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Abstract. We prove that universal second-order rigidity implies universal prestress stability
and that triangulated convex polytopes in 3-space (with holes appropriately positioned) are prestress
stable.

Key words. rigidity, prestress stability, universal rigidity

AMS subject classifications. 52C25, 52B10

DOI. 10.1137/15M1054833

1. Introduction. A classic result of Cauchy [7] implies that the boundary of any
convex polytope in 3-space is rigid, when each of its natural two-dimensional faces is
held rigid, even though they are allowed to rotate along common edges like hinges.
In [19], Dehn proved that a polytope with triangular faces is infinitesimally rigid,
and therefore rigid, when the edges are regarded as fixed length bars connected to
its vertices. Alexandrov [2] showed that any convex triangulated polytope, where the
natural surface may consist of nontriangular faces, is still infinitesimally rigid, as long
as the vertices of the triangulation are not in the relative interior of the natural faces.
Connelly [8] proved that any convex triangulated polytope in 3-space is second-order
rigid, no matter where the vertices of the triangulation are positioned, and second-
order rigidity implies rigidity in general. The only trouble with this last result is that
second-order rigidity is a very weak property. A stronger property, which we will now
discuss, is called prestress stability.

When a framework is constructed with physical bars, if it is rigid but not infinites-
imally rigid, it is often called “shaky” in the engineering literature [18]. For such a
rigid, but not infinitesimally rigid, framework, if each of the bars is at its natural
rest length, then the framework might deform significantly under external forces [17].
But in some situations, this shakiness can be rectified by placing some of the bars
in either tension or compression. When successful, the resulting structure is at a
local minimum of an internal energy functional that can be verified using the “second
derivative test.” Such structures will not deform greatly under external forces, even
though they are infinitesimally flexible. Thus, the stiffness of a physical framework
ultimately depends not just on the geometry but also on the physical properties and
tensional states of the material.

With this in mind, a (geometric) bar framework is called prestress stable if there
exists a way to place its bars in tension or compression so that the resulting structure
is at a local minimum of an internal energy functional that can be verified using the
second derivative test.

In this paper (Theorem 6.3), we show that any arbitrarily triangulated convex
polytope in 3-space is in fact prestress stable. Indeed, extending the results of [8], we
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2736 ROBERT CONNELLY AND STEVEN J. GORTLER

Fig. 1. The green faces in the convex polytope project onto the yellow holes in the base face.
The rest of the bottom face minus the yellow holes can be triangulated at will.

show that there are many ways of positioning holes in the faces of the polytope so
that any triangulation of the remaining surface is prestress stable. Our condition is
that for each face F of the polytope, there is another convex polytope PF projecting
orthogonally onto F , with F as the bottom face, such that each hole of F is the
projection of an upper face of PF , as in Figure 1. Furthermore, for any triangulation
of P , minus the holes, we assume that the boundary of each face F is infinitesimally
rigid in the plane of F .

As part of obtaining this result, we first show (Corollary 4.8) that, in general, if
any bar framework is universally second-order rigid in the sense that it remains second-
order rigid when thought of as a (degenerate) framework in all higher dimensions, then
it must be prestress stable in its original and all higher dimensions. This result is also
related to the problem of characterizing when a semidefinite feasibility problem has a
singularity degree of exactly one [21].

Some of these ideas were briefly sketched in the survey [10] but have not previously
been given a complete and formal treatment.

2. Definitions and background. Let (G,p) denote a (bar and joint) frame-
work where p = (p1, . . . ,pn) is a configuration of n points pi ∈ Rd, and G is a cor-
responding graph, with n vertices and with e edges connecting some pairs of points
of p.

2.1. Local rigidity. Here we define a sequence of local rigidity properties.
We start with the most basic idea defining a rigid structure. We say that a

framework (G,p) is locally rigid in Rd if there are no continuous motions in Rd of the
configuration p(t), for t ≥ 0, that preserve the distance constraints

|pi(t)− pj(t)| = |pi − pj |

for all edges, {i, j}, of G, where p(0) = p, unless p(t) is congruent to p ∀ t. By
a congruence, we mean that p(t) can be obtained from p by simply restricting a
Euclidean isometry of Rd to the vertices.

The simplest way to confirm that a framework is locally rigid is to look at the
linearization of the problem.

A first-order flex or infinitesimal flex of (G,p) in Rd is a corresponding assignment
of vectors p′ = (p′1, . . . ,p

′
n), p′i ∈ Rd, such that for each {i, j}, an edge of G, the

following holds:

(pi − pj) · (p′i − p′j) = 0.(1)

The rigidity matrix R(p) is the e-by-nd matrix, where

R(p)p′ = (. . . , (pi − pj) · (p′i − p′j), . . .)t,
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TRIANGULATED CONVEX POLYTOPES 2737

for p′ ∈ Rnd. Here each row of the matrix is indexed by an edge {i, j} of the graph,
and ()t is the transpose. We write R(p,q) = R(q,p) = R(p)q for any q ∈ Rnd, which
we call the rigidity form for the graph G in Rd. With this, (1) can be rewritten as

R(p,p′) = 0.

A first-order flex p′ is trivial if it is the restriction to the vertices of the time-zero
derivative of a smooth motion of isometries of Rd. This is equivalent to there being a
d-by-d skew-symmetric matrix A and a vector b ∈ Rd such that

p′i = Api + b(2)

∀ i = 1, . . . , n.
Note that the property of being a trivial infinitesimal flex is independent of the

graph G.
A framework (G,p) is called infinitesimally rigid in Rd if it has no infinitesimal

flexes in Rd except for trivial ones.
A classical theorem states as follows.

Theorem 2.1. If a framework (G,p) is infinitesimally rigid in Rd, then it is
locally rigid in Rd.

The converse of the theorem is false, so there is room for weaker conditions that
can be used to certify local rigidity. One such notion is called prestress stability. The
rough idea is to look for an energy function on configurations for which (G,p) is a
local minimum.

