomizing forms a transitive group, in the sense that
there is such a permutation carrying any nominated cell to any other. The allowable
permutations of the 5 × 5 grid in Figure 1 do not have this property, but those for
magic Latin squares do. There are other examples in which lack of bias is achieved,
but no complete classification as far as we know.

For the remainder of this section we assume that n = m1m2 and the regions are
m1 × m2 rectangles. Then the rows, columns, and regions define some other areas: a
large row is the smallest area that is simultaneously a union of regions and a union of
rows; a minirow is the nonempty intersection of a row and region; large columns and
minicolumns are defined similarly.

A pair of distinct cells in such a grid is in one of eight relationships, illustrated in
Figure 3 for the 6 × 6 grid with 3 × 2 regions. For i = 1, . . . , 8, the cell labelled ∗ is
in relationship i with the cell labelled i . Thus a pair of distinct cells is in relationship 1
if they are in the same minirow; relationship 2 if they are in the same minicolumn;
relationship 3 if they are in the same region but in different rows and columns; rela-
tionship 4 if they are in the same row but in different regions; relationship 5 if they are
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in the same column but in different regions; relationship 6 if they are in the same large
row but in different rows and regions; relationship 7 if they are in the same large col-
umn but in different columns and regions; relationship 8 if they are in different large
rows and large columns.

∗ 1 4

2 6

3

5 8

7

Figure 3. Eight relationships between pairs of distinct cells in the 6 × 6 grid.

The group of permutations used for randomization has the property that a pair of
distinct cells can be mapped to another pair by one of the permutations if and only
if they are in the same relationship. If, in addition, we can transpose the rows and
columns (not possible in Figure 3) then relationships 1 and 2 are merged, as are 4 and
5, and 6 and 7.

The simple-minded analysis of data from an experiment in a gerechte design as-
sumes that the response (such as yield of grain, or the logarithm of the number of
aphids) on each cell is the sum of four unknown parameters, one each for the row,
column, and region containing the cell, and one for the treatment (symbol) applied to
it. In addition, there is random variation from cell to cell. This is explained in [2]. The
statistician is interested in the treatment parameters—not only in their values but also
in whether their differences are greater than can be explained by cell-to-cell variation.

However, one school of statistical thought holds that if the innate differences be-
tween rows, between columns, and between regions are relevant, then so potentially
are those between minirows, minicolumns, large rows, and large columns. Yates took
this view in his 1939 paper [24], whose discussion of a 4 × 4 Latin square “with bal-
anced corners” may be the first published reference to gerechte designs. Thus the eight
relationships all have to be considered when the gerechte design is chosen.

3.3. Orthogonality and the design key. Two further important statistical properties
often conflict with each other. One is ease of analysis, which means not ease of per-
forming arithmetic but ease of explaining the results to a nonstatistician. So-called
orthogonal designs, like the one in Figure 4, have this property.

A gerechte design with rectangular regions is orthogonal if the arrangement of sym-
bols in each region can be obtained from the arrangement in any other region just by
permuting minirows and minicolumns. In Figure 4, each minicolumn contains either
treatments 1, 2, and 3 or treatments 4, 5, and 6. When the statistician investigates
whether there is any real difference between the average effects of these two sets of
treatments, (s)he compares their difference (estimated from the data) with the under-
lying variability between minicolumns within regions and columns (also estimated
from the data). Similarly, differences between the average effects of the three sets of
two treatments {1, 4}, {2, 5}, and {3, 6} are compared with the variability of minirows
within regions and rows. Treatment differences orthogonal to all of those, such as the
difference between the average of {1, 5} and the average of {2, 4}, are compared with
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5 2 6 3 4 1

6 3 4 1 5 2

4 1 5 2 6 3

2 5 3 6 1 4

3 6 1 4 2 5

1 4 2 5 3 6

Figure 4. An orthogonal design for the 6 × 6 grid with 3 × 2 regions.

the residual variability between the cells after allowing for the variability of all the
partitions.

An orthogonal design for an m1m2 × m1m2 square with m1 × m2 regions may be
constructed using the design key method [18, 19], as recommended in [3]. The large
rows are labelled by A1, which takes values 1, . . . , m2. Within each large row, the rows
are labelled by A2, which takes values 1, . . . , m1. Similarly, the large columns are
labelled by B1, taking values 1, . . . , m1, and the columns within each large column by
B2, taking values 1, . . . , m2. Then put N1 = A1 + B2 modulo m2 and N2 = A2 + B1

modulo m1. The ordered pairs of values of N1 and N2 give the m1m2 symbols. In
Figure 4, the rows are numbered from top to bottom, the columns from left to right,
and the correspondence between the ordered pairs and the symbols is as follows.

N2

1 2 3

1 1 2 3
N1 2 4 5 6

(When explaining this construction to nonmathematicians we usually take the integers
modulo m to be 1, . . . , m rather than 0, . . . , m − 1.)

Variations on this construction are possible, especially when m1 and m2 are both
powers of the same prime p. For example, if m1 = 4 and m2 = 2 then we can work
modulo 2, using A1 to label the large rows, A2 and A3 to label the rows within large
rows, B1 and B2 to label the large columns, and B3 to label the columns within large
columns. Numbers can be allocated by putting N1 = A1 + B3, N2 = A2 + B1, and
N3 = A3 + B2. All that is required is that no nonzero linear combination (modulo 2)
of N1, N2, and N3 contains only A1, B1, and B2, or a subset thereof, or only a subset
of {A1, A2, A3}, or only a subset of {B1, B2, B3}.

3.4. Efficiency and concurrence. The other important statistical property is effi-
ciency, which means that the estimators of the differences between treatments should
have small variance. At one extreme, we might decide that the innate differences be-
tween minicolumns are so great that the design in Figure 4 provides no information at
all about the difference between the average of treatments 1, 2, and 3 and the average
of treatments 4, 5, and 6; and similarly for minirows. In this case, it can be shown (see
[1, Chapter 7]) that the relevant variances can be deduced from the matrix

M = m1m2 I − 1

m2
�R − 1

m1
�C + J.
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Here I is the n × n identity matrix and J is the n × n all-1 matrix. The concurrence
of symbols i and j in minirows is the number of minirows containing both i and j
(which is n when i = j): the matrix �R contains these concurrences. The matrix �C

is defined similarly, using concurrences in minicolumns. It is known that if the off-
diagonal entries in the matrix M are all equal then the average variance is as small as
possible for the given values of m1 and m2, so the usual heuristic is to choose a design
in which the off-diagonal entries differ as little as possible. If m1 = m2, this means
that the sums of the concurrences are as equal as possible. We explore this property
for Sudoku solutions in Section 5.1.

