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Abstract—It is shown how to combine two generically globally rigid bar frameworks in d-space
to get another generically globally rigid framework. The construction is to identify d + 1 vertices
from each of the frameworks and erase one of the edges that they have in common.
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1. INTRODUCTION AND DEFINITIONS

Suppose that a finite configuration p = (p1,p2, . . . ,pn) of labeled points in Euclidean d-dimen-
sional space E

d is given, together with a corresponding graph G whose vertices correspond to the
points of p. Each edge of G, called a member, is designated as a cable, strut, or bar. All this data
is denoted as G(p), and it is called a tensegrity, or if all the members of G are bars, G(p) is called
a bar framework.

We say the tensegrity G(p) dominates the tensegrity G(q), and write G(q) ≤ G(p), for two
configurations q and p, if

|pi − pj| ≥ |qi − qj| for {i, j} a cable,

|pi − pj| ≤ |qi − qj| for {i, j} a strut, and

|pi − pj| = |qi − qj| for {i, j} a bar.

(1)

This just means that going from p to q, cables do not get longer, struts do not get shorter, and
bars stay the same length. For bar frameworks, we say G(p) is equivalent to G(q) if G(q) ≤ G(p)
or G(p) ≤ G(q) and we write G(q) � G(p).

Two configurations p and q are congruent, in E
d, and we write p ∼= q, if there is a d-by-d

orthogonal matrix A and a vector b ∈ E
d such that qi = Api + b for all i. Equivalently, p ∼= q if

and only if K(p) � K(q), where K is the complete graph on the vertices of p and q.
A tensegrity G(p) is defined to be globally rigid in E

d if for every tensegrity G(q) in E
d that is

dominated by G(p), q is congruent to p. In other words, G(q) ≤ G(p) implies p ∼= q. So a bar
framework G(p) is globally rigid in E

d if, for all configurations q in E
d, G(q) � G(p) implies p ∼= q.

A tensegrity or a bar framework G(p) in E
d is universally globally rigid or just universally rigid if

it is globally rigid in E
D ⊃ E

d for all D ≥ d.
A tensegrity G(p) is defined to be (locally) rigid in E

d if there is an ε > 0 such that for |p−q| < ε
and any tensegrity G(q) in E

d that is dominated by G(p), q is congruent to p. In other words, q
close enough to p and G(q) ≤ G(p) imply p ∼= q. So a bar framework G(p) is locally rigid in E

d if
there is an ε > 0 such that |p − q| < ε, q in E

d, and G(q) � G(p) imply p ∼= q.
A configuration p is said to be generic if the coordinates of p in E

d are algebraically independent
over the rational numbers, which means that there is no non-zero polynomial with rational coordi-
nates satisfied by the coordinates of p. This implies that no d + 2 nodes lie in a hyperplane, for
example, and a lot more. Figure 1 shows several examples of tensegrities and frameworks with and
without the properties discussed here.
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Fig. 1. The top row shows tensegrities, where dashed lines are cables, solid lines struts. The bottom
row shows bar frameworks. All these examples are locally rigid, (a) and (b) are universally globally
rigid, while (c), (d), and (e) are not globally rigid in the plane. Example (f) is not globally rigid in
the plane when the central point lies on the diagonal of the surrounding rectangle, but it is globally
rigid in the plane when the configuration is generic.

2. BASIC PREVIOUS RESULTS

There has been a lot of work developing computationally feasible criteria for both local and
global rigidity that involve purely combinatorial calculations for the graph G and numerical criteria
involving, additionally, the configuration p. A graph G is called m-connected if it takes the removal
of, at least, m vertices to disconnect G. For example, in the plane E

2 there is a popular algorithm,
the pebble game, to compute, for a bar framework, whether G(p) is locally rigid when p is generic.
This algorithm is purely combinatorial, only depends on the graph G, and is polynomial in n, the
number of vertices of G. For information about this theory, see [12, 13, 17, 22]. For all dimen-
sions, determining whether a given bar framework G(p) is locally rigid at a generic configuration
is also quite feasible, although it is not known to be feasible purely combinatorially. For every bar
framework G(p) in E

d with n ≥ d vertices, there is an associated e-by-dn matrix R(p), the rigidity
matrix, such that G(p) is locally rigid in E

d if and only if the rank of R(p) is dv − d(d + 1)/2.
In order to understand some of the results about global rigidity, it is helpful to look at the

case of tensegrities, and in order to understand that, it is helpful to understand stresses and stress
matrices. For any tensegrity G(p), a stress ω = (. . . , ωij , . . .) is a scalar ωij = ωji associated to
each member {i, j} that connects vertex i to vertex j of G. If vertex i is not connected to vertex j,
then ωij = 0. We say that a stress ω for the tensegrity or framework G(p) is an equilibrium stress
if for all j, the following vector equation holds:

∑

i

ωij(pi − pj) = 0. (2)

If G(p) is a tensegrity, we say that ω is a proper stress if ωij ≥ 0 for all cables {i, j}, and ωij ≤ 0
for all struts {i, j}. If ω is a stress for G(p), and G has n vertices, form an n-by-n symmetric
matrix Ω, called the stress matrix, as follows: Each off-diagonal entry of Ω is −ωij, and the diagonal
entries are such that the row and column sums are 0. Figure 2 shows a simple example of a tensegrity
with a proper equilibrium stress indicated.

The stress matrix for this stress is

⎛

⎜⎜⎝

1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

⎞

⎟⎟⎠ .
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Fig. 2. A square tensegrity with its diagonals, where a proper equilibrium stress is indicated.

In order to understand a fundamental theorem that implies universal global rigidity, we define
the following concept. Let v1, . . . ,vk be vectors in E

d. Regard these vectors as points in the real
projective space RP

d−1 of lines through the origin in E
d. We say that v1, . . . ,vk lie on a conic

at infinity if, as points in RP
d−1, they lie on a conic (or quadric) hypersurface. For example, in

the plane E
2, a conic at infinity consists of at most two points. In 3-space E

3, if we project the
vectors into a plane, not through the origin, the conic is the usual notion of a conic, including the
degenerate case of two lines. The following is a fundamental result that has motivated a lot of the
later results about global rigidity. This can be found in [3, 7].

Theorem 1. Let G(p) be a tensegrity, where the affine span of p = (p1, . . . ,pn) is all of E
d,

with a proper equilibrium stress ω and stress matrix Ω. Suppose further

(i) Ω is positive semi-definite.

(ii) the rank of Ω is n − d − 1;

(iii) the set of vectors {pi − pj | ωij �= 0} does not lie on a conic at infinity.

Then G(p) is universally globally rigid.

In many cases, condition (iii) is easy to verify. The difficulty usually lies with condition (i) and
condition (ii). When the affine span of p is d-dimensional, the rank of Ω is at most n − d − 1,
because of the equilibrium conditions (2). When the three conditions of Theorem 1 are satisfied,
we say that the tensegrity is super stable.

A partial converse to Theorem 1 is the following result of S. Gortler, A. Healy, and D. Thurston
(see [10]).

Theorem 2. Let G(p) be a universally globally rigid bar framework in E
d, where p is generic

and G has at least d + 2 vertices. Then G(p) is super stable.

So this means that under the conditions of Theorem 2, there is an equilibrium stress such that
the three conditions of Theorem 1 hold. So if the bars are converted to cables or struts to follow
the sign of that stress, the bar constraints can be replaced by the much weaker inequality tensegrity
constraints in (1).

Figures 1a and 1b are super stable, while Fig. 1c satisfies condition (i) and condition (iii), but
not condition (ii) and, indeed, Fig. 1c is not even globally rigid in the plane.

In order to understand condition (ii) and use it, it helps to interpret the rank condition on Ω.
One very useful way to do this uses the following concept. Suppose p is a configuration with
n vertices in E

d and with an equilibrium stress ω. We say the configuration p is universal with
respect to ω if, when q is any other configuration on the same number of vertices such that ω is
an equilibrium stress for q, the configuration q is an affine image of the configuration p. In other
words, there is a d-by-d matrix A and a vector v ∈ E

d such that Api + v = qi for all i = 1, . . . , n.
The following result in [3] relates the notion of a universal configuration to the rank of the stress
matrix. We assume that the affine span of the configuration p is d-dimensional.
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Proposition 3. A non-zero equilibrium stress ω for a configuration p with n vertices in E
d

is universal if and only if the rank of the associated stress matrix Ω is n − d − 1.

A basis, including the vector of all one’s, for the kernel of Ω, ker(Ω), can be used to construct
a universal configuration as shown in [3]. For example, in E

d when the configuration p is universal
with respect to the stress corresponding to Ω, the d vectors consisting of the ith coordinates, for
i = 1, . . . , d, and the vector of n one’s correspond to a basis for ker(Ω). When the emphasis is on
a fixed configuration rather than a fixed equilibrium stress, we say Ω is of maximal rank if its rank
is n − (d + 1).

3. COMBINING TENSEGRITIES

The stress matrix, since it is symmetric, can be regarded as a quadratic form on the space of
all configurations p, and we can add these quadratic forms as functions. (Technically, though, it
is the tensor product of Ω with the identity matrix Id, Ω ⊗ Id, that corresponds to the quadratic
form on the configurations p.) When we add positive semi-definite quadratic forms, the sum is
positive semi-definite, and condition (iii) is also easy to verify in most cases. It is also possible
to check condition (ii), when it is true. For example, it is easy to see that Fig. 1c is obtained by
superimposing the rightmost strut in Fig. 1a and the leftmost cable in Fig. 1b. If the stresses for
Figs. 1a and 1b are adjusted by positive rescaling, the stress vanishes on the overlap. But the rank
of the stress matrix of the sum is 6 − (2 + 1) − 1 = 2, one less than is needed for super stability.
Nevertheless, for any configuration dominated by Fig. 1c in any dimension, it is such that any pair
of vertices both coming from Fig. 1a or both coming from Fig. 1b have their distances preserved.
On the other hand, if the overlap of two tensegrities consists of at least d + 1 vertices, then the
maximal rank condition (ii) is preserved.

Proposition 4. Suppose that G1(p) and G2(q) are two super stable tensegrities in E
d with

at least d + 1 vertices in common, such that the d + 1 vertices do not lie in a (d − 1)-dimensional
hyperplane, and such that one cable in G1 overlaps with a strut in G2. Then the tensegrity G(p∪q)
obtained by superimposing their common vertices and members, but erasing the one common cable
and strut, is also super stable.

It is understood that in G, if two other cables overlap, the resulting member in G is a cable;
if two struts overlap, the resulting member is a strut; and if another cable and strut overlap, the
resulting member can be either a cable or strut or disappear, depending on the stresses of G1(p)
and G2(q). Figure 3 shows an example of this.

The example of Fig. 3 is one case of a Cauchy polygon, and Proposition 4 is explained in more
detail in [3]. Note that with this process, it is necessary to match a strut with a cable.

(a) (b) (c)

1 1 1
2

22

3 34 44

5 5
+ =

Fig. 3. Part (a) is combined with part (b) to get part (c) as with Proposition 4. The stress in the
{2, 4} strut in part (a) is scaled to cancel with the stress in the {2, 4} cable in part (b). Note that
the stress in the {1, 4} cable of part (a) does not cancel with the stress in the {1, 4} strut in part (b).
The final stress in the {1, 4} member is negative and it is a strut in part (c) because of convexity of
the five points and the equilibrium condition (2).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 275 2011



COMBINING GLOBALLY RIGID FRAMEWORKS 195

4. GLOBALLY RIGID GENERIC BAR FRAMEWORKS

For bar frameworks the story for global rigidity is different. The starting point is to assume that
the configuration p is generic, which has advantages and disadvantages. An advantage is that, in
principle, generic global rigidity in E

d can be calculated with the help of some numerical calculation,
but the downside is that the generic condition is hard to work with computationally. For the case
of local rigidity, the condition of being generic can be replaced by some polynomial conditions on
the coordinates that are to be avoided. For the case of global rigidity in E

d, for d ≥ 3, there are
some polynomial conditions also that are to be avoided, but they seem to be intrinsically difficult
to calculate. The following basic result can serve as a starting point. The “if” part of the statement
is due to [5], and the “only if” part is due to S. Gortler, A. Healy, and D. Thurston [10].

Theorem 5. Let G(p) be a bar framework at a generic configuration p in E
d with n ≥ d + 2

vertices. It is globally rigid in E
d if and only if there is a non-zero equilibrium stress whose stress

matrix Ω has rank n − d − 1.
The only globally rigid (generic) frameworks G(p) not covered in Theorem 5 are when G is the

complete graph on less than d + 2 vertices. Note that Theorem 5 essentially involves condition (ii)
of Theorem 1. Condition (iii) follows easily from the generic hypothesis and the equilibrium stress.

Note that a consequence of (the “only if” part of) Theorem 5 (and of the fact that the stress
rank condition is a generic property) is that if G(p) is globally rigid at one generic configuration p,
then G(q) is globally rigid at all other generic configurations q. Furthermore, although generic
configurations are hard to calculate concretely, it is enough to verify that for some configuration p
the rank of the rigidity matrix R(p) is dn− d(d + 1)/2, and the rank of a stress matrix is n− d− 1,
as mentioned in [5, 8].

In dimension 2 the situation is even better, depends on the local rigidity properties of G(p)
and depends on the combinatorics of G only. If G(p) is a bar framework in E

d, is locally rigid and
remains locally rigid after the removal of any bar, we say that G(p) is redundantly rigid in E

d.
Theorem 6. A bar framework G(p) with p generic is globally rigid in E

2 if and only if G(p)
is redundantly rigid and 3-connected.

The “only if” part of Theorem 6 is due to B. Hendrickson in [14]. The “if” part of Theorem 6 is by
A. Berg and T. Jordán; B. Jackson and T. Jordán; R. Connelly [2, 15, 5]. The pebble game of [17]
provides an efficient purely combinatorial algorithm to compute generic redundant rigidity in the
plane, and the computation of connectedness is known to have efficient polynomial time algorithms,
so Theorem 6 essentially provides a computationally effective method for computing generic global
rigidity in the plane.

We say that a graph G has the Hendrickson property in E
d if G is (d + 1)-connected and G(p)

is redundantly rigid in E
d, when p is generic. In [14] B. Hendrickson shows the following:

Theorem 7. If a bar framework G(p) with p generic is globally rigid in E
d, then G(p) is

redundantly rigid and (d + 1)-connected.
Originally Hendrickson conjectured the converse of Theorem 7 for d ≥ 3, but that is false since,

in [4], it is shown that the complete bipartite graph K(5, 5) has the Hendrickson property in E
3,

but it is not globally rigid in E
3, and there are other examples shown by S. Frank and J. Jiang [9].

In particular for E
5, there are infinitely many examples, and similarly there are infinitely many

examples for each d ≥ 5.

5. COMBINING GENERIC GLOBALLY RIGID BAR FRAMEWORKS

In E
d for d ≥ 3, there is no known efficient deterministic combinatorial algorithm to compute

generic global rigidity. So it is reasonable to consider special combinatorial ways to create generically
globally rigid bar frameworks from others especially in the spirit of Section 3.
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One very natural way to combine two frameworks is to assume some overlap of the vertices and
remove some of the members joining the common vertices. If some members belong to one side,
but not the other, the following natural result by K. Ratmanski [20] is useful.

Theorem 8. Suppose that G1(p) and G2(q) are globally rigid bar frameworks in E
d with d+1

vertices (or more) in common such that p∪q is generic. Let G be the graph obtained by taking the
union of their vertices and members, but deleting those members from G2 not in G1. Then the bar
framework G(p ∪ q) is also globally rigid in E

d.

Proof. This follows directly from the statement of global rigidity. Suppose that the framework
G(p ∪ q) is equivalent to G(p̂ ∪ q̂) in E

d. Since G1(p) is globally rigid, the configurations p and p̂
are congruent. So all the lengths of members in p ∩ q are preserved. So q and q̂ are congruent
since G2(q) is globally rigid. Since p∪ q are generic and there are d + 1 vertices in common, p̂∪ q̂
is congruent to p ∪ q. �

In order to treat the case when we delete a common member, first consider the following. We
need an elementary lemma from linear algebra.

Lemma 9. Suppose that Ω1 and Ω2 are two n-by-n symmetric matrices, such that the dimen-
sion of ker Ω1 ∩ ker Ω2 is k, and rank{Ωi} = ri, i = 1, 2, where r1 + r2 = n − k. Then

rank{tΩ1 + (1 − t)Ω2} = n − k, t �= ±1. (3)

Proof. Since Ω1 and Ω2 are symmetric, and ker Ω1 ∩ ker Ω2 is an invariant subspace of both
Ω1 and Ω2, we can restrict to the orthogonal complement of ker Ω1 ∩ ker Ω2. So we may assume,
without loss of generality, that k = 0.

Again, since Ω1 and Ω2 are both symmetric, the orthogonal complements (ker Ω1)⊥ and
(ker Ω2)⊥ are the images Im Ω1 = (ker Ω1)⊥ and ImΩ2 = (ker Ω2)⊥, respectively. Because
[(ker Ω1)⊥ + (ker Ω2)⊥]⊥ = ker Ω1 ∩ ker Ω2 = {0}, it follows that (ker Ω1)⊥ + (ker Ω2)⊥ = R

n.
In other words, the combined images of Ω1 and Ω2 span R

n. Since r1 + r2 = n, these spaces are
complementary in R

n. Thus for all t �= 0, 1, tΩ1 + (1 − t)Ω2 is non-singular. �
We next apply this to stress matrices.

Lemma 10. Suppose that G1(p) and G2(q) are two bar frameworks in R
d, with n1 and n2

vertices, respectively, that share exactly d+1 vertices not lying in a (d−1)-dimensional hyperplane,
and with corresponding stress matrices Ω1 and Ω2. Extend Ω1 to Ω̃1 to include the vertices q of G2

not in G1, but with 0 stress on all the extra pairs of vertices. Similarly extend Ω2 to Ω̃2. If each Ωi

has maximal rank ni − (d + 1), then for all values of t �= 0, 1, tΩ̃1 + (1 − t)Ω̃2 has maximal rank
n1 + n2 − 2(d + 1).

Proof. By the maximal rank condition, dim(ker Ω1) = dim(ker Ω2) = d+1, and dim(ker Ω̃1) =
d + 1 + n2 − (d + 1) while dim(ker Ω̃2) = d + 1 + n1 − (d + 1). Each of these kernels corresponds
to a universal configuration that has the vertices of p and q, for Ω̃1 and Ω̃2, respectively, such that
they lie in a d-dimensional affine linear space, while the extra vertices each correspond to a higher
dimensional configuration.

The union of the vertices of p and q, p ∪ q, is a configuration that satisfies the equilibrium
equations of the stresses corresponding to both Ω̃1 and Ω̃2. If p̄ ∪ q̄ is another configuration
that satisfies the equilibrium equations of the stresses corresponding to both Ω̃1 and Ω̃2, then p̄
is an affine image of p and q̄ is an affine image of q, since p and q are universal with respect
to the stresses corresponding to Ω1 and Ω2, respectively. Thus, by extending the correspondence
between p ∩ q and p̄ ∩ q̄, we get an affine map from p ∪ q to p̄ ∪ q̄. Thus p ∪ q corresponds
to a basis for the intersection of the kernels of Ω̃1 and Ω̃2. The affine spans of p and q are both
d-dimensional with d + 1 affine independent points in the intersection, so p∪q has a d-dimensional
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affine span. In other words, ker Ω̃1 ∩ ker Ω̃2 has dimension d + 1. Then Lemma 9 implies the
conclusion with k = d + 1, and rank{Ωi} = ri, i = 1, 2, since n = n1 + n2 − (d + 1), and
r1 + r2 = n1 − (d + 1) + n2 − (d + 1) = n − (d + 1). �

6. THE MAIN THEOREM

Theorem 11. Suppose that G1(p) and G2(q) are globally rigid bar frameworks in E
d, with

p ∪ q generic, exactly d + 1 vertices in common, each with at least d + 2 vertices, and a bar {i, j}
in G1 and G2. Then the bar framework G(p∪q) obtained by superimposing their common vertices
and bars, but erasing the bar {i, j}, is also globally rigid in E

d.
Proof. By Theorem 5 there are non-zero stress matrices Ω1 for G1(p), and Ω2 for G2(q) such

that rank{Ω1} = n1 − (d + 1) ≥ 1, and rank{Ω2} = n2 − (d + 1) ≥ 1 where n1 is the number of
vertices of G1, and n2 is the number of vertices of G2. Then Lemma 10 implies that for t �= 0, 1,
tΩ̃1 + (1 − t)Ω̃2 has maximal rank n1 + n2 − 2(d + 1). Let ωij(1) and ωij(2) be the stresses corre-
sponding to Ω1 and Ω2, respectively, for the bar {i, j}. If either ωij(1) = 0 or ωij(2) = 0, Theorem 8
implies that G(p ∪ q) is globally rigid in E

d. Otherwise by rescaling Ω1 and Ω2, if necessary, we
can assume that ωij(1) = 1 and ωij(2) = −1. Then Lemma 10, with t = 1/2, implies that there is a
stress matrix, with maximal rank, such that the stress on {i, j} is 0, which allows us to remove it.
Then Theorem 5 applies again to show that the resulting framework with {i, j} deleted is globally
rigid in E

d. �
Figure 3 is a typical example in the plane of Theorem 11, but where the members are interpreted

as bars.
It would be interesting to consider the case when there are more than d+1 vertices in common,

but the method here does not seem to apply directly, since there may be linear combinations of the
two stresses whose stress matrices are of lower rank, and we cannot zero out a stress on a given
member keeping the maximal rank condition. For example, when there are d+2 vertices in common
in E

d, and there is a vertex in the intersection of degree d + 1, no maximal rank linear combination
of the two stresses can zero out the stress on one bar. (This is an observation of Tibor Jordán.)

Question. Suppose that we combine two graphs that have the Hendrickson property as in
Theorem 11. Does the resulting framework have the Hendrickson property?

It seems that the connectivity property holds for the resulting framework. I do not know about
the redundant rigidity property for d ≥ 3. For d = 2, the statement of the question is true because
the Hendrickson property and generic global rigidity are equivalent by [15]. But, for d = 2, the
redundant rigidity condition holds by itself, without the need of the connectivity condition by a
recent result of Bill Jackson and Tibor Jordán.

The proof of Lemma 9 and Lemma 10 was inspired by a draft lemma in [6] that was incorrect.
The author is very grateful to Dylan Thurston and Tibor Jordán for pointing out a previous incorrect
statement (and proof of course) of Lemma 9. The author also thanks Igor Gorbovickis for several
useful comments and corrections. For other related results, see [18, 21, 11, 16, 8, 19, 16, 1].
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