To this end we define an equilibrium stress for a framework (G,p) to be an
assignment of a scalar ωij = ωji to each edge {i, j} of the graph G, such that for each
vertex i of G, ∑

j

ωij(pi − pj) = 0,

where the nonedges of the stress ω = (. . . , ωij , . . .) have zero stress.
In this paper, we will use the following proposition (see, e.g., [11, Lemma 2.5]).

Proposition 2.2. Any equilibrium stress ω ∈ Re for (G,p) must be in the
cokernel of R(p).

We say that a framework (G,p) is prestress stable in Rd if there is an equilibrium
stress ω for (G,p) such that for every nontrivial first-order flex p′ in Rd of (G,p),
we have

∑
i<j ωij(p′i − p′j)2 > 0. (When this inequality holds, we say that the stress

ω blocks the first-order flex p′.) From this definition it is clear that if a framework
(G,p) is infinitesimally rigid in Rd, then, using the all-zero stress, it is automatically
prestress stable in Rd.

The following is shown in [17].

Theorem 2.3. If a framework (G,p) is prestress stable in Rd, then it is locally
rigid in Rd.

It is also shown in [17] that this definition of prestress stability coincides with
the motivating property, described in the introduction. This means that there is an
energy for which (G,p) is a minimum that can be verified with the second derivative
test. In this correspondence, the coefficients, ωij , correspond to the first derivative of
the energy of the associated bar with respect to changes in its squared length.
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2738 ROBERT CONNELLY AND STEVEN J. GORTLER

The converse of Theorem 2.3 is again false, so there is room for even weaker
conditions that can be used to certify local rigidity. One such notion, used in [8] to
study the rigidity of triangulated convex polytopes, is second-order rigidity. The idea
is motivated by looking at the first two derivatives of some proposed continuous flex
of the framework.

A second-order flex of (G,p) in Rd is a corresponding assignment of vectors
p′ = (p′1, . . . ,p

′
n), p′i ∈ Rd, and (p′′1 , . . . ,p

′′
n), p′′i ∈ Rd, such that for each {i, j} an

edge of G the following hold:

(pi − pj) · (p′i − p′j) = 0,(3)

(pi − pj) · (p′′i − p′′j ) + (p′i − p′j)2 = 0.(4)

Using the rigidity matrix defined above, (3) and (4) can be rewritten as

R(p,p′) = 0,(5)
R(p,p′′) +R(p′,p′) = 0.(6)

We say that (G,p) is second-order rigid in Rd if there is no second-order flex
(p′,p′′) of (G,p) in Rd with p′ nontrivial as a first-order flex.

The following is proven in [8].

Theorem 2.4. If a framework (G,p) is second-order rigid in Rd, then it is locally
rigid in Rd.

Second-order rigidity is a natural property, but it has some practical difficulties,
which can be seen with a dual formulation [17].

Theorem 2.5. A framework (G,p) is second-order rigid in Rd iff for every non-
trivial first-order flex p′ in Rd of (G,p), there is an equilibrium stress ω such that∑

i<j ωij(p′i − p′j)2 > 0.

From this it is clear that if a framework (G,p) is prestress stable in Rd, then it
is second-order rigid in Rd. But in second-order rigidity, it can happen that no one
stress blocks (has positive energy on) all nontrivial first-order flexes. Rather one can
think of there being a “demon” living in the framework that senses any particular
nontrivial first-order flex p′ and blocks it.

Putting these together, we can summarize the state of affairs as in [17].

Theorem 2.6. Infinitesimally rigid in Rd implies prestress stability in Rd which
implies second-order rigidity in Rd which implies locally rigidity in Rd. None of these
implications is reversible. (See Figure 2.)

Remark 2.7. There are significant difficulties in attempting to define a meaningful
notion of third-order rigidity [16].

One of the two main results of this paper (Theorem 6.3) is that a triangulated
convex polytope in R3 not only is second-order rigid in R3 (a result of [8]) but is in
fact prestress stable in R3.

Remark 2.8. A framework (G,p) is called globally rigid in Rd if there are no other
(even distant) frameworks (G,q) in Rd having the same edge lengths as (G,p), other
than congruent frameworks. This is a much stronger property than local rigidity,
but we will note in the next section that the global/local distinction vanishes in
unconstrained dimensions.
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TRIANGULATED CONVEX POLYTOPES 2739

Local 

2nd order 

prestress 

1st order 

triangulated 
polytopes 

Fig. 2. Nested space of d-dimensional local rigidity properties of frameworks. This paper shows
that triangulated polytopes not only are second-order rigid in R3 but are also prestress stable in R3.

2.2. Universal rigidity. In order to study the prestress stability in R3 of tri-
angulated convex polytopes, and indeed for its own sake as well, we look at what
happens when we regard our d-dimensional framework as realized (degenerately) in
RD ⊃ Rd, where D > d and D is arbitrarily large. It is easy to see that we do not
need to take D to be any larger than n− 1, where n is the number of the vertices of
G, but we use the symbol D instead of n to emphasize that this denotes a number of
spatial dimensions. This then brings up the notion of universal rigidity.

Given a framework (G,p) with a d-dimensional affine span, but realized in RD,
we define the notions of universal local rigidity, universal second-order rigidity, and
universal prestress stability as, respectively, local rigidity, second-order rigidity, and
prestress stability in RD. (If d < n − 1, then a framework with a d-dimensional
affine span can never be infinitesimally rigid in RD, and so there is no need to define
universal infinitesimal rigidity).

These three properties naturally inherit the inclusion relations of the previous
section: universal prestress stability implies universal second-order rigidity, which
implies universal local rigidity. However it is not clear, a priori, if any of these
implications reverse. In this paper we will conclude that in fact universal prestress
stability is no different than universal second-order rigidity (but that these are stronger
properties than universal local rigidity).