The minirows give rise to a block design whose points are the symbols; for each
minirow, there is a block incident to the symbols occurring in that minirow. A similar
construction applies to minicolumns. If m1 = m2, it is natural to combine these into a
single block design. This is the point of view we adopt in Section 5.1.

A compromise between the statistical properties of orthogonality and efficiency is
general balance [13, 16, 17], which requires that the concurrence matrices �R and �C

commute with each other. A special case of general balance is adjusted orthogonality
[8, 15], for which �R�C = n2 J . It can be shown that a gerechte design with rectangu-
lar regions is orthogonal in the sense of Section 3.3 if it has adjusted orthogonality and
�2

R = nm2�R and �2
C = nm1�C . This property is also explored further in Section 5.1.

4. SOME SPECIAL SUDOKU SOLUTIONS. Our main aim in this section is to
consider some very special Sudoku solutions which we call symmetric. We state our
main results first. The proofs will take us on a tour through parts of finite geometry
and coding theory; we have included brief introductions to these topics, for readers
unfamiliar with them who want to follow us through the proofs of the theorems.

We have seen that a Sudoku solution is a gerechte design for the 9 × 9 array parti-
tioned into nine 3 × 3 subsquares. To define symmetric Sudoku solutions, we need a
few more types of region.

As defined in the last section, a minirow consists of three cells forming a row of a
subsquare, and a minicolumn consists of three cells forming a column of a subsquare.
We define a broken row to be the union of three minirows occurring in the same po-
sition in three subsquares in a column, and a broken column to be the union of three
minicolumns occurring in the same position in three subsquares in a row. A location
is a set of nine cells occurring in a fixed position in all of the subsquares (for example,
the centre cells of all subsquares).

Now a symmetric Sudoku solution is an arrangement of the symbols 1, . . . , 9 in a
9 × 9 grid in such a way that each symbol occurs once in each row, column, subsquare,
broken row, broken column, and location. In other words, it is a multiple gerechte de-
sign for the partitions into subsquares, broken rows, broken columns, and locations.
Figure 5 shows a symmetric Sudoku solution. The square shown has the further prop-
erty that each of the 3 × 3 subsquares is “semi-magic”, that is, its row and column
sums (but not necessarily its diagonal sums) are 15 (John Bray [6]).

As in Section 2, two Sudoku solutions are equivalent if one can be obtained from the
other by a combination of some or all of the following operations: row permutations
preserving the partition into large rows; column permutations preserving the partition
into large columns; transposition; and renumbering of the symbols.

The main result of this section asserts that, up to equivalence, there are precisely two
symmetric Sudoku solutions. This theorem can be proved by a computation of the type
described in Subsection 2.2. However, we give a more conceptual proof, exploiting the
links with the other topics of the title.
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8 1 6 2 4 9 5 7 3

3 5 7 6 8 1 9 2 4

4 9 2 7 3 5 1 6 8

7 3 5 1 6 8 4 9 2

2 4 9 5 7 3 8 1 6

6 8 1 9 2 4 3 5 7

9 2 4 3 5 7 6 8 1

1 6 8 4 9 2 7 3 5

5 7 3 8 1 6 2 4 9

Figure 5. A semi-magic symmetric Sudoku solution.

We also consider mutually orthogonal sets; we show that the maximum number
of mutually orthogonal Sudoku solutions is 6, and the maximum number of mutually
orthogonal symmetric Sudoku solutions is 4. Moreover, there is a set of six mutually
orthogonal Sudoku solutions of which four are symmetric. These are exhibited in Fig-
ure 10.

Throughout this section will will use GF(3) to denote the finite field with three
elements (the integers modulo 3).

4.1. Preliminaries. In this subsection we describe briefly the notions of affine and
projective geometry and coding theory. Readers familiar with this material may skip
this subsection.

Affine geometry. An affine space is just a vector space with the distinguished role
of the origin removed. Its subspaces are the cosets of the vector subspaces, that is,
sets of the form U + v, where U is a vector subspace and v a fixed vector, the coset
representative. This coset is also called the translate of U by v. Two affine subspaces
which are cosets of the same vector subspace are said to be parallel, and the set of all
cosets of a given vector subspace forms a parallel class. A transversal for a parallel
class of affine subspaces is a set of coset representatives for the vector subspace.

We use the terms “point,” “line,” and “plane” for affine subspaces of dimension
0, 1, and 2 respectively. We denote the n-dimensional affine space over a field F by
AG(n, F); if |F | = q, we write AG(n, q). The space AG(n, q) contains qn points;
each line contains q points.

We will use the fact that a subset of AG(n, F) is an affine subspace if (and only if)
it contains the unique affine line through each pair of its points. In affine space over
the field GF(3), a line has just three points, and the third point on the line through p1

and p2 is the “midpoint” (p1 + p2)/2 = −(p1 + p2).

Projective geometry. Much of the argument in the proof of the main theorem of this
section will be an examination of collections of subspaces of a vector space. This can
also be cast into geometric language, that of projective geometry.

The n-dimensional projective space PG(n, F) over a field F is the geometry whose
points, lines, planes, etc. are the 1-, 2-, 3-dimensional (and so on) subspaces of an
(n + 1)-dimensional space V (which we can take to be Fn+1). A point P lies on a line
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L if P ⊂ L (as subspaces of Fn+1). If |F | = q, we denote this space by PG(n, q). The
space PG(n, q) has (qn+1 − 1)/(q − 1) points, and each line has q + 1 points.

For example, a point of the projective space PG(n, F) is a 1-dimensional subspace
of the vector space Fn+1, and so it corresponds to a parallel class of lines in the affine
space AG(n + 1, F). The points of the projective space can therefore be thought of as
“points at infinity” of the affine space.

We will mostly be concerned with 3-dimensional projective geometry; we refer to
[7, 12]. We will use the following notions:

• Two lines are said to be skew if they are not coplanar. Skew lines are necessarily
disjoint. Conversely, since any two lines in a projective plane intersect, disjoint lines
are skew. So the terms “disjoint” and “skew” for lines in projective space are syn-
onyms. We will normally refer to disjoint lines. Note that disjoint lines in PG(n, F)

arise from 2-dimensional subspaces in Fn+1 meeting only in the origin.
• A hyperbolic quadric in PG(3, F) is the set of points satisfying the equation x1x2 +

x3x4 = 0, or its image under an invertible linear map on F4. Any such quadric con-
tains two “rulings,” each of which is a set of pairwise disjoint lines covering all the
points of the quadric (Figure 6). Such a set of lines is called a regulus, and the other
set is the opposite regulus. There are many reguli in the space. For example, any
three pairwise disjoint lines of the projective space lie in a unique regulus; the lines
of the opposite regulus are all the lines meeting the given three lines (their com-
mon transversals). Also, if L1 and L2 are disjoint lines and L3, L4 disjoint common
transversals to L1 and L2, there is a unique regulus containing L1 and L2 whose
opposite contains L3 and L4. The proofs of all these facts are exercises in coordinate
geometry. In PG(3, q), a regulus contains q + 1 lines.

• A spread is a family of pairwise disjoint lines of PG(3, F) covering all the points of
the space. A spread is regular if it contains the regulus through any three of its lines.
(Any three lines of a spread are pairwise disjoint, and so lie in a unique regulus.) It
can be shown that, if the field F is finite, then there exists a regular spread, and any
regulus is contained in one. In particular, this holds when F = GF(3). In PG(3, q),
a spread contains (q4 − 1)/((q − 1)(q + 1)) = q2 + 1 lines.
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Figure 6. A hyperbolic quadric and its two rulings.

The fact that any pair of lines in a projective plane intersect is a consequence of
the dimension formula of linear algebra. The points and lines of the plane are 1- and
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2-dimensional subspaces of a 3-dimensional vector space; and if two 2-dimensional
subspaces U1 and U2 are unequal, then

dim(U1 ∩ U2) = dim(U1) + dim(U2) − dim(U1 + U2) = 2 + 2 − 3 = 1.

The second and third bullet points are most easily proved using coordinates. We will
see an example of a regulus and its opposite in coordinates later.

In the final section of the paper we briefly consider higher dimensions, and use
the fact that PG(2m − 1, q) has a spread of (m − 1)-dimensional subspaces. Indeed,
any three pairwise disjoint (m − 1)-dimensional spaces lie in a spread. Such a spread
contains qm + 1 subspaces.

Coding theory. A code of length n over a fixed alphabet A is just a set of n-tuples
of elements of A; its members are called codewords. The Hamming distance between
two n-tuples is the number of positions in which they differ. The minimum distance
of a code is the smallest Hamming distance between distinct codewords. For example,
if the minimum distance of a code is 3, and the code is used in a communication
channel where one symbol in each codeword might be transmitted incorrectly, then
the received word is closer to the transmitted word than to any other codeword (by
the triangle inequality), and so the error can be corrected; we say that such a code is
1-error-correcting.

A 1-error-correcting code of length 4 over an alphabet of size 3 contains at most 9
codewords. For, given any codeword, there are 1 + 4 · 2 = 9 words which can be ob-
tained from it by making at most one error; these sets of nine words must be pairwise
disjoint, and there are 34 = 81 words altogether, so there are at most 9 such sets. If
the bound is attained, the code is called perfect, and has the property that any word is
distant at most 1 from a unique codeword.

It is known that there is, up to a suitable notion of equivalence, a unique perfect
code of length 4 over an alphabet of size 3, the so-called Hamming code. We do not
assume this uniqueness; we will determine all perfect codes in the course of our proof
(see Proposition 4.2).

If the alphabet is a finite field F , the code C is linear if it is a subspace of the
vector space Fn . The Hamming code is a linear code. Note that translation by a fixed
vector preserves Hamming distance; so, for example, if a linear code is perfect 1-error-
correcting, then so is each of its cosets.

A linear code C of dimension k can be specified by a generator matrix, a k × n
matrix whose row space is C . The code with generator matrix

[
0 1 1 1
1 0 1 2

]
(1)

is a Hamming code. Of course, permutations of the rows and columns of this matrix,
and multipication of any column by −1, give generator matrices for other Hamming
codes.

See Hill [11] for further details.

4.2. Sudoku and geometry over GF(3). Following the idea of the design key de-
scribed in Section 3.3, we coordinatize the cells of a Sudoku grid using GF(3) =
{0, 1, 2}. Each cell c has four coordinates (x1, x2, x3, x4), where
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• x1 is the number of the large row containing c;
• x2 is the number of the row within this large row which contains c;
• x3 is the number of the large column containing c;
• x4 is the number of the column within this large column which contains c.

(In each case we start the numbering at zero. We number rows from top to bottom and
columns from left to right.)

Now the cells are identified with the points of the four-dimensional vector space
V = GF(3)4. The origin of the vector space is the top left cell. However, there is
nothing special about this cell, so we should think of the coordinates as forming an
affine space AG(4, 3).

Some regions of the Sudoku grid which we have already discussed are cosets of 2-
dimensional subspaces, as shown in the following table. Each 2-dimensional subspace
corresponds to a line in PG(3, 3); we name these lines for later reference.

Table 1. Some subspaces of GF(3)4.

Equation Description of cosets Line in PG(3, 3)

x1 = x2 = 0 Rows L1

x3 = x4 = 0 Columns L2

x1 = x3 = 0 Subsquares L3

x1 = x4 = 0 Broken columns L5

x2 = x3 = 0 Broken rows L6

x2 = x4 = 0 Locations L4

In addition, the main diagonal is the subspace defined by the equations x1 = x3

and x2 = x4, and the antidiagonal is x1 + x3 = x2 + x4 = 2, a coset of the subspace
x1 = −x3, x2 = −x4. (The other cosets of these two subspaces are not so obvious in
the grid.)

Now, in a Sudoku solution, each symbol occurs in nine positions forming a transver-
sal for the cosets of the subspaces defining rows, columns, and subsquares as above
(this condition translates into “one position in each row, column, or subsquare”). A
Sudoku solution is symmetric if it also has the analogous property for broken rows,
broken columns, and locations.

We call a Sudoku solution linear if, for each symbol, its nine positions form an
affine subspace in the affine space. All the Sudoku solutions in this subsection and the
next are linear. We will say that a linear Sudoku solution is of parallel type if all nine
affine subspaces are parallel (cosets of the same vector subspace), and of nonparallel
type otherwise.

4.3. Symmetric Sudoku solutions. In this section we classify, up to equivalence, the
symmetric Sudoku solutions. We show that there are just two of them; both are linear,
and one is of parallel type, while the other is of nonparallel type.

Consider the set of positions where a given symbol occurs in a symmetric Sudoku
solution, regarded as a subset of V = GF(3)4. These positions form a code of length 4
containing nine codewords. Given any two coordinates i and j , and any two field
elements a and b, there is a unique codeword p satisfying pi = a and p j = b (see
Table 1). The minimum distance of this code is thus at least 3, since distinct codewords
cannot agree in two positions. Conversely, if S is a set of points with minimum distance
at least 3, then for any given a and b, there is at most one p ∈ S with pi = a and
p j = b; so, if |S| = 9, there must be exactly one such point p. So we have shown:
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Proposition 4.1. A symmetric Sudoku solution corresponds to a partition of V into
nine perfect codes.

It is clear from this Proposition that the partition into cosets of a Hamming code
gives a symmetric Sudoku solution. We prove that there is just one further partition,
up to equivalence.

Proposition 4.2. Any perfect 1-error-correcting code in V = GF(3)4 is an affine sub-
space.

Proof. Let H be such a perfect code. Then H consists of 9 vectors, any two agreeing
in at most one coordinate. As above, given distinct coordinates i, j and field elements
a, b, there is a unique p ∈ H with pi = a and p j = b.

Any two vectors of H have distance at least 3; so∑
p,q∈H

d(p, q) ≥ 9 · 8 · 3 = 216,

where d denotes Hamming distance. On the other hand, if we choose any coordinate
position (say the first), and suppose that the number of vectors of H having entries
0, 1, 2 there are respectively n0, n1, n2, then the contribution of this coordinate to the
above sum is

n0(9 − n0) + n1(9 − n1) + n2(9 − n2) = 81 − (n2
0 + n2

1 + n2
3) ≤ 81 − 27 = 54,

and so the entire sum is at most 4 · 54 = 216. So equality must hold, from which we
conclude that any pair of vectors have distance 3 (that is, agree in one position).

Now take p, q ∈ H . Suppose, without loss of generality, that they agree in the first
coordinate; say p = (a, b1, c1, d1) and q = (a, b2, c2, d2). Since b1 �= b2, the remain-
ing element of GF(3) is −(b1 + b2). There is a unique element r of H having first
coordinate a and second coordinate −(b1 + b2); since it must disagree with each of p
and q in the third and fourth coordinates, it must be r = (a, −(b1 + b2), −(c1 + c2),

−(d1 + d2)) = −(p + q). This is the third point on the affine line through p and q. So
H is indeed an affine subspace, as required.

Note that this is a typical “Sudoku argument.” If, say, two cells in the same large
row in a symmetric Sudoku solution carry the same symbol, then we can deduce the
third position of that symbol in the large row.

Any translate of a perfect code is a perfect code; so any perfect code is a coset of a
vector subspace which is itself a perfect code. We call such a subspace allowable. Our
next task is to find the allowable subspaces. Any such subspace contains nine vectors,
and so is 2-dimensional.

Lemma 4.3. The vectors p = (a1, a2, a3, a4), and q = (b1, b2, b3, b4) span an allow-
able subspace of V if and only if the four ratios ai/bi , for i = 1, 2, 3, 4 are distinct,
where ±1/0 = ∞ is one ratio that must appear, and the indeterminate form 0/0 does
not appear.

Proof. Suppose that 〈p, q〉 is allowable. Then any nonzero linear combination of p
and q has three nonzero coordinates, so the four vectors p, q, ek, el are linearly in-
dependent for any k �= l (where ek is the kth standard basis vector, with 1 in the kth
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position and 0 elsewhere). If {i, j, k, l} = {1, 2, 3, 4}, then the determinant of the ma-
trix formed by these four vectors is ±(ai b j − a j bi ) �= 0, whence ai/bi �= a j/b j (with
the convention of the Lemma). The argument reverses to prove the converse.

Given Lemma 4.3, we see that when a basis for an allowable subspace is put into
row-reduced echelon form, it takes one the following eight possible forms.{{

1011
or

1022

}
and

{
0112

or
0121

}}
or

{{
1012

or
1021

}
and

{
0111

or
0122

}}
(2)

These are the only allowable subspaces. So any perfect code in V is a coset of one of
those eight vector subspaces.

Our conclusions for symmetric Sudoku solutions so far can be summarized as fol-
lows:

• Any symmetric Sudoku solution is linear.
• In a symmetric Sudoku solution, the positions of each symbol form a coset of one of

the eight allowable subspaces.

Next we come to the question of how such subsets can partition V . One simple way
is just to take all cosets of one of the above 2-dimensional vector subspaces; this gives
the solutions we described above as “parallel type.” Another choice is the following.
Extend an allowable subspace X to a 3-dimensional vector subspace Y of V . The three
cosets of Y partition V , and we can look for another allowable subspace X ′ of Y which
can be used to partition one or two of these cosets. For this to work, it is necessary that
the linear span of X and X ′ be 3-dimensional. For each choice of an allowable X , it
is easy to check that there are four other allowable X ′ such that the span of X and X ′
is 3-dimensional, but there is no set of three allowable subspaces such that the span of
each pair is 3-dimensional.

Conversely, take any symmetric Sudoku solution, and consider the corresponding
partition of V into cosets of allowable 2-dimensional subspaces. If any pair of such
subspaces are distinct and span the whole of V , then any of their cosets will intersect,
contradicting the Sudoku property. Thus their span must be a 3-dimensional vector
subspace Y and hence they are two subspaces X and X ′ as in the previous paragraph.
Furthermore, in each of the three cosets of Y , cosets of only one of X or X ′ can
appear. Thus the Sudoku solutions described in the previous paragraph are the only
ones possible.

Using this analysis we can see that for each choice of one of the 8 allowable planes,
since there are exactly 4 choices for another such that their span is 3-dimensional,
there are 8 · 4/2 = 16 possible choices of such pairs. For each pair, we want to use
each plane to partition at least one of the three 3-dimensional affine spaces determined
by the pair of planes: there are 6 ways of doing this. Thus there are 6 · 16 = 96 pos-
sible Sudoku solutions of this sort. In addition, there are 8 solutions of parallel type,
comprising the cosets of a single plane. This gives 96 + 8 = 104 as the total number
of symmetric Sudoku solutions, falling into just two classes up to equivalence under
symmetries of the grid.

In the spirit of the Sudoku puzzle, we give in Figure 7 a partial symmetric Sudoku
which can be uniquely completed (in such a way that each row, column, subsquare,
broken row, broken column, and location contains each symbol exactly once). The
solution is of nonparallel type; that is, it is not equivalent to the one shown in Figure 5.
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Figure 7. A Sudoku-type puzzle.

The fact that there are just two inequivalent symmetric Sudoku solutions, proved
in the above analysis, can be confirmed with the DESIGN program, which also shows
that if we omit the condition on locations, there are 12 different solutions, and if we
omit both locations and broken columns, there are 31021 different solutions. The total
number of Sudoku solutions up to equivalence (that is, solutions with only the condi-
tions on rows, columns, and subsquares) is 5472730538; this number was computed
by Ed Russell and Frazer Jarvis [20].

4.4. Mutually orthogonal Sudoku solutions. In this section we construct sets of mu-
tually orthogonal Sudoku solutions of maximum size. The results of the construction
are shown in Figure 10.

Theorem 4.4.

(a) There is a set of six mutually orthogonal Sudoku solutions. These squares are
also gerechte designs for the partition into locations.

(b) There is a set of four mutually orthogonal symmetric Sudoku solutions (that is,
multiple gerechte designs for the partitions into subsquares, locations, broken
rows, and broken columns); they also have the property that each symbol occurs
once on the main diagonal and once on the antidiagonal. Each of the Sudoku
solutions is linear of parallel type.

Remark. We saw already that the number 6 in part (a) is optimal. The number 4 in (b)
is also optimal. For, given such a set, we can as before suppose that they all have the
symbol 1 in the cell in the top left corner. Now the 1s in the subsquare in the middle
of the top row cannot be in its top minirow or its left-hand minicolumn, so just four
positions are available; and the squares must have their ones in different positions. The
six orthogonal Sudoku solutions are shown in Figure 10; the last four are symmetric.

Proof. (a) Our six Sudoku solutions will all be linear of parallel type; that is, they
will be given by six parallel classes of planes in the affine space. The orthogonality
of two solutions means that each plane of the first meets each plane of the second
in a single point. This holds precisely when the two vector subspaces meet just in the
origin (so that their direct sum is the whole space). In other words, the vector subspaces
correspond to disjoint lines in the projective space PG(3, 3).
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In our situation, the affine planes x1 = x2 = 0 and x3 = x4 = 0 whose cosets define
rows and columns correspond to two disjoint lines L1 and L2 of PG(3, 3). The affine
plane x1 = x3 = 0 (whose cosets define the subsquares) corresponds to a line L3 which
intersects both L1 and L2 (in the points 〈(0, 0, 0, 1)〉 and 〈(0, 1, 0, 0)〉 respectively).
So we have to find six pairwise disjoint lines which are disjoint from the lines L1, L2,
and L3.

Now there is a regulus R containing L1 and L2, whose opposite regulus contains
L3. Moreover, R is contained in a regular spread S . We have |S| = 40/4 = 10 and
|R| = 4, so there are six lines of S not in R; all these are disjoint from L3, and so
have the required property. (See Figure 8.)

L1 L2

L3

Figure 8. A regulus, the opposite regulus, and a spread.

Calculation shows that the remaining lines of R are x1 − x3 = x2 − x4 = 0 and
x1 + x3 = x2 + x4 = 0, and the other three lines of the opposite regulus are x1 − x2 =
x3 − x4 = 0, x1 + x2 = x3 + x4 = 0, and x2 = x4 = 0, which is the Locations line L4

(the line such that the cosets of the corresponding vector subspace define the partition
into locations). The main diagonal and the antidiagonal are cosets of the subspaces
corresponding to the other two lines of R. Since the remaining six lines of the spread
are disjoint from these, our claim about locations and diagonals follows. It is clear
from the construction that all the corresponding Sudoku solutions are linear of parallel
type.

A different set of six mutually orthogonal Sudoku solutions can be obtained by
choosing a regulus R∗ disjoint from R and contained in the spread, and replacing the
lines of R∗ by those of its opposite regulus. This also gives linear solutions of parallel
type.

(b) For the second part, it is more convenient to work in the affine space AG(4, 3).
As we have seen, a symmetric Sudoku solution of parallel type is given by the cosets
of one of the eight allowable subspaces of V . It is easily checked that the row spaces
of the following four matrices are allowable subspaces with the property that any two
of them meet only in the zero vector, from which it follows that the corresponding
symmetric Sudoku solutions are orthogonal.[

0 1 1 1
1 0 1 2

]
,
[

0 1 2 2
1 0 2 1

]
,

[
0 1 2 1
1 0 1 1

]
,

[
0 1 1 2
1 0 2 2

]
Another set of four mutually orthogonal symmetric Sudoku solutions is obtained by
using the other four allowable subspaces (obtained by changing the sign of the coordi-
nates in the final column). (Note that the row spaces of the four matrices given form the
regulus R∗ of the preceding paragraph, and the other four allowable subspaces form
the opposite regulus.)

We can use the solution to (b) to find an explicit construction for (a). Recall that
we seek six lines of the projective space disjoint from the lines L1, L2, and L3. All of
these must be disjoint from L4 also.
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Four of these lines will also be disjoint from the lines L5 and L6 defined by x1 =
x4 = 0 and x2 = x3 = 0; these are the four allowable subspaces A1, . . . , A4 that we
constructed in (a). Now, there is a unique regulus R′ containing L1 and L2 and having
L5 and L6 in the opposite regulus; the other two lines of R′ can be added to the four
lines arising from the allowable subspaces to produce the required set of six lines.
They have equations x1 + x4 = x2 + x3 = 0 and x1 − x4 = x2 − x3 = 0. See Figure 9.
The resulting six mutually orthogonal Sudoku solutions are shown in Figure 10; the
last four are symmetric.

�����
�����

L1 L2

L3
L4

L5

L6
A1 A2 A3 A4

R︷ ︸︸ ︷

︸ ︷︷ ︸
R′

Figure 9. Two reguli in the construction of mutually orthogonal gerechte designs.

111

111
222
222

333
333

749
658

857
469

968
547

475
896

586
974

694
785

444

444
555
555

666
666

173
982

281
793

392
871

718
239

829
317

937
128

777
777

888
888

999
999

416
325

524
136

635
214

142
563

253
641

361
452

326

589
134
697

215
478

952
734

763
815

841
926

687
342

498
153

579
261

659

823
467
931

548
712

385
167

196
248

274
359

921
675

732
486

813
594

983

256
791
364

872
145

628
491

439
572

517
683

354
918

165
729

246
837

238

965
319
746

127
854

864
273

945
381

756
192

593
427

671
538

482
619

562

398
643
179

451
287

297
516

378
624

189
435

836
751

914
862

725
943

895

632
976
413

784
521

531
849

612
957

423
768

269
184

347
295

158
376

Figure 10. Six mutually orthogonal Sudoku solutions.

This analysis can also be used to define and count orthogonal symmetric Sudoku
solutions. First we note that, if two symmetric Sudoku solutions are orthogonal, then
both must be of parallel type. For, as we saw earlier, orthogonality means that each
coset in the first solution meets each coset in the second in a single affine point (so the
corresponding lines in the projective space are disjoint). A Sudoku solution of non-
parallel type involves cosets of two 2-dimensional spaces with nonzero intersection,
corresponding to two intersecting lines in PG(3, 3). But the allowable subspaces form
a regulus and its opposite; none of them is disjoint from two intersecting lines in the
set.
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Now two symmetric Sudoku solutions of parallel type are orthogonal if and only
if the corresponding lines belong to the same regulus. So there are 2 · (4

2

) = 12 such
unordered pairs.

5. FURTHER SPECIAL SUDOKU SOLUTIONS AND GENERALIZATIONS.
In the first subsection of this section, we construct some Sudoku solutions having some
of the desirable statistical properties defined in Section 3. In the second, we give some
generalizations to gerechte designs of other sizes, using other finite fields.

5.1. The block design in minirows and minicolumns. Recall from Section 3.4 that
the minirows and minicolumns in a Sudoku solution define a block design whose nine
points are the symbols, with 54 blocks (27 minirows and 27 minicolumns).

The cells in a fixed minirow form a line of the affine space AG(4, 3), that is a
coset of a 1-dimensional subspace L of GF(3)4. Take a symmetric Sudoku solution
of parallel type comprising all cosets of a fixed vector subspace S. Then L and S
span a 3-dimensional subspace which contains three cosets of S and nine of L . This
means that in these nine minirows, only three symbols occur. So the 27 minirows
define just three triples from {1, . . . , 9}, each triple occuring in nine minirows. The
same condition holds for the minicolumns. Thus the design is orthogonal, in the sense
of Section 3.3. Moreover, the block design on {1, . . . , 9} formed by the minirows and
minicolumns is a 3 × 3 grid with each grid line occurring nine times as a block. Each
pair of symbols lies in either 0 or 9 blocks of the design. (These properties are easily
verified by inspection of Figure 5, where the minirows define blocks {1, 6, 8}, {2, 4, 9},
and {3, 5, 7}, and the minicolumns define blocks {1, 5, 9}, {2, 6, 7} and {3, 4, 8}.)

In general, a block design is said to be balanced if every pair of symbols lies in
the same number of blocks. Since the average number of blocks containing a pair
of symbols from {1, . . . , 9} in this design is 2 · 27 · 3/

(9
2

) = 9/2, the design cannot be
balanced. But we could ask whether there is a Sudoku solution which is better balanced
than a symmetric solution of parallel type; for example, one in which each pair occurs
in either 4 or 5 blocks. Such solutions exist; the first example was constructed by Emil
Vaughan [23].

Given such a design with pairwise concurrences 4 and 5, we obtain a regular graph
of valency 4 on the vertex set {1, . . . , 9} by joining two vertices if they occur in five
blocks of the design. The “nicest” such graph is the 3 × 3 grid, in which two vertices in
the same row or column are adjacent. Vaughan’s solution does not realize this graph,
but we subsequently found one which does. An example is given in Figure 11. We
refer interested readers to [1] for an explanation of why the grid is our preferred graph
here, and why it matters. (For the experts: the grid defines an association scheme, and
the design is partially balanced with respect to this scheme.)

We could ask whether even more is true: is there a Sudoku solution in which each
pair of symbols occur together 2 or 3 times in a minirow, 2 or 3 times in a minicolumn,
and 4 or 5 times altogether? (We saw in Section 3.4 that balancing concurrences in
minirows and minicolumns separately is a desirable statistical property.) A computa-
tion using GAP showed that such a solution cannot exist; one cannot place more than
five symbols satisfying these constraints without getting stuck. It is not clear what the
“best” compromise is.

We further found that there exist Sudoku solutions in which the design in minirows
and minicolumns is partially balanced with respect to the 3 × 3 grid with concurrences
(4, 5), (3, 6), (2, 7), or (0, 9), but not (1, 8) (for which at most four symbols can be
placed). The linear Sudoku solution of parallel type in Figure 5 realizes the case (0, 9).
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1 5 2 6 8 9 7 4 3

3 8 7 1 2 4 9 6 5

9 4 6 3 5 7 1 8 2

2 1 4 8 7 6 3 5 9

6 9 5 4 1 3 2 7 8

8 7 3 5 9 2 6 1 4

5 6 1 9 3 8 4 2 7

7 3 8 2 4 1 5 9 6

4 2 9 7 6 5 8 3 1

�

�

�

�

�

�

�

�

�
1 2 4

9 6 5

7 8
3

Figure 11. A Sudoku solution in which the block design in minirows and minicolumns has concurrences 4
and 5, and its corresponding graph.

We also considered another special type of Sudoku solution based on the properties
of the minirows and minicolumns: those for which the designs formed by minirows and
minicolumns have adjusted orthogonality, in the sense that their concurrence matrices
�R and �C satisfy �R�C = 81J , where J is the all-one matrix. (Here the (i, j) entry
of �R counts the number of minirows in which i and j both occur, and similarly for
�C .) The special Sudoku solution of Figure 5 has this property, but it is not unique. (In
this solution, all entries of each concurrence matrix are 0 or 9.) We found that there are,
up to symmetry, 194 Sudoku solutions for which the minirows and minicolumns have
adjusted orthogonality in this sense, of which 104 have the property that both �R and
�C have entries different from 0 and 9. One of these solutions is shown in Figure 12.

1 2 3 4 5 6 7 8 9

7 8 9 1 3 2 6 5 4

4 5 6 7 8 9 1 3 2

3 1 2 6 4 5 9 7 8

9 7 8 2 1 3 4 6 5

6 4 5 9 7 8 2 1 3

8 9 1 5 6 4 3 2 7

2 3 7 8 9 1 5 4 6

5 6 4 3 2 7 8 9 1

Figure 12. Minirows and minicolumns form designs with adjusted orthogonality, but the overall design is not
orthogonal.

We end this section with a word about the computations reported in this section.
The strategy is to place the symbols 1, . . . , 9 in the grid successively to satisfy the con-
straints. The positions of a single symbol in the grid subject to the Sudoku constraints
that it occurs once in each row, column, and subsquare can be described by a per-
mutation π of the set {1, . . . , 9}, where the set of positions is {(i, π(i)) : 1 ≤ i ≤ 9}.
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There are 66 of these “Sudoku permutations.” We say that two Sudoku permutations
are “compatible” if they place their symbols in disjoint cells satisfying the appropriate
conditions (for example, for concurrences 4 and 5, that there are either 4 or 5 occur-
rences of the two symbols in the same minirow or minicolumn). Then we form a graph
as follows: the vertex set is the set of all Sudoku permutations, and we join two vertices
if they are compatible. We now search randomly for a clique of size 9 in the compati-
bility graph: this is a set of nine mutually compatible Sudoku permutations, defining a
Sudoku solution with the required properties.

Adjusted orthogonality of the two designs is not captured by any obvious com-
patibility condition on the Sudoku permutations, and we proceeded differently. Since
each of the two concurrence matrices has diagonal entries 9, we see that adjusted or-
thogonality implies that two symbols cannot occur both in the same minirow and in the
same minicolumn. Using this as the compatibility condition, we built the compatibility
graph, and found all cliques of size 9, using the GAP package GRAPE [21]. Remark-
ably, it turned out that all of them actually give designs with adjusted orthogonality;
we know no simple reason for this fact, since our compatibility condition appears not
strong enough to guarantee this.

5.2. Other finite field constructions. The construction in Section 4.4 can be gener-
alized.

Proposition 5.1. Let q be a prime power, and a and b positive integers. Let n = qa+b.
Partition the n × n square into qa × qb rectangles. Then we can find

qa+b − 1 − (qa − 1)(qb − 1)

q − 1

mutually orthogonal gerechte designs for this partitioned grid.

Remark. If a < b, our upper bound for the number of mutually orthogonal gerechte
designs for this grid is qb(qa − 1). If a = 1, this bound is equal to the number in
the theorem, so our bound is attained. If a > 1, however, the bound is not met by
the construction. For example, if p = 2, a = 2, and b = 3, the bound is 24 but the
construction achieves 10. If a and b are not coprime, we can improve the construction
by replacing q, a, b by qd , a/d, b/d, where d = gcd(a, b).

Proof. Represent the cells by points of the affine space AG(2(a + b), q) with coor-
dinates x1, . . . , xa+b, y1, . . . , ya+b. The rows are cosets of the subspace x1 = · · · =
xa+b = 0, the columns are cosets of the subspace y1 = · · · = ya+b = 0, and the rect-
angles are cosets of x1 = · · · = xa = y1 = · · · = yb = 0.

As before, we work in the projective space PG(2(a + b) − 1, q). The first two sub-
spaces are disjoint, and are part of a spread of qa+b − 1 subspaces of the same dimen-
sion. The third subspace meets the first in (qb − 1)/(q − 1) points and the second in
(qa − 1)/(q − 1) points, and has (qa − 1)(qb − 1)/(q − 1) further points. In the worst
case, this subspace meets (qa − 1)(qb − 1)/(q − 1) further spaces of the spread, each
in one point. This leaves qa+b − 1 − (qa − 1)(qb − 1)/(q − 1) spread spaces disjoint
from it, as required.

Our construction of mutually orthogonal symmetric Sudoku solutions also general-
izes:
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Proposition 5.2. Let q be a prime power, and consider the q2 × q2 grid, partitioned
into q × q subsquares, broken rows, broken columns, and locations as in the preceding
section. Then there exist (q − 1)2 mutually orthogonal multiple gerechte design for
these partitions; this is best possible.

Proof. We follow the same method as before, working over GF(q). The lines of
PG(3, q) defining rows, columns, subsquares, broken rows, broken columns, and lo-
cations lie in the union of two reguli with two common lines, which form part of a
regular spread. The remaining (q − 1)2 lines of the spread give the required designs.
The upper bound is proved as before.

ACKNOWLEDGMENTS. The left-hand photograph in Figure 2 was taken in 1952; we are grateful to the
Forestry Commission Photographic Library for supplying the photograph and for permission to use it. We
thank Lesley Smart for permission to use the right-hand photograph, which was taken by Neil Mason of the
Plant and Invertebrate Ecology Division of Rothamsted Research.

We are grateful to the referees for substantial improvements to the presentation of the paper.
The third author’s research was partially supported by NSF Grant Number DMS-0510625.

REFERENCES

1. R. A. Bailey, Association Schemes: Designed Experiments, Algebra and Combinatorics, Cambridge
Studies in Advanced Mathematics vol. 84, Cambridge University Press, Cambridge, 2004.

2. R. A. Bailey, J. Kunert, and R. J. Martin, Some comments on gerechte designs. I. Analysis for uncorre-
lated errors. J. Agronomy & Crop Science 165 (1990) 121–130.

3. , Some comments on gerechte designs. II. Randomization analysis, and other methods that allow
for inter-plot dependence, J. Agronomy & Crop Science 166 (1991) 101–111.

4. W. U. Behrens, Feldversuchsanordnungen mit verbessertem Ausgleich der Bodenunterschiede,
Zeitschrift für Landwirtschaftliches Versuchs- und Untersuchungswesen 2 (1956) 176–193.

5. J. F. Box, R. A. Fisher: The Life of a Scientist. Wiley, New York, 1978.
6. J. N. Bray, personal communication, February 2006.
7. P. J. Cameron, Projective and Polar Spaces, QMW Maths Notes vol. 13, Queen Mary and Westfield

College, London, 1991; also available at http://www.maths.qmul.ac.uk/~pjc/pps/.
8. J. A. Eccleston and K. G. Russell, Connectedness and orthogonality in multi-factor designs, Biometrika

62 (1975) 341–345.
9. W. T. Federer, Experimental Design—Theory and Applications, Macmillan, New York, 1955.

10. The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.6; Aachen, St Andrews,
2005, available at http://www.gap-system.org/.

11. R. Hill, A First Course in Coding Theory, Clarendon Press, Oxford, 1986.
12. J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford,

1985.
13. A. M. Houtman and T. P. Speed, Balance in designed experiments with orthogonal block structure, Ann.

Statist. 11 (1983) 1069–1085.
14. P. M. Lee, Materials for the history of statistics, available at http://www.york.ac.uk/depts/maths/

histstat/.
15. S. M. Lewis and A. M. Dean, On general balance in row–column designs, Biometrika 78 (1991) 595–600.
16. J. A. Nelder, The analysis of randomized experiments with orthogonal block structure. II. Treatment

structure and the general analysis of variance, Proc. Roy. Soc. London A 283 (1965) 163–178.
17. , The combination of information in generally balanced designs, J. Roy. Statistic. Soc. B 30 (1968)

303–311.
18. H. D. Patterson, Generation of factorial designs, J. Roy. Statist. Soc. B 38 (1976) 175–179.
19. H. D. Patterson and R. A. Bailey, Design keys for factorial experiments, Applied Statistics 27 (1978)

335–343.
20. E. Russell and F. Jarvis, There are 5472730538 essentially different Sudoku grids, available at http:

//www.afjarvis.staff.shef.ac.uk/sudoku/sudgroup.html.
21. L. H. Soicher, GRAPE: a system for computing with graphs and groups, in Groups and Computation,

DIMACS Series in Discrete Mathematics and Theoretical Computer Science vol. 11, L. Finkelstein and
W. M. Kantor, eds., American Mathematical Society, 1993, 287–291. GRAPE homepage: http://www.
maths.qmul.ac.uk/~leonard/grape/.

May 2008] SUDOKU, GERECHTE DESIGNS, AND HAMMING CODES 403



22. , The DESIGN package for GAP, available at http://designtheory.org/software/gap_
design/.

23. E. Vaughan, personal communication, November 2005.
24. F. Yates, The comparative advantages of systematic and randomized arrangements in the design of agri-

cultural and biological experiments, Biometrika 30 (1939) 440–466.

R. A. BAILEY obtained a doctorate in group theory from the University of Oxford in 1976. Converting to
statistics while a postdoc at the University of Edinburgh, she spent ten years in agricultural research before
joining the University of London. She has been vice president of the London Mathematical Society and presi-
dent of the British Region of the International Biometric Society, and is a fellow of the Institute of Mathematical
Statistics. Her main research interest is in the design of experiments, which extends from helping scientists to
design their experiments to investigating the algebra associated with combinatorial designs.
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, U.K.
r.a.bailey@qmul.ac.uk

PETER J. CAMERON received his B.Sc. from the University of Queensland and his D.Phil. from Oxford
University. He has been a Professor of Mathematics in the University of London since 1987. His interests
range over group theory, combinatorics, and logic, and he takes pleasure in establishing connections between
apparently unrelated parts of mathematics. He is chair of the British Combinatorial Committee.
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, U.K.
p.j.cameron@qmul.ac.uk

ROBERT CONNELLY received his Ph.D from the University of Michigan in 1969 in geometric topology.
Since then he has been interested in discrete geometry, especially the theory of rigid structures and its relations
to other areas of geometry such as flexible surfaces, asteroid shapes, opening rulers, granular materials, and
areas of unions of disks whose centers contract. He likes visual mathematics and the game of go. He has visited
the Institut des Hautes Études Scientifiques at Bures-sur-Yvette, France; Bielefeld, Germany; Budapest, Hun-
gary; Montreal, Canada; Seattle, Washington; and the Engineering Department of Cambridge University, UK.
Department of Mathematics, Malott Hall, Cornell University, Ithaca, NY 14853, USA
rc46@cornell.edu

Mathematics Is. . .

“Mathematics is the science of patterns, and nature exploits just about every
pattern that there is.”

Ian Stewart, Nature’s Numbers: The Unreal Reality of
Mathematical Imagination, Basic Books, New York, 1995, p. 18.

—Submitted by Carl C. Gaither, Killeen, TX
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