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Abstract We say an arc is straightened by a motion if at the end 

Consider a planar linkage, consisting of disjoint polyg- 
onal arcs and cycles of rigid bars joined at incident end- 
points (polygonal chains), with the property that no cycle 
surrounds another arc or cycle. We prove that the linkage 
can be continuously moved so that the arcs become straight, 
the cycles become convex, and no bars cross while preserv- 
ing the bar lengths. Furthermore, our motion is piecewise- 
differentiable, does not decrease the distance between any 
pair of vertices, and preserves any symmetry present in the 
initial configuration. In particulal; this result settles the 
well-studied carpenter’s rule conjecture. 

1. Introduction 
Consider a finite embedded polygonal arc in the plane (by 
an arc we mean a homeomorphic image of the closed in- 
terval [0, 11). Such a polygonal arc is often called an open 
polygonal chain. It has been an outstanding question as to 
whether it is possible to continuously move a polygonal arc 
in such a way that each edge remains a fixed length, there 
are no self-intersections during the motion, and at the end of 
the motion the arc lies on a straight line. This has come to 
be known as the carpenter’s rule problem. A related ques- 
tion is whether it is possible to continuously move a polyg- 
onal simple closed curve in the plane, often called a closed 
polygonal chain or polygon, again without creating self- 
intersections or changing the length of the edges, so that 
it ends up a convex closed curve. We solve both problems 
here by showing that in both cases there is such a motion. 

Physically, we think of a polygonal arc as a linkage or 
framework with hinges at its vertices, and rigid bars at its 
edges. The hinges can be folded as desired, but the bars 
must maintain their length and cannot cross. Motions of 
such linkages have been studied in discrete and computa- 
tional geometry [3, 14, 19,21,25,26,28,32,34,35,42], in 
knot theory [7, 241, and in molecular biology and polymer 
physics [16, 22, 23, 24, 29, 30, 431. Applications of this 
field include robotics, wire bending, hydraulic tube folding, 
and the study of macromolecule folding [26,32]. 

of the motion it lies on astraight line. We say a polygonal 
simple closed curve (or cycle) is convexijied by a motion if 
at the end of the motion it is a convex closed curve. All mo- 
tions must be proper in the sense that no self-intersections 
are created, and each edge length is kept fixed. It is easy 
to see that if any cycle can be convexified by a motion, then 
any arc can be straightened by a motion: simply extend each 
arc to a cycle and convexify it. It is then easy to straighten 
the portion of the cycle that is the original arc. 

It seems intuitively easy to straighten an entangled chain: 
just grab the ends and pull them apart. Similarly, a cycle 
might be opened by blowing air into it until it expands. But 
these methods have the difficulty that they may introduce 
singularities, where the arc or cycle may intersect itself. 
Our approach is to use an expansive motion in which all 
distances between two points increase. We also show that 
the area of a polygon increases in such an expansive motion. 

We consider the more general situation, which we call an 
arc-and-cycle set A, consisting of a finite number of polyg- 
onal arcs and polygonal simple closed curves in the plane, 
with none of the arcs or cycles intersecting each other or 
having self-intersections. We say that A is in an outer- 
convex configuration if each component of A that is not 
contained in any cycle of A is either straight (when it is 
an arc) or convex (when it is a cycle). 

We say that a motion of an arc-and-cycle set A. is expan- 
sive if for every pair of vertices of A the distance increases 
or stays the same during the motion. We say that the motion 
is strictly expansive if in addition, for those vertices not on 
a straight subarc in a component of A and not on or in a 
common convex cycle of A, the distance between them in- 
creases strictly. We say that A is separated, if there is a line 
L in the plane such that L is disjoint from A and at least one 
component of A lies on each side of L. 

Our main result is the following. 

Theorem 1 Every arc-and-cycle set has a piecewise- 
differentiable proper motion to an outer-convex configura- 
tion. Moreovel; the motion is strictly expansive until the 
arc-and-cycle set is separated. 
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Figure 1. Convexifying a polygon that comes from doubling each edge in a locked tree. Snapshots 
are zoomed different amounts to improve visibility; each edge stays the same length throughout the 
motion. See http: / /daisy.uwaterloo. ca/”eddemain/linkage for more animations. 

Arcs and Cycles 

In contrast to this result, in dimension three there are arcs 
that cannot be straightened and polygons that cannot be con- 
vexified [3,7]. In dimension four, all arcs and cycles unlock, 
i.e., can be straightened and convexified, respectively [8]. In 
the plane, there are examples of trees embedded in the plane 
that are locked in the sense that they cannot be properly 
moved so that the vertices lie nearly on a line [4]. In other 
words, there are two embeddings of the tree such that there 
is no proper motion from one configuration to the other. The 
important difference between trees and arc-and-cycle sets is 
that arc-and-cycle sets have maximum degree two. 

Trees 
~~ - -  - ,  

I 3-D I Lockable r3.71 I Lockable I _ .  - 
4-D+ [ Not lockable [8] 1 Not lockable? 

Table 1. Summary of what types of linkages 
can be locked. The question mark denotes a 
conjecture. 

Whether every arc in the plane can be straightened, and 
whether every polygon in the plane can be convexified, have 
been outstanding open questions until now. The problems 
are natural, so they have arisen independently in a vari- 
ety of fields, including topology, pattern recognition, and 
discrete geometry. We are probably not aware of all con- 
texts in which the problem has appeared. To our knowl- 
edge, Stephen Schanuel first invented the problem of con- 
vexifying cycles in the early 1970’s, and George Bergman 
suggested the simpler question of straightening arcs. Ulf 
Grenander posed the problems during a talk in March 1987, 
and possibly earlier [personal communication with Alan 
Edmonds]. In the discrete and computational community, 
the problems were independently posed by William Lenhart 
and Sue Whitesides in March 1991 and by Joseph Mitchell 
in December 1992. 

Solutions were already known for the special cases of 
monotone cycles [5] and star-shaped cycles [15], and for 
certain types of “externally visible” arcs [6] .  

A fairly large group of people, mentioned in the ac- 
knowledgments, was involved in trying to construct and 

prove or disprove locked arcs and cycles, at various times 
over the past few years. Typically, someone in the group 
would distribute an example that s h e  constructed or was 
given by a colleague. We would try various motions that 
did not work, and we would often try proving that the ex- 
ample was locked because it appeared so! For some exam- 
ples, it took several months before we found an unlocking 
motion. The main difficulty was that “simple” motions that 
change a few vertex angles at once, while easiest to visual- 
ize, seemed to be insufficient for unlocking complex exam- 
ples. Amazingly, it also seemed that nevertheless there was 
always a global unlocking motion, and furthermore it was 
felt that there was a driving principle permitting “blowing 
up” of the linkage. This notion was formalized by third au- 
thor with the idea that perhaps an arc could be straightened 
via an expansive motion. 

The new tools that are applied here come from the theory 
of mechanisms and rigid frameworks. Arcs and cycles can 
be regarded as frameworks. See [ 1,2,9,  10, 11, 12, 13, 18, 
27, 37, 38, 39, 40, 411 for relevant information about this 
theory. 

Our approach is to prove that for any configuration there 
is an infinitesimal motion that increases all distances. Be- 
cause of the nature of the arc-and-cycle set, this implies that 
there is a motion that works at least for a small expansive 
perturbation. We then combine these local motions into one 
complete motion. These notions are described in the rest of 
this paper. Section 3 proves the existence of infinitesimal 
motions using the nonexistence of certain stresses, a notion 
dual to infinitesimal motions for the underlying framework. 
The analysis of these stresses uses a lifting theorem from the 
theory of rigidity that was known to James Clerk Maxwell 
and Luigi Cremona [ 11, 12, 361 in the nineteenth century. 
Section 4 shows how to maneuver through the space of local 
motions to find a global motion with the desired properties. 

2. Basics 
A linkage or bar framework G(p) is a finite graph G = 
(V, E) without loops or multiple edges, together with a cor- 
responding configuration p = (PI, . . . , pn) of n points in 
the plane, where pi corresponds to vertex i E V. (For con- 
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Figure 2. (a) Original arc-and-cycle frame- 
work. (b) With straight vertices removed. 
(c) With convex cycles rigidified. (d) With 
components nested within convex cycles re- 
moved. 

venience we assume V = { 1, . . . , n}.) The edges of G 
constitute the set E and correspond to the bars in the frame- 
work, i.e., the links of a linkage. Arc-and-cycle sets are a 
particular kind of bar framework in which the graph G is a 
disjoint union of paths and cycles. 

Ajlex or motion of G(p)  is a set of continuous functions 
p( t )  = (pl(t), . . . ,pn(t)), defined for 0 5 t 5 1, such 
that p(0) = p and IIpi(t) - pj(t)ll is constant for each 
{i, j} E E. We are interested in finding a motion of the arc- 
and-cycle set with the additional property that it is strictly 
expansive. 

We begin with a basic property of expansive motions. 
Lemma 1 Any expansive motion of an arc-and-cycle set 
only increases the distance between two points on the arc- 
and-cycle set (each either a vertex or on a bar). In particu- 
lar; there can be no self-intersections. 

2.1. The Framework GA (p) 
Given an arc-and-cycle set A that we would like to move to 
an outer-convex configuration, we make four modifications 
to A. The first three modifications simplify the problem 
by removing a few special cases that are easy to deal with; 
see Figure 2. The fourth modification will bring the prob- 
lem of finding a strictly expansive motion into the area of 
tensegrity theory. In the end we will have defined a new 
framework, GA(P), which we will use throughout the rest 
of the proof. 

Modification 1: Remove straight vertices. First we 
show that our arc-and-cycle set can be assumed to have no 
straight vertices, i.e., vertices with angle T. Furthermore, if 
during an expansive motion of the arc-and-cycle set we find 
that a vertex becomes straight, we can proceed by induc- 
tion. For once the arc-and-cycle set has a straight subarc 
of more than one bar, we can coalesce this subarc into a 

single bar, thereby preserving the straightness of the sub- 
arc throughout the motion once it becomes straight. This 
reduces the number of bars and the number of vertices in 
the framework. By induction, this reduced framework has a 
motion according to Theorem 1, and such a motion extends 
directly to the original framework. The resulting motion is 
also strictly expansive by Lemma 1. 

Modification 2: Rigidify convex polygons. Once a cy- 
cle becomes convex, we no longer have to expand it, and 
indeed we can hold it rigid from that point on. Of course, 
we allow a convex cycle to translate or rotate in fhe plane, 
but its vertex angles are not allowed to change. This can be 
directly modeled in the bar framework by introducing bars 
in addition to the arc-and-set cycle. Specifically, we add the 
edges of a triangulation of a cycle once that cycle becomes 
convex. 

Modification 3: Remove components nested within con- 
vex cycles. The previous modification did not address the 
fact that components can be nested within cycles. Once a 
cycle becomes convex, not only can we rigidify it, but we 
can also rigidify any nested components, and treat them as 
moving in synchrony with the convex cycle. We do this 
by removing from the framework any components nested 
within a convex cycle. Assuming there were some nested 
components to deal with, this results in a framework with 
fewer vertices and fewer bars. By induction, this reduced 
framework has a motion according to Theorem 1. This mo- 
tion can be extended to apply to the original framework by 
defining nested components to mimic the rigid motion of 
the containing convex cycle. It can be shown similar to 
Lemma 1 that the resulting motion is also strictly expan- 
sive. 

Modification 4: Add struts. In order to model the ex- 
pansive property we need, we apply the theory of tensegrity 
frameworks, in which frameworks can consist of both bars 
and “struts.” In contrast to a bar which must stay the same 
length throughout a motion, a strut is permitted to increase 
in length, or stay the same length. Specifically., we add 
a strut between nearly every pair of vertices in the frame- 
work. The exceptions are those vertices already connected 
by a bar, and vertices on a common convex cycle, because in 
both cases we cannot hope to strictly increase the distance. 

Final framework: GA(P). The above modifications de- 
fine a tensegrity (bar-and-strut) framework GA (p) in terms 
of the arc-and-cycle set A. Specifically, assume that A has 
no straight vertices or components nested within convex 
components. We call such an arc-and-cycle set reduced. 
We define the set B of bars by starting with the set of bars 
from the arc-and-cycle set, and adding a triangulation of ev- 
ery convex cycle. The set S of struts consists of all vertex 
pairs which are not in B and which do not belong to the 
same convex cycle. See Figure 3 for an example. 
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Figure 3. Construction of the frameworks GA(P) and Gk(p'). Solid lines denote bars, and dashed 
lines denote struts. 

Our goal in the proof of Theorem 1 is to find a mo- 
tion such that all bars maintain their length, while all struts 
strictly increase in length, in other words, a motion of 
GA(P) that is strict on all struts. 

Thus, we want to find a motion p(t)  for 0 5 t 5 1 such 
that p(0) = p and 

d ZIlPj(t) - Pi(t)ll = 0 for {i,j} E B,  
&IIpj(t) - pi(t)II > o for { i , j }  E S. 

Differentiating the squared distances llpj(t) - pi(t)1I2 = 
(pj(t)  - pi(t))  . (pj(t) - pi(t)) and denoting the veloc- 
ity vectors by vi(t) := &pi(t), we obtain the following 
equivalent conditions. 

( v j ( t )  - vi(t)) - (pj( t )  - pi(t)) = 0 for {i,j} E B ,  
( v j ( t )  - v i ( t ) )  (pj( t )  - pi(t)) > O 

Intuitively, the first-order change in the distance between 
vertex i and j is modeled by projecting the velocity vectors 
onto the line segment between the two vertices; see Fig- 

for {i , j}  E S. 

ure 4. 

c--rJ + 
Figure 4. The dot product (vj (t)-vi(t))-(pj (t)- 
pi(t)) is zero if the distance between pi and 
pj stays the same to the first order, positive 
if the distance increases, and negative if the 
distance decreases. 

vi . (Pj  - p i )  vj . (P j  - P i )  

2.2. Infinitesimal Motions 
A strict injinitesimal motion or strict injinitesimal jlex v = 
( V I , .  . . , v,) specifies the first derivative of a strictly ex- 
pansive motion at time 0. In other words, it assigns a veloc- 
ity vector vi to each vertex i so that it preserves the length of 
the bars to the first order, and strictly increases the length of 
struts to the first order. More precisely, a strict infinitesimal 
motion must satisfy 

(1) 
(vj - vi) . (pj -pi) = 0 for {i , j}  E B, 
( v j  - vi) . (pj - pi) > 0 for { i , j }  E S, 

where pi denotes the initial position of vertex i. 
In the next section, we prove that such a strict infinites- 

imal motion always exists. In Section 4 we show how this 
leads to motions for small amounts of time. These motions 
are then shown to continue globally until the configuration 
reaches an outer-convex configuration. 

3. Local Motion 
Recall that an arc-and-cycle set is called reduced if adjacent 
collinear bars have been coalesced, and components nested 
within cycles have been removed. In this section, we prove 
the following: 
Theorem 2 For any reduced arc-and-cycle set A there is 
an infinitesimal jlex v of the corresponding bar-and-strut 
framework GA(P) satisfying (1). 

3.1. Equilibrium Stresses 
The equations and inequalities in (1) form a linear feasibil- 
ity problem that is common for tensegrity frameworks. But 
in order to solve this problem it is helpful to restate it in 
terms of the dual problem. This leads to the study of equi- 
librium stresses in tensegrity frameworks. 

A stress in a framework G(p)  is an assignment of a 
scalar wi,j = wj,i to each edge {i, j }  of G (a bar or strut). 
The whole stress is denoted by w = (. . . , wi , j , .  . . ). We say 
that the stress w is an equilibrium stress if for each vertex i 
of G the following equilibrium equation holds: 

( 2 )  

We say that the stress w is proper if furthermore for all struts 
{i ,j},  wi,j 2 0. There is no sign condition for bars. Now 
we state the duality between equilibrium stresses and in- 
finitesimal motions. 
Theorem 3 Theframework GA(P) corresponding to a re- 
duced arc-and-cycle set A has only the zero proper equilib- 
rium stress. 
Lemma 2 Theorem 3 implies Theorem 2. 

This equivalence is a standard technique in the theory of 
rigidity. It is proved in [lo, Theorem 2.3.21. See also [27, 
Theorem 101 for a similar result. It can also be proved using 
linear programming duality. 

wij(Pj  - P i )  = 0 
j : { i , j } E B U S  

435 



3.2. Planarization 
To prove that only the zero equilibrium stress exists (i.e., to 
prove Theorem 3), we use another tool in rigidity called the 
Maxwell-Cremona theorem. Before we can apply this tool, 
we need to transform the framework GA(P) into a planar 
framework Gk(p’). (Refer to the framework on the right 
of Figure 3.) We introduce new vertices at all intersection 
points between edges of GA (p),  and subdivide the bars and 
struts accordingly. Any multiple edges resulting from this 
operation are merged. We define the resulting framework 
Gk (p’) to have bars precisely covering the bars of GA(P). 
All the other edges of Gk(p‘) are struts. Gk(p’) is planar 
in the sense that two edges (bars or struts) intersect only at 
a common endpoint. 

Despite the added points in this modification, the planar 
framework Gk (p’) is equivalent to the original framework 
GA(P) in the sense of equilibrium stresses. Indeed, the fol- 
lowing stronger statement holds. Call a stress outer-zero if 
the only edges that carry a nonzero stress are the edges of 
convex cycles and the edges interior to convex cycles. A 
stress is outer-nonzero if it is nonzero on some edge that 
is exterior to all convex cycles and is not an edge of any 
convex cycle. 
Lemma 3 I ~ G A  (p) has a proper equilibrium stress w, then 
Gk (p’) has an outer-nonzero proper equilibrium stress w’. 

Proof During the modifications to GA(P) that made 
Gk(p’), we modify w to make w’ as follows. When we 
subdivide an edge {i,j} with stress wid ,  each edge of the 
subdivision { I C ,  I} gets the stress wi,jllpi - pjll/llpk -pi l l .  
(The ratio of lengths is necessary because wi,j is a weight, 
and the actual force comes from scaling by the length of the 
edge { i , j } ;  see (2).) When merging several edges, we add 
the corresponding stresses. It is easy to verify that the re- 
sulting stress is proper and in equilibrium. We only have to 
check that positive and negative stresses do not completely 
cancel during the merging process, and that the stress is fur- 
thermore outer-nonzero. 

First note that some strut {i, j }  of G A ( ~ )  carries a pos- 
itive stress. In other words, GA(P) cannot be stressed only 
on its bars; in particular, arcs, cycles, and triangulated con- 
vex cycles cannot carry a nonzero stress. This follows be- 
cause, in any such bar framework, there is a degree-two ver- 
tex v; in particular, every triangulated convex cycle has a 
degree-two vertex (an ear). Because the framework is re- 
duced, the two bars incident to v lie in a strictly convex 
wedge at the vertex, so these two bars cannot carry stress 
while satisfying equilibrium at U .  Any nonzero stress is 
thus nonzero on the rest of the framework, but by induc- 
tion, this cannot occur. Hence, the bar framework cannot 
carry a nonzero stress, so some strut must have a nonzero 
stress. 

The conditions of Theorem 2 enforce that no angles at 
vertices of the arc-and-cycle set are K or 0: an angle of K 

would create a straight subarc of two bars (contradicting 
the assumption that framework is reduced), and an angle 
of 0 would violate simplicity. Thus, no strut of GA(P) is 
completely covered by bars. Therefore, for the strut {i,j} 
of GA(P) that carries a positive stress, some portion of it in 
Gk(p’) will also have a positive stress, because a positive 
stress can only be canceled by a stress on a bar. In particular, 
w’ must be nonzero. 

Furthermore, if the strut {i,j} is exterior to all convex 
cycles in A, we have that w’ is outer-nonzero. Now suppose 
that {i, j }  is partially interior to convex cycles in A (by con- 
struction, the strut cannot be entirely within convlex cycles 
of A). Then there is a portion of { i , j }  with the property 
that it is incident to a convex cycle and exterior to all con- 
vex cycles in A. This portion must be uncovered by bars, 
because no bar in A has this property, and the only addi- 
tional bars in GA(P) are interior to convex cycles;. Hence, 
the corresponding strut in Gk(p)  carries a positive stress, 
so w’ is outer-nonzero in all cases. 0 

Thus, to prove that the original framework GA(P) has 
only the zero proper equilibrium stress, it suffices to prove 
that the planar framework Gk(p’) has only outer-zero 
proper equilibrium stresses. 

3.3. Maxwell-Cremona Theorem 
To prove that only outer-zero equilibrium stresses ex- 
ist, we employ the Maxwell-Cremona correspondence be- 
tween equilibrium stresses in planar frameworks and three- 
dimensional polyhedral graphs that project onto these 
frameworks. More precisely, a polyhedral graph or polyhe- 
dral terrain I’ comes from lifting a planar framework into 
three dimensions-that is, assigning a z coordinate (posi- 
tive or negative) to each vertex in the framework--such that 
each face bounded by edges of the framework (including 
the exterior face) remains planar. The polyhedral surface 
r is then the graph of a piecewise-linear continuous func- 
tion of two variables that is linear on the faces determined 

Consider an edge {i, j }  in a planar framework, separat- 
ingfaces F and F’. Let z = a . p  + b and z = a‘.p+ b‘ be 
the two linear functions specifying I’ on F and F’, respec- 
tively. A straightforward calculation reveals that the vector 
a’ - a must be perpendicular to the edge {i, j } :  

(3) 
where et j  is a vector of the same length as the vector pj - 
pi, perpendicular to it, and pointing from F towards F’. 
We call the edge { i , j }  a valley if w,,j > 0, a mountain if 
wi,j < 0, andjlat if wi,j = 0. Note that the two isides of a 
valley do not necessary “go up” in z (and so a valley might 
not carry water); however, as one crosses a valley, the slope 
gets steeper. A similar remark applies to mountains. 
Theorem 4 (Maxwell-Cremona Theorem) ( i )  For every 
polyhedral graph I’ that projects to a planar bar frame- 

by Gk(P’). 

a‘ - a = w .  .el. 
193 a , j  
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work G(p), the stress w defned by (3 )  forms an equilibrium 
stress on G(p). 

(ii) For every proper equilibrium stress w in a planar 
framework G(p), G(p) can be lifted into a polyhedral 
graph I? such that ( 3 )  holds for all edges. In particular; 
edges with positive stress lift to valleys, edges with negative 
stress lift to mountains, and edges with no stress lift to Fat 
edges. Furthermore, I‘ is unique up to addition of afine- 
linearfunctions. 

A proof of this result can be found in [13, 20, 361, 
which follows the idea suggested above. Another point of 
view [ 171 is that the stresses are a scaling of the angular mo- 
mentum vectors of the function that lifts from the plane to 
the graph. 

3.4. Main Argument 
Note in particular that the zero equilibrium stress corre- 
sponds to the trivial polyhedral graph in which all faces are 
coplanar (i.e., defined by the same linear function). More 
generally, an outer-zero equilibrium stress corresponds to 
a polyhedral graph that is flat on every edge exterior to 
all convex cycles. Therefore, to prove that only outer-zero 
equilibrium stresses exist, and hence prove Theorem 3, it 
suffices to show that only such polyhedral graphs exist. 

More precisely, consider any polyhedral graph r that 
projects to the planar framework Gk(p‘) with the property 
that all struts are lifted to valleys or flat edges (because they 
can only carry nonnegative stress), and bars are lifted to val- 
leys, mountains, or flat edges. We need to show that nonflat 
edges can only appear within or on the boundary of con- 
vex cycles. Because we may add an arbitrary affine-linear 
function to a graph, we may conveniently assume that the 
exterior face of r is on the z y  plane. Thus the problem is 
to show that r does not lift off the zy plane any vertex of 
GL(p‘) except possibly vertices interior to convex cycles. 

One simple fact that we will need is the following: 
Lemma 4 Any mountain in the polyhedral graph I? projects 
to a bar in the planar framework Gk (p‘). 
Proof: A strut can only carry nonnegative stress, so by The- 

0 

We now come to the heart of our proof, the proof of The- 
orem 5 .  It is here we finally show that the stress must be 
outer-zero, by looking at the maximum of any Maxwell- 
Cremona lift. Specifically, let M denote the region in the z y  
plane where the z value attains its maximum in r, which is 
a nonempty union of faces, edges, and vertices of the planar 
framework GL(p’). The following statement immediately 
implies Theorem 3 and hence Theorem 2: 
Theorem 5 The set M includes every face of the frame- 
work Gk (p’) that is exterior to all convex cycles. 

Consider the boundary d M ,  which may be empty if M 
fills the whole plane. Because points in M lift to maximum 

orem 4 it can only lift to a valley or a flat edge. 

(g> (h) (i) 0) (k) (1) 

Figure 5. Hypothetical connected compo- 
nents of d M  and their relation to M .  Solid 
lines are edges of d M ;  white regions are ab- 
sent from M ;  and shaded regions are present 
in M .  (a) An isolated vertex. (b) A straight 
subarc. (c) A nonstraight subarc. (d) A non- 
convex cycle. (e) A nonconvex cycle and its 
local interior. (f) A nonconvex cycle and its 
local exterior. (9-k) Various situations with a 
convex cycle. (I) The only possible case: A 
convex cycle and its local exterior. 

height, all edges of d M  must lift to mountains. Thus by 
Lemma 4, all edges of d M  must be bars in the framework. 
Hence, bM consists of disjoint vertices, paths of edges, and 
complete cycles of the arc-and-cycle set, together with a 
subset of the triangulations of the convex components. Fig- 
ure 5 shows the main possibilities. We will show that the 
only case in Figure 5 that can actually occur is (l), in which 
d M  includes a convex cycle and M includes the local exte- 
rior of that cycle. 

Our main technique for arriving at a contradiction in all 
cases except (1) is that of slicing the polyhedral graph. Con- 
sider a plane Il that is parallel to the z y  plane and just below 
the maximum z coordinate of I’. (By “just below” we mean 
that ll is above all vertices of J? not at the maximum z coor- 
dinate.) Now take the intersection of Il with the surface r, 
and project this intersection to the zy  plane. The resulting 
set X is shown in Figure 6 for the various cases. 

The set X captures several properties of the polyhedral 
graph J?. First note that because X is the boundary of a 
small neighborhood of M in the plane, it is a disjoint union 
of cycles. It is also polygonal. Each edge of X corresponds 
to a face of I?, and each vertex of X corresponds to an edge 
of J?. The angle at a vertex w of X (interior to the side 
bounded by M) determines the type of edge corresponding 
to w: the angle is 7r (straight) if the edge is flat, less than 7r 

(convex) if the edge is a mountain, and more than 7r (reflex) 
if the edge is a valley. 

The basic idea is to show that X has “many” convex an- 
gles, and apply Lemma 4 to prove that the framework has 
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Figure 6. Slicing the polyhedral graph I’ just 
below the maximum z coordinate, in each 
case corresponding to those in Figure 5. 
Thick lines denote the slice intersection X ,  
and thick dotted lines denote the correspond- 
ing edges in the polyhedral graph r. 

“too many” bars. The key fact underlying the proof is that 
the arc-and-cycle set has maximum bar-degree two: every 
vertex is incident to at most two bars. In the planar frame- 
work GL(p’), only vertices v of convex cycles can have 
bar-degrees greater than two, and these bars are contained 
in a convex wedge from U. 

Our proof deals with all cases at once. To illustrate the 
essence of the proof, we first describe it for the special case 
(a) in which one component of a M  is a single vertex v that 
does not belong to a convex cycle. In this case, one com- 
ponent of X is a star-shaped polygonal cycle P around U. 

Every polygon P has at least three convex vertices. (Be- 
cause the turn angles of a polygon sum to 27r, and the max- 
imum turn angle of a vertex is < 7r, every polygon has at 
least three vertices with positive turn angles.) These three 
convex vertices correspond to three mountains in I?, all in- 
cident to a common vertex U. By Lemma 4, there are three 
bars incident to U,  contradicting the maximum-degree-two 
property for vertices not on convex cycles. Therefore, case 
(a) cannot exist. 

The general reason that cases (a-k) cannot exist is the 
following: 

Lemma 5 Let v be a vertex on the boundary of M ,  and let 
bl , . . . , bk be the bars incident to v in cyclic order: Consider 
a small disk D around v. 

(a )  Ifthere is an angle of at least 7r at v between two con- 
secutive bars, say bi and bi+l, then the pie wedge P 
of D bounded by b, and bi+l belongs to M .  (See Fig- 
ure 7.) 

(b )  Ifthere are no bars or only one bar incident to v, i.e., 
k 5 1, then the entire disk D belongs to M. (This can 
be viewed as a special case of (a).) 

Figure 7. (Left) Illustration of Lemma 5: solid 
lines are bars, dotted lines are struts, and the 
shaded pie wedge P must be contained in 
M .  (Right) Illustration of the proof; the thick 
lines form the portion of X inside P, and the 
symbols c and T denote convex and reflex ver- 
tices, respectively. 

Proof: (a) Because there are no bars in the pie wedge P, 
and hence no edges of d M  in P, P must be completely con- 
tained in or disjoint from M. Assume to the contrary that 
P is disjoint from M. Then the intersection of the slice X 
with the pie wedge P is a star-shaped polygonal arc around 
v starting from a point on bi and ending at a point on bi+l.  

By the properties of X, convex vertices on this arc corre- 
spond to mountains emanating from U ,  and reflex vertices 
correspond to valleys emanating from U.  Because the angle 
of the pie wedge P is at least T, the arc must have at least 
one convex vertex in P. (The turn angles along the arc must 
sum to a positive number, so some vertex must have a pos- 
itive turn angle.) By Lemma 4, there must be a bar in P, a 
contradiction. 

(b) If k = 1, the bars bi and bi+l coincide, and the same 
proof applies. The star-shaped polygonal arc becomes a 
star-shaped polygonal cycle, which must have at Least two 
convex vertices not on bi = bi+l.  If k = 0, X also has a 
star-shaped polygonal cycle around v, which must have at 
least three convex vertices, yet v has no incident b<ars. 0 

Note that this lemma applies to every vertex in our pla- 
nar framework GL (p’), because every vertex eitheir has bar- 
degree at most two or is a vertex of a convex cycle, and in 
either case there is a nonconvex angle between two consec- 
utive bars. 

One can immediately verify that the examples shown in 
Figure 6(a-k) contradict Lemma 5 .  For example, applying 
the lemma to any vertex of a M  shows that M should con- 
tain a positive two-dimensional area incident to that vertex. 
This immediately rules out cases (a-d), (g), U), and (k). 

A general proof is also easy with Lemma 5 in hand: 

Proof (Theorem 5): Consider first a degree-0 or degree-1 
vertex v in d M .  (Such a point would appear when M has a 
component that is an isolated point or an arc of bars.) Be- 
cause Lemma 5 applies to every vertex of the framework, 
we know that some positive two-dimensional area in the 
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vicinity of v belongs to M, contradicting that v has degree 
0 or 1 in d M .  [This rules out cases (a-c) and (j-k).] 

It follows that d M  is a union of cycles. A component of 
d M  can be of two kinds: 

If it is formed from the edges of a convex cycle and its 
triangulation, Lemma 5 applies to any vertex in it, and 
we conclude that M contains the face of the framework 
immediately exterior to the cycle. [This rules out cases 
(g-0.1 

If it consists of a complete nonconvex cycle, we can 
apply Lemma 5 to some convex vertex and to some 
reflex vertex (they must both exist), and we conclude 
that M contains both the face of the framework imme- 
diately interior and the face immediately exterior to the 
cycle. [This rules out cases (d-0.1 

In the end, the only faces of the framework that can be 
excluded from M are those interior to convex cycles [case 
(l)]. This completes the proof of Theorem 5 and of Theo- 
rems 3 and 2. 0 

4. Global Motion 
In this section, we combine the infinitesimal motions into 
a global motion, thereby proving Theorem 1, the main the- 
orem. In Theorem 2 we have established the existence of 
some direction of motion v. Now we select a unique vec- 
tor v := f(p) for each configuration p as the solution of 
a convex optimization problem (4-6). We then set up the 
differential equation 

d 
dt -P(t) = f(P(t)). 

The solution of this differential equation moves the link- 
age to a configuration where an angle between two bars be- 
comes straight. At this point we merge the two bars and 
continue with the reduced framework that has one vertex 
less. This procedure is iterated until the framework is outer- 
convex and no further expansive motion is possible. 

It is convenient for the proof of Theorem 1 to effec- 
tively pin an edge in the configuration. Choose any edge, 
say {PI, p2}, that is a bar. During the motion we will ar- 
range matters so that this bar is stationary. 

We now go into the details of the proof. We use the fol- 
lowing nonlinear minimization problem to define a unique 
direction v for every configuration p of a reduced arc-and- 
cycle set. 

minimize llvi112 
i E  V 

+ [(Vi - V j )  . (Pi - Pj) - llPj - Pill1-l (3) 
{ i , j ) E S  

subject to (vj - vi) . (pj - pi) > llpj - pill, 
for { i , j }  E S (5 )  

for {i,j} E B (6) 

v1 = v2 = 0 (7) 
The restrictions place a uniform constraint on the growth of 
the struts S: tij > 1. Since the system (1) is homogeneous, 
the system (5-6) is feasible for any choice of right-hand 
sides in (5).  This particular right-hand side has been chosen 
for convenience in the proof. 

The objective function (4) includes the norm of v as a 
quadratic term, plus a barrier-type penalty term that keeps 
the solution away from the the boundary (5) of the feasible 
region. This penalty term is necessary to achieve a smooth 
dependence of the solution on the data. Now, because the 
objective function is strictly convex, and it goes to infinity 
if v increases to infinity or approaches the boundary, there 
is a unique solution v =: f(p) for every p. 

The function f(p) is defined on an open set U C R2" 
that is characterized by the conditions of Theorem 2: no an- 
gles are 0" or 180°, no vertex touches a bar, and at least one 
cycle is nonconvex or at least one open arc is not straight. 
Lemma 6 f is diferentiable on U .  

The proof of this lemma (omitted in this abstract) is 
based on the stability theory of convex programming under 
equality constraints. 
Proof (Theorem 1): Differentiability off on U is sufficient 
to ensure that the initial-value problem 

( V j  - Vi) * (Pj - Pi) = 0, 

d 
dt -P@) = f(P(t)), P(0) = Po (8) 

has a (unique) maximal solution p(t), 0 5 t < T, that 
cannot be extended beyond some positive bound T 5 CO; 

see for example [33, Section II.XXI]. This means that one 
of three cases occurs: 

(a) p(t) exists for all t, i.e., T = CO. 

(b) T is finite, and p(t) becomes unbounded as t + T. 

(c) T is finite, and p(t) approaches the boundary of U as 
t + T.  

The last case (c) is the case we want: at the boundary 
of U, some angle becomes straight, and we can reduce the 
linkage. 

Case (a) can be excluded very easily. By assumption, the 
bar-and-strut framework GA(P) has some strut {i, j }  be- 
tween two points in the same component of the bar frame- 
work; their distance increases at least with rate 1, by (3, 
but it is bounded from above because i and j are linked by 
a sequence of bars. It follows that the solution cannot exist 
indefinitely and T must be finite. 

If there is a line L that separates the components of the 
arc-and-cycle set A, this partitions A into two nonempty 
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sets, and each of these can be treated separately and recur- 
sively. Unfortunately, the guarantee for the expansive prop- 
erty between different members of the partition is lost. But 
for the purposes of proving Theorem 1 we may assume that 
there is no such separation. Then the sum of the maximum 
diameters of each of the components of A is a uniform a- 
priori bound on the diameter of A for all time. This elimi- 
nates case (b). 

Thus we are left with case (c) only. Observe that all pair- 
wise distances of vertices p(t) are monotonically increas- 
ing, and by condition (7) p1 and p2 are fixed during the 
motion. Thus, all other vertices are determined up to reflec- 
tion, and the whole configuration is determined up to reflec- 
tion. Thus p(t) + p for some configuration p as t + T. 
The configuration p is on the boundary of U and thus must 
have some vertex with a straight angle. Then we inductively 
continue with a simpler linkage. This completes the proof 
of Theorem 1. 0 

4.1. Additional Observations 
It is useful to notice that, under the appropriate conditions, 
we can extract more information from the deformation that 
we have defined in Theorem 1. One observation is that 
we can preserve any symmetries that the original config- 
uration might have. Consider a group H of congruences of 
the plane, where each congruence in H fixes a point in the 
plane. We say that the arc-and-cycle set A has symmetry 
group H if the action of each element of H permutes the 
vertices and edges of A. 
Corollary 1 Ifan arc-and-cycle set has a symmetry group 
H ,  then there i s  a piecewise-differentiable proper motion 
to an outer-convex confguration, such that it is expansive 
until it is separated and the symmetry group H is preserved 
during the deformation. 

4.2. Alternative Approaches 
There are many ways to select a local motion v among 
the feasible local motions whose existence is guaranteed by 
Theorem 2. We have chosen one possibility that is most 
convenient for the proof. 

As a possible alternative approach, we might consider a 
linear programming problem, with some arbitrary artificial 
linear objective function c, and some linear normalization 
condition to ensure boundedness, pinning down some bar 
(i1,iz) E B: 

minimize CiEV ci . vi 
subject to (vj - Vi)  - (pj - pi) 1 0 

for {i,j} E B, (9) 

for { i , j }  E S, (10) 
(1 1) 
(12) 

(Vj - Vi)  * (Pj - Pi) 2 0 

CiEv di . vi = 1, 
vi, = viz = 0, 

We have given up strict expansiveness in (lo), The set of 
vectors given by (9), (lo), and (12) forms a polyhedral 
cone C. Theorem 2 guarantees that there are nonzero so- 
lutions. One can check that the normalization clonditions 
(1 1) ensure that the cone is pointed. The idea is now to use 
an extreme ray of the cone C for the motion. A vector d 
can be found which ensures that the feasible set (9-12) is a 
bounded set. Any basic feasible solution of the linear pro- 
gram will correspond to an extreme ray of the cone C. It 
will have a few inequalities of (10) fulfilled with equality. 
The resulting framework obtained by inserting “artificial” 
bars corresponding to the nonbasic inequalities of I( lo), will 
have a unique vector of velocities v subject to the: normal- 
ization constraint (1 1). This means that the framework is a 
mechanism, allowing one degree of freedom; as the mecha- 
nism follows this forced motion, all nonfixed distances will 
increase, at least for some time. 

So one follows the paradigm of parametric linear pro- 
gramming: The optimal basic feasible solution Twill con- 
tinue to remain feasible as the coefficients pi in the con- 
straints (10) change smoothly. At some point, one of these 
constraints will threaten to become violated: this is; the time 
to make a pivot, exchanging one of the artificial tiars for a 
new one which allows the motion to be continued. 

The above discussion has ignored several issues, such as 
possible degeneracy of the linear program. However, this 
approach might be more attractive from a conceptual, as 
well as a practical point of view. 

Recently, Streinu [31] has found a class of such mech- 
anisms, so-called pseudo-triangulations. These structures 
have some nice properties; for example, they form a planar 
framework of bars. Streinu [3 13 claims that a polygonal arc 
can be opened by a sequence of at most O(n2) motions, 
where each motion is given by the mechanism of a single 
pseudo-triangulation. 

t . 
L ..’~..-~ c . * . . . . =.t- 

Figure 8. An arc that is numerically diff icwlt to 
unfold. 

4.3. Comparison of Approaches 
The approach based on mechanisms might avoid some of 
the numerical difficulties associated with solving the opti- 
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mization problem (4-6). Forexample, consider a spiral n- 
bar arc winding around a unit square in layers of thickness E 

(Figure 8). In the solution of ( 5 4 ,  a rough estimate shows 
that the outermost vertex must move with a speed of at least 

, as E + 0. On the other hand, the “natural” solu- 
tion of unwinding the spiral one bar at a time fits nicely into 
the setup of mechanisms and the parametric linear program 
approach. 

Our proof has certain nonconstructive aspects: the direc- 
tion v of movement is specified implicitly as the solution 
of an optimization problem, and the global motion arises as 
the solution of a differential equation. Both of these items 
are numerically well-understood, and our approach lends it- 
self to a practical implementation. Indeed, we implemented 
our approach to produce animations such as Figure 1. How- 
ever, this does not necessarily lead to a finite algorithm in 
the strict sense. The optimization problem (4-6), having 
an objective function which is rational, can in principle be 
solved exactly by solving a system h(p, z, A) = 0 of alge- 
braic equations. The differential equation cannot be solved 
explicitly, but it may be possible to bound the convergence 
and develop a finite algorithm for a digital computer (solv- 
ing the differential equation up to a given error bound). 

Since the motions of a mechanism are described by al- 
gebraic equations, Streinu’s algorithm leads to a finite algo- 
rithm for a digital computer, at least in principle. It remains 
to be seen how a practical implementation competes with 
our approach; in any case, as an algorithm for a direct re- 
alization of the motion by a mechanical device, Streinu’s 
algorithm appears attractive. 

On the other hand, the nonlinear programming approach 
might be preferable because it produces a “canonical” 
movement. In particular, when the starting configuration 
is symmetric, this symmetry will be maintained throughout 
the whole motion (Corollary 1). 

&4-n 

5. Related Problems 
In this section we settle a few natural questions related to 
our main theorem. 
Theorem 6 Any smooth expansive noncongruent motion of’ 
a simple closed polygonal curve C in the plane, fixing the 
lengths of its edges, must increase the area of the interior of 
C during the motion. 

5.1. Topology of Configuration Spaces 
It is natural to ask more about the structure of the configu- 
ration space of an arc-and-cycle set. Let X ( G ,  L) denote 
the space of all configurations of embeddings in the plane 
of of a bar graph G consisting of a finite number arcs and 
cycles, without self-intersections, where the edge lengths 
are determined by L = (. . . , &, . . . ). This inherits a natu- 
ral topology from considering all the coordinates of all the 
vertices as part of a large dimensional Euclidean space. Let 

Xo(G,  L )  c X ( G ,  L )  denote the subspace of outer-convex 
configurations. We assume that L is chosen so that there is 
at least one realization in the plane. 
Theorem 7 The space of outer-convex realizations X O  (G) 
is a strong deformution retract of X ( G ) .  

The main point to remember is that the limit in Theo- 
rem 1 depends continuously on the initial starting config- 
uration. The following is a natural consequence of Theo- 
rem 7. 
Corollary 2 Ifthe underlying graph G is a single arc or a 
single cycle, then X ( G ,  L )  modulo congruences (including 
Orientation reversing ones) is contractible. 

Here the main task is to show that the space of convex 
realizations is contractible. 

5.2. Open Problems 
Another direction is to explore what happens when the arc- 
and-cycle set is allowed to touch but not cross: 
Conjecture 1 I fG  is a single arc or  a single cycle, then the 
closure of X ( G ,  L )  modulo congruences is contractible. 

We conjecture that motions can be realized by a sequence 
of relatively simple motions: 
Conjecture 2 IfA is an arc-and-cycle set in the plane, then 
there is aflex that takes it to an outer-convex conjiguration, 
by afinite sequence of motions, where each motion changes 
at most four vertex angles. 

It also remains open precisely how many such moves are 
needed. 
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