Remark 2.9. It turns out that there is no need to define a separate notion of
universal global rigidity, as it is immediately implied by universal local rigidity [9, 13].
Thus we henceforth drop the “local” qualifier from the term universal rigidity. This
makes universal rigidity a very strong property indeed that, for example, implies
global rigidity in Rd.

The property of universal prestress stability is actually the same as another prop-
erty called super stability, which we now describe.

Given an equilibrium stress ω = (. . . , ωij , . . .) for a framework (G,p) in RD, we
define the stress energy as

Eω(q) =
∑
i<j

ωij(qi − qj)2,
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2740 ROBERT CONNELLY AND STEVEN J. GORTLER

which is a quadratic form on the configuration space RnD. The matrix of Eω with
respect to the standard basis of RnD is ID ⊗Ω. The matrix Ω, called the equilibrium
stress matrix corresponding to the equilibrium stress ω, is defined as the symmetric
n×n matrix whose i, j entry is −ωij , when i 6= j, and is such that all row and column
sums are zero. The energy Eω is positive semidefinite (PSD) over RnD iff Ω is a PSD
matrix.

In this paper, we will use the following proposition.

Proposition 2.10 (see [11, Prop. 1.2] and [9, Cor 1]). Suppose that the affine
span of (G,p) is d-dimensional. The kernel of any equilibrium stress matrix Ω for
(G,p) must be of dimension at least d + 1, and thus the rank of Ω can be at most
n− d− 1.

When the rank of Ω is n−d−1, if Ω is also an equilibrium stress matrix for another
framework (G,q), then the configuration q is an affine image of the configuration p.

When the rank of Ω is n− d− 1 and Ω is PSD, if q is another configuration with
zero energy under Eω, then the configuration q is an affine image of the configura-
tion p.

Let L be an affine subspace of some Euclidean space. We say that a set of lines
{L1, . . . , Lm} ⊂ L lie on a conic at infinity for L if, regarding the line directions
in L as points at infinity in a corresponding real projective space, they all lie on a
(nontrivial) conic in that space.

Concretely, suppose we have a framework (G,p) in Rd with a d-dimensional span.
Then (G,p) has its edge directions on a conic at infinity for 〈p〉, the affine span of p,
iff there exists a nonzero symmetric d-by-d matrix, Q, such that for all edges {i, j},
we have (pi − pj)tQ(pi − pj) = 0. From Lemma A.1 the nonzero property for Q is
equivalent to the existence of some nonedge pair {k, l}, where (pk−pl)tQ(pk−pl) 6= 0.

So, for a framework (G,p) in RD with a d-dimensional span, (G,p) has its edge
directions on a conic at infinity for 〈p〉 iff there exists a symmetric D-by-D matrix, Q,
such that for all edges {i, j}, we have (pi−pj)tQ(pi−pj) = 0, but for some nonedge
pair {k, l}, we have (pk − pl)tQ(pk − pl) 6= 0.

Conics at infinity are important due to the following proposition.

Proposition 2.11 (see [11, Prop. 4.2]). Let (G,p) be a framework in RD.
There exists a noncongruent framework (G,q) with the same edge lengths as (G,p)
and where q is an affine image of p iff the edge directions of (G,p) lie on a conic at
infinity for 〈p〉.

Following [9] we say a framework (G,p) is super stable if there is an equilibrium
stress ω for (G,p) such that its associated stress matrix Ω is PSD, the rank of Ω is
n−d−1, where d is the dimension of the affine span 〈p〉 of p, and the edge directions
do not lie on a conic at infinity of 〈p〉.

It turns out that super stability is equivalent to prestress stability in any fixed
dimension d′ that is greater than dimension of the affine span of p.

Theorem 2.12. Let (G,p) be a framework with a d-dimensional affine span in
Rd′

with d′ ≥ d+ 1. Then (G,p) is super stable iff it is prestress stable in Rd′
.

In particular, this means that universal prestress stability is the same as super
stability. The proof of this theorem mainly involves unwinding the various definitions
with some linear algebra, and we delay it to Appendix A. Note that, unlike the case
of prestress stability, second-order rigidity in Rd+1 does not imply super stability [5].

In this paper, our first main result (Corollary 4.8) will be that if (G,p) is univer-
sally second-order rigid, then it is super stable.
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Local 

Global 

Universal 

Super stable =  
universal prestress = universal 2nd order 

Fig. 3. Nested space of local, global, and various universal rigidity properties of frameworks.
This paper shows that universal second-order rigidity is the same as universal prestress stability.
The relationship between the properties shown here to those of Figure 2 are not obvious, other than
the fact that universal prestress stability implies prestress stability in Rd.

Since it is known that there are frameworks that are universally rigid but not
super stable [13], this completely describes the relationship between these properties
in the universal setting. See Figure 3.

3. Farkas. Our central argument will rely on a basic Farkas-like duality principle
for closed convex cones.

Definition 3.1. Let Y be a closed convex cone in Rm for some m. Its dual cone
Y ∗ is defined as {ω ∈ Rm | 〈ω,y〉 ≥ 0 ∀ y ∈ Y }, where <,> is the usual inner
product. Note that int(Y ∗) consists of the ω such that 〈ω,y〉 > 0 for all nonzero y
in Y .

Lemma 3.2. Let Y be a closed convex cone in a finite dimensional real space. Let
L be a linear space with Y ∩ L = 0. Then there is an element ω ∈ L⊥ such that
ω ∈ int(Y ∗).

Proof. We prove the contrapositive: Suppose there is no such interior element ω.
Then L⊥ is disjoint from the interior of Y ∗. Thus there is a “supporting” hyperplane
Z∗ for Y ∗ such that Z∗ ⊃ L⊥.

To see this we note that int(Y ∗) is convex and is disjoint from L⊥. Thus we
can use the weak separation theorem to find a hyperplane Z∗ (through the origin),
that weakly separates L⊥ from int(Y ∗) and thus from Y ∗. This Z∗ is a supporting
hyperplane for Y ∗. Meanwhile, since L⊥ is linear, it must be contained in Z∗.

We can associate with the supporting hyperplane Z∗ =: y⊥ a nonzero dual linear
functional (i.e., a primal vector), y, such that 〈Y ∗,y〉 ≥ 0. Thus by definition of a
dual cone, y ∈ (Y ∗)∗ = cl(Y ) = Y . Also we must have y ∈ L. Thus Y ∩ L 6= 0.

The above proof is based on [23]; we include it here for completeness.

4. Universal second-order rigidity. We are interested in universal second-
order rigidity, but it will be helpful to look at the case where some subset of the
vertices are pinned to first order.

Definition 4.1. Given framework (G,p) in RD. Let G0 be a subset of the ver-
tices of G. We regard (G,G0,p) as the framework, where the vertices in G0 are pinned
“to first order” as described next.
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2742 ROBERT CONNELLY AND STEVEN J. GORTLER

Fig. 4. This framework is not universally second-order rigid when the outer three vertices are
only pinned to first order.

We say that (G,G0,p) is pinned universally second-order rigid if there is no
second-order flex (p′,p′′) of (G,p) in RD, with p′ nontrivial as a first-order flex in
RD and with p′j = 0 when pj corresponds to a vertex in G0. Note that there is no
pinning constraint imposed on p′′.

We should be careful to realize that we assume the “pinned” vertices are only
pinned to the first order. For example, Figure 4 is not pinned universally second-
order rigid, when the indicated vertices are pinned only to the first order. In this
example, there is a p′ moving the central vertex orthogonal to the plane in 3-space,
and there is a corresponding p′′ of the pinned vertices pointing toward the central
vertex. When bars are inserted between the first-order pinned vertices, then the
framework becomes pinned universally second-order rigid. These inserted bars can
even be subdivided as long as the subdividing vertices are also pinned to first order.

Although this in not, on its own, the most natural concept, pinned universal
second-order rigidity will be exactly what we need, using duality, to establish the
existence of an equilibrium stress matrix that is positive definite when acting on an
appropriate subspace. When this construction is applied to frameworks with appro-
priately chosen pins, we will be able to reason about prestress stability.

Definition 4.2. Given a graph G, a dimension d, and a chosen subset of “pinned”
vertices G0 we define

C′(d,G0) := {p′ ∈ Rnd | p′j = 0 ∀ pj corresponding to vertices in G0}.

Definition 4.3. Given a framework (G,p), let

Y := {R(p′,p′) | p′ ∈ C′(D,G0)} ⊂ Re,

where R(·, ·) is the rigidity form for the graph G, and D is sufficiently large.
Let L be the linear space defined as the linear span of the columns of R(p), the

rigidity matrix.

Lemma 4.4. Y is a closed convex cone.

Proof. Let Y + be the set {R(p′,p′) | p′ ∈ RnD}. This set is isomorphic to the
projection of the convex cone of Euclidean distance matrices on to the coordinates
corresponding to the edges of the graph. From [21, Thm. 3.2], the set Y + is a closed
convex cone. Our set Y is obtained by intersecting Y + with the linear subspace where
the edge lengths between the vertices in G0 are all 0. This too must be a closed convex
cone.
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Lemma 4.5. Suppose that the vertices of G0 in p have an affine span that agrees
with the affine span of p. Let (G,G0,p) be pinned universally second-order rigid.
Then there is no nontrivial intersection of L and Y .

Proof. Suppose that y was some nontrivial intersection point. Since y ∈ L, then
we have y = −R(p,p′′) for some p′′. Since y ∈ Y , then we have y = R(p′,p′)
for some nonzero p′ ∈ C′(D,G0). Since D is a sufficiently large dimension, we can,
without loss of generality, assume that p′ is orthogonal to the d-dimensional affine
span of p. Thus p′ is a first-order flex for (G,p). Since p′ is nonzero, but is zero on a
set of vertices with a full affine span, then this flex is nontrivial in RD. Thus (p′,p′′) is
a nontrivial second-order flex. This contradicts the assumed pinned universal second-
order rigidity.

Lemma 4.6. Any ω ∈ L⊥ is an equilibrium stress vector for (G,p). Any ω ∈
int(Y ∗) must correspond to an Ω that is positive definite on C′(1, G0) ⊂ Rn

Proof. The vector ω must be in the cokernel of R(p) and thus must be an equi-
librium stress vector for (G,p) (Proposition 2.2). Any ω ∈ int(Y ∗) has the property
that for any nonzero p′ ∈ C′(D,G0) we have∑

i<j

ωij(p′i − p′j)2 > 0.

Theorem 4.7. Let (G,G0,p) be pinned universally second-order rigid. Then it
must have an equilibrium stress Ω that is positive definite on C′(1, G0).

Proof. This follows immediately using Lemmas 4.5, 4.4, 3.2, and 4.6.

We can now obtain our first main result about (unpinned) universal second-order
rigidity.

Corollary 4.8. If (G,p) is universally second-order rigid and has a d-
dimensional affine span, then it must have an equilibrium stress matrix Ω that is
PSD (acting on Rn) and of rank n− d− 1. Thus it must be super stable/universally
prestress stable.

Proof. Pick any subset of d + 1 vertices with a full d-dimensional affine span in
the configuration p to be the subset G0. If (G,p) is universally second-order rigid,
then (G,G0,p) must be pinned universally second-order rigid. From Theorem 4.7,
it must have an equilibrium stress Ω that is positive definite on C′(1, G0). Since G0
is of size d + 1, then Ω must have rank at least n − d − 1, and as this is maximal
(Proposition 2.10), it must have rank equal to n− d− 1 and also must be PSD.

Since it is universally second-order rigid it is universally (globally) rigid. Thus it
cannot have any noncongruent frameworks with the same edge lengths, let alone one
that arises through an affine transform. So from Proposition 2.11 it cannot have its
edge directions on a conic at infinity. Thus it is super stable and, from Theorem 2.12,
also universally prestress stable.

4.1. Generalizations. There are a few directions for generalizing Corollary 4.8.
A framework (G,p) with a d-dimensional affine span is called dimensionally rigid

if there is no other framework that has the same edge lengths and has an affine span
of dimension greater than d [3]. If a framework is dimensionally but not universally
rigid, then it is not locally rigid in RD, but all other equivalent frameworks can be
obtained from p, through the restrictions of an affine transform acting on RD [4]. (The
edge directions of (G,p) lie on a conic at infinity.) Like universal rigidity, dimensional
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2744 ROBERT CONNELLY AND STEVEN J. GORTLER

rigidity can often be certified by a single PSD equilibrium stress matrix Ω of rank
n− d− 1 but such a single-matrix certification does not always exist [13].

It is easy to see that Corollary 4.8 also provides a characterization when such a
single certification of dimensional rigidity exists. Suppose that in all dimensions, there
are no second-order flexes other than those where p′ arises from an affine transform
of p. Then following the proof of the corollary, we pick any subset of d + 1 vertices
with a full d-dimensional affine span in the configuration p to be a subset G0. Then
(G,G0,p) will be pinned universally second-order rigid, and duality will give us our
desired Ω.

We can also consider a general PSD feasibility problem [21]

F := {X ∈ Sn
+ :M(X) = b},

where Sn
+ is the cone of PSD n-by-n matrices and M is a linear mapping from Sn

to Re, for some e, and b ∈ Re. Let r be the highest rank among the solution set
F , obtained, say, by some solution X0. If r = n, this problem has a positive definite
feasible solution, and we say that the problem has a singularity degree of zero.

Suppose that r < n; then (due to a Farkas duality) it must have a (dual) PSD
matrix Ω such that 〈Ω, X〉 = 0 ∀ {X :M(X) = b}. If we can find such an Ω of rank
n− r, then we say that the problem has a singularity degree of one. The pair (X0,Ω)
forms a certificate that the maximal rank for this problem is indeed r.

Otherwise, the singularity degree is higher and can be found by appropriately
iterating the above process, called facial reduction [6, 13]. Higher singularity degrees
can result in numerical instability.

Corollary 4.8 gives a characterization for singularity degree one, when M cor-
responds to computing the squared edge length measurement over the edges of a
graph G, given the Gram matrix of a configuration p. (Here r would correspond with
d + 1.) Can we generalize this to get a characterization for a general semidefinite
programming feasibility problem to have singularity degree one?

Indeed, most of the ideas generalize very naturally. Let us begin with the appro-
priate generalization to (6). Suppose we can factor X0 = P tP , where P is a rank r
n-by-n matrix.

The analogue of the linear space R(p,p′′), where p′′ is allowed to be any config-
uration, is then M(P tP ′′ + (P ′′)tP ), where P ′′ is allowed to be any n-by-n matrix.
Interestingly, the space spanned by P tP ′′ + (P ′′)tP is, in fact, tan(X0,Sn

+), the tan-
gent to Sn

+ at X0 (see [25] for definitions). And thus our analogous linear space is
M(tan(X0,Sn

+)). The analogue to an equilibrium stress vector is a vector ω ∈ Re

such that M∗(ω)P t = 0, where M∗ is the adjoint mapping back up into Sn.
Let F0 be the face of X0 in Sn

+. Let us define a “complement face,” F̄0, to be any
face of Sn

+ that includes some matrix of rank n− r and has no nontrivial intersection
with F0. With these defined, the general analogue to our cone R(p′,p′) is M(F̄0).

Let us assume that M(F̄0) happens to be closed. Then the main ideas of this
section allow us to conclude that if the constructed linear space has only the trivial in-
tersection with the constructed cone, then our PSD feasibility problem has singularity
degree one.

Unfortunately, in the case that M(F̄0) is not closed, then the Farkas lemma,
Lemma 3.2, cannot be applied and so it is less clear if we can reason about singularity
degree one.

5. Triangulated convex polygons with holes. We have two goals for this
section and the next. One goal is to prove that arbitrary triangulations of certain
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TRIANGULATED CONVEX POLYTOPES 2745

ba

Fig. 5. When the corner vertices of (a) are pinned, and any triangulation of the blue two-
dimensional polyhedron is taken, the framework is super stable. For (b) there is a triangulation that
is a finite mechanism in 3-space.

polyhedral spaces are universally rigid, with some of the vertices pinned to first order.
Another goal is to prove that arbitrary triangulations of certain polyhedral spaces are
prestress stable in R3. These two goals are closely related.

A motivating example for the first goal is when the polyhedral space is the under-
lying space of an embedded simplicial complex where some of its vertices are pinned
to the first order. But we will require that the space satisfies certain geometric con-
ditions. For example, a two-dimensional convex planar polygon with its boundary
vertices pinned to first order, and some “holes” removed from its interior, will be uni-
versally second-order rigid under any triangulation if the holes are placed correctly.
Figure 5(a) is a case when the holes are properly placed, whereas in Figure 5(b) the
holes are not properly placed.

Definition 5.1. Following [22] a polyhedron X = |K| is the underlying space of
a simplicial complex K in some Euclidean space and K is called a triangulation of X.
If X is a polyhedron, with a subpolyhedron X0 ⊂ X, we say that (X,X0) is a spider
set if for every point x ∈ X − X0, there is a framework (Gsp,q) with x a vertex of
q, whose edges lie in X, and there is an equilibrium stress that is positive on all the
edges that have at least one vertex in X − X0 (and no zero length edges). We call
(Gsp,q) a spider tensegrity corresponding to x and the spider set (X,X0).

Note that a polyhedron is allowed to be of “mixed dimension.”
The definition of a spider set does not depend on a particular triangulation.

For example, when a polyhedral set X is a subset of a convex planar polygon F ,
with X0 the boundary of the polygon, the question as to whether it is a spider set
can be determined by considering the infamous Maxwell–Cremona correspondence
as discussed in [10] and shown in Figure 1. Suppose that PF , a convex polytope,
projects, orthogonally by the projection π, onto the polygon F which coincides with
the “bottom” two-dimensional face of PF . Let P (1)

F be the one-skeleton of PF . Let
X consist of the projection π(P (1)

F ) and the projection of any chosen subset of the
two-dimensional top faces of PF . Then such an (X,X0) must be a spider set. To see
this, if x is the projection of a vertex of PF , then the projection of the one-skeleton
serves as the spider tensegrity for X. If x is the projection of a point in the relative
interior of one of the faces of PF , it is easy to lift that point slightly above the convex
hull of the other vertices, adjusting the polytope PF . If x is the projection of a point
in the relative interior of an edge of PF , it is easy to adjust the stress to accommodate
the subdivided edge.
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2746 ROBERT CONNELLY AND STEVEN J. GORTLER

Theorem 5.2. Let (K,K0) be any triangulation of a spider set (X,X0) and
(G,G0,p) the corresponding framework of the one-skeleton of (K,K0), where G0
corresponds to those vertices of G that are in X0. Then (G,G0,p) is universally
second-order rigid when the vertices of G0 are pinned to the first order.

Proof. Let p1 be any vertex of (G,G0,p), not in G0. By the definition of a spider
set, there is a spider tensegrity (Gsp,q) of (X,X0), where q1 = p1 is a vertex in that
tensegrity and (Gsp,q) has an equilibrium stress ω, positive on all the edges with at
least one vertex in X −X0. Let (p′,p′′) be a second-order flex of (G,G0,p), where
p′j = 0 for vertices in G0. We will show that p′1 = 0. Applying this to all the vertices
of G not in G0 will show our result.

For any simplex σ of K and edge τ of the tensegrity (Gsp,q), the sets σ ∩ τ ,
which are nonempty, provide a subdivision of the edges of (Gsp,q), say, (Gsp, r). The
second-order flex of (G,G0,p) extends naturally to a corresponding second-order flex
of each of the simplices of K and in particular to the segments σ ∩ τ . Thus there is
a corresponding second-order flex (r′, r′′) of (Gsp, r), where p′1 = q′1 = r′1, say, and
r′j = 0 for rj ∈ X0. Similarly there is a corresponding equilibrium stress ω̄ for (Gsp, r)
that is positive on all the edges in X − X0. Then for the rigidity matrix R(r) for
(Gsp, r), we have ω̄tR(r) = 0, by Proposition 2.2. This gives us the contradiction

0 = R(r)r′′ +R(r′)r′

= ω̄tR(r)r′′ + ω̄tR(r′)r′

= ω̄tR(r′)r′

=
∑
i<j

ω̄ij(r′i − r′j)2 > 0,

unless p′1 = q′1 = r′1 = 0.

Note that even when the spider set is a triangle with its vertices pinned, there are
triangulations of the interior that are not “spiderwebs” as shown in the classic twisted
example in Figure 6(a) from [14]. This means that any equilibrium stress must be
negative on some of the internal edges. Figure 6(b) shows how the spider construction
in the proof of Theorem 5.2 would work for the center vertex of Figure 6(a).

Together with Theorem 4.7, this gives us the following.

ba

Fig. 6. (a) The set X is a single triangle and X0 is its boundary. The framework (G,G0,p) is
the one-skeleton of a triangulation (K,K0) of (X,X0). (b) The outer three edges and the subdivided
dashed edges form a subdivided spider tensegrity (Gsp, r) of (X,X0) corresponding the center vertex.
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j

i

jiij
θθ

Fig. 7. The cotangent construction assigns ωij := cot(θij) + cot(θji) to each internal edge.

Corollary 5.3. Let (K,K0) be any triangulation of a spider set (X,X0) and
(G,G0,p) the corresponding framework of its one-skeleton, where G0 corresponds to
those vertices of G that are in X0. Then (G,G0,p) must have an equilibrium stress
ω such that the energy, Eω, is positive definite on C′(1, G0) (see Definition 4.2).

The existence result of Corollary 5.3 is somewhat related to the notion of a discrete
Laplacian operator [28]. In that setting, given a triangulation of a polygon F in R2

(which need not even be convex), one looks for a vector ω ∈ Re with the property
that Eω is positive away from the boundary vertices and that for all internal vertices
(not on the polygon boundary) we have

∑
j∈N(i) ωij(pi − pj) = 0. Such an ω acts as

an equilibrium stress for (G,p) under the added assumption that all of the boundary
vertices are fully pinned to all orders. Under these weaker requirements, there exist
well-known constructive approaches for generating such an ω.

One such construction uses the so-called cotangent weights [26], which assign
ωij := cot(θij) + cot(θji) to each internal edge (see Figure 7). Depending on the
geometry of the triangulation, some of these weights may be negative. They derive
this energy in the context of a Dirichlet energy computation. There is also another
derivation for the cotangent weights that uses Heron’s formula for the area of a tri-
angle, the law of sines and the law of cosines. See [20], for example. But when the
polygon F has more than three vertices, this construction cannot be used to generate
an ω that is in equilibrium at the boundary vertices.

A related question is if a “random” set of holes is put in a membrane with its
boundary clamped, is there a critical threshold with a “phase change” where the
membrane becomes not rigid in R3? It turns out that for the continuous case [15] and
the triangulated case [24], the answer is no. With high probability the membrane will
have some flexible parts.

6. Triangulated convex polytopes with holes. We now wish to consider a
convex polytope P in R3 and a bar framework (G,p), where all the vertices and bars
are contained in the two-dimensional boundary surface of P .

Definition 6.1. Let P be a convex polytope in R3. Let P (1) be the underlying
point set of the one-skeleton of P . Let H be a polyhedral subset of the boundary
surface of P . We say that H is holeyhedron if the following properties hold for every
(two-dimensional) face F of P :

(a) The one-skeleton P (1) ⊂ H.
(b) Any infinitesimal flex in the plane of F of any triangulation of H∩F is trivial

on vertices that are in P (1) ∩ F .
(c) The polyhedron (H ∩ F, P (1) ∩ F ) is a spider set.
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2748 ROBERT CONNELLY AND STEVEN J. GORTLER

Note that the complete boundary surface of a convex polytope (without any holes)
is always a holeyhedron.

The following is a slight generalization of [8, Theorem 5.2] using Definition 6.1(6.1).
This relies deeply on Alexandrov’s theorem about the infinitesimal rigidity of certain
triangulated convex polytopes.

Lemma 6.2. Let (G,p) be the bar framework of a triangulation of a holeyhedron.
Let p′ be a first-order flex in R3. Then p′, when restricted to vertices in P (1), is a
trivial first-order flex.

We now state our second main result of this paper.

Theorem 6.3. Any triangulation (G,p) of a holeyhedron, H, is prestress stable
in R3.

Proof. From Corollary 5.3, we have for each triangulated F ∩ H of our face an
ωF such that EωF

is positive definite on all vectors that vanish on P (1) ∩ F . By
simply adding together all of these ωF , we obtain an ω that is an equilibrium stress
for (G,p) with an associated stress matrix Ω that must be positive definite on any
vector p′ = (p′1, . . . ,p

′
n) that vanishes on P (1).

Meanwhile, from Lemma 6.2, all first-order flexes p′ in R3 for (G,p) have p′

trivial on P (1). By adding an appropriate trivial flex to p′ we can make p′ vanish
on P (1). In light of (2), this addition will not change Eω(p′), as ω is an equilibrium
stress for p. Thus, if p′ is any nontrivial first-order flex of the triangulation, we have
Eω(p′) > 0, making the triangulation (G,p) of H prestress stable in R3.

7. Extensions and related results. If one considers only polyhedral subsets H
of the boundary of a convex polytope P in 3-space, where one is allowed to triangulate
H at will, then it is important, for each face, F , that no hole has a vertex on the
interior of any of the natural edges of P (although there can be holes that touch the
natural vertices). For example, Figure 24 of [8] is a tetrahedron with a small slit on
one face touching the relative interior of one edge that can be subdivided and flexed
as a finite mechanism to be flat in the plane. See also [1] for methods for decreasing
the size of the slit.

In more detail, suppose one vertex x of one of the holes of H lies on a natural edge
of the polytope. And suppose the interval [x,y] is part of the boundary of that hole,
interior to its face in P , as in Figure 8. Then any vertex, say, z, on the interior interval

w

z
y

x

Fig. 8. Any vertex z of a subdivision of face on the interval between the points x and y, as
shown, cannot be part of a spider tensegrity. All the edges adjacent to z must have zero stress.
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[x,y] cannot be part of a spider tensegrity, because of the positivity requirement on
the equilibrium stress for all interior edges of a spider tensegrity. For example, one
cannot obtain equilibrium at z if there is positive stress on an edge, say, from z toward
w. And one cannot obtain equilibrium at x if there is positive stress on an edge from
x toward z. This positivity is required by Definition 6.1(c).

Alternatively, suppose the surface H has a hole with an edge that coincides com-
pletely with a natural edge of the polytope. Then when that edge is subdivided (which
is allowed in a triangulation of H), then this triangulation of the set H ∩ F will not
have the first-order rigidity property of Definition 6.1(b).

With the above comments in mind it seems that if an arbitrary triangulation of
a polyhedral subset of the surface of a convex polytope P is prestress stable, each
natural edge e of P must have at least a small “flange” that lies in each side of e in
each of the two adjacent faces so that the relative interior of e is in the topological
interior relative to the two-dimensional surface, as in Figure 5(a).

7.1. Prestressed fixed frameworks. We can extend the notion of a spider
tensegrity as in Definition 5.1 to say that a framework (G,G0,p) is a spider tensegrity
if there is an equilibrium stress for (G,p) that is positive on all the edges with at least
one vertex in G−G0.

If one is given a fixed bar (or tensegrity) framework, we can use some of the
techniques described previously to generate prestress stable structures as follows.

Corollary 7.1. Suppose a bar framework (G,p) in Rd is such that there are
vertices G0 of G such that (G,G0,p) is a spider tensegrity, and G0 is contained in
a subgraph G1 of G such that (G1,q) is first-order rigid, with q corresponding to the
vertices of G1. Then (G,p) is prestress stable in Rd.

Note that the framework (G,p) above may not be first-order rigid as is the case
for Figure 9(b), but the boundary is part of the framework in Figure 9(a), which is
first-order rigid in the plane.

Corollary 7.2. If each face F of a convex polytope in R3 contains a spider
tensegrity such that the vertices on each boundary of F are first-order rigid in the
plane of F , as in Corollary 7.1, then the union of these spider tensegrities is prestress
stable in R3.

One may apply the Roth–Whiteley criterion [27] for the first-order rigidity of
tensegrity frameworks to the framework in Figure 9(a). Namely, the underlying bar

ba

Fig. 9.
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framework is first-order rigid, and there is an equilibrium stress, positive on all the
cables and negative on all the struts.

Appendix A. Super stability. In this section we provide a proof of Theo-
rem 2.12. In this section d′ will be any fixed dimension greater than d.

To prove that super stability implies prestress stability in Rd′
, we will use the fact

that a PSD equilibrium stress matrix Ω of rank n − d − 1 must block all nontrivial
infinitesimal flexes except for ones arising from affine transforms of p. Then we will
argue, using the assumption of no conic at infinity, that any affine infinitesimal flex
must be trivial.

As a warmup, we start with the following lemma, which we mentioned in sec-
tion 2.2

Lemma A.1. Let (G,p) be a framework with a d-dimensional span in Rd. Suppose
Q is a d-by-d symmetric matrix such that for all pairs, {k, l}, we have (pk−pl)tQ(pk−
pl) = 0. Then Q must be the zero matrix.

Proof. Let us pick a subset S of d + 1 vertices in affine general position. Next,
we perform an affine change of coordinates so that one of the vertices of S is at the
origin and each other vertex is along a unique coordinate axis. Then we can use the
conditions (pk −pl)tQ(pk −pl) = 0 to see that Q is skew-symmetric. Since Q is also
assumed to be symmetric, it must be zero.

Definition A.2. We say that an infinitesimal flex p′ of (G,p) is deforming if
there is some nonedge pair {k, l} with (pk − pl) · (p′k − p′l) 6= 0.

Lemma A.3. Suppose a framework (G,p) with a d-dimensional span in Rd′
has

an infinitesimal flex p′ such that each p′i lies in 〈p〉. If p′ is nondeforming, then it is
trivial.

Proof. Without loss of generality we can place both p and p′ in Rd. For any
subset S of d + 1 vertices in affine general position, the restriction of p′ and p to S
must satisfy p′i = ASpi + tS for some unique d-by-d matrix AS and d-vector tS .

By assumption, for all pairs of vertices {k, l} in S we have

0 = (pk − pl) · (p′k − p′l)
= (pk − pl)tAS(pk − pl).

As in the proof of Lemma A.1, this forces AS to be skew-symmetric.
Let T be another such subset that shares d vertices with S, where we have p′i =

AT pi + tT . Since T and S share d vertices in general affine position, this means
AT = AS and tT = tS . (One way to see this is to work in a coordinate system such
that for each of the shared d vertices of S and T , the last coordinate of the associated
pi vanishes. Then we note that a d-by-d skew-symmetric matrix is fully determined
by its first d− 1 columns.)

This process can be reapplied as needed to show that all of p′ represents a trivial
infinitesimal flex.

Definition A.4. We say that an infinitesimal flex p′ of (G,p) is affine if p′i =
Mpi + t for some d′-by-d′ matrix M and some d′-vector t.

Lemma A.5. Suppose a framework (G,p) with a d-dimensional span in Rd′
has

an affine infinitesimal flex p′, where each p′i is orthogonal to 〈p〉; then p′ is a trivial
infinitesimal flex.
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Proof. Without loss of generality, using an orthonormal change of coordinates in
Rd′

, we can assume that the affine span of this framework (G,p) agrees with the first
d dimensions of Rd′

; thus for each pi, its last d′ − d coordinates are zero, and for p′i,
its first d coordinates are zero.

Thus M must have the block form

M =
[

0 X
Y t Z

]
,

where X is d-by-(d′ − d), Y t is (d′ − d)-by-d, and Z is (d′ − d)-by-(d′ − d). (Also, the
first d coordinates of t must vanish.)

Since the last d′ − d coordinates of each pi are zero, we can replace M with

A :=
[

0 −Y
Y t 0

]
and still obtain the same flex, p′i = Api. As A is skew-symmetric, this proves that p′

is trivial.

Lemma A.6. If a framework (G,p) has a nontrivial affine infinitesimal flex p′,
then the p′ is deforming.

Proof. From Lemma A.5 the component of p′ that is orthogonal to 〈p〉 is triv-
ial and thus can be subtracted from p′ without changing its nontriviality. From
Lemma A.3, this remaining flex must be deforming. The trivial orthogonal compo-
nent can be added back without changing its deforming property; thus the original
p′ must be deforming.

Lemma A.7. If a framework (G,p) has a deforming affine infinitesimal flex p′,
then the framework has its edge directions at a conic at infinity for 〈p〉.

Proof. From the affine assumption, we have p′ = Mp+t, where M is some d′-by-
d′ matrix. We can write M = A+Q, where A is skew-symmetric and Q is symmetric.
By removing from p′ the trivial infinitesimal flex generated by Api +t, the remaining
infinitesimal flex generated by Qpi must still be deforming.

As an infinitesimal flex, for all edges {i, j}, we have (pi − pj) · (Qpi −Qpj) = 0,
which gives us (pi−pj)tQ(pi−pj) = 0. Since the flex generated by Qpi is deforming,
we have some nonedge pair {k, l} with (pk − pl)tQ(pk − pl) 6= 0. This gives us our
desired conic at infinity.

We can now prove one direction of Theorem 2.12: If (G,p) is super stable, it must
have a PSD equilibrium stress matrix Ω of rank n − d − 1. From Proposition 2.10,
the corresponding stress energy must be positive on any nontrivial infinitesimal flex
unless it is an affine infinitesimal flex. From Lemmas A.6 and A.7, such a nontrivial
affine infinitesimal flex can exist only if the edge directions of (G,p) are on a conic at
infinity for 〈p〉. But our assumption of super stability also rules this out. Thus (G,p)
must be prestress stable in Rd′

.
To prove that prestress stability in Rd′

implies super stability, our main step is
to show that, in any dimension d′ > d, any one-dimensional configuration that is not
an affine image of p can be used to generate a nontrivial infinitesimal flex for (G,p).
Thus the blocking equilibrium stress, assumed by prestress stability, must be PSD
and of rank n− d− 1.

Lemma A.8. If (G,p), a framework with a d-dimensional affine span in Rd+1, is
prestress stable, then it must have a PSD equilibrium stress matrix of rank n− d− 1.
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Proof. Using an orthonormal change of coordinates in Rd+1, we can assume that
the affine span of this framework (G,p) agrees with the first d dimensions of Rd+1;
thus for each pi, its last coordinate is zero.

Let p′ ∈ Rn(d+1) be any “configuration” such that each p′i has zero values for all
but its last coordinate. Since pi has zero values in its last coordinate, then p′ must
always be an infinitesimal flex for (G,p). Let vi be the last coordinate of p′i, with
v a vector in Rn. This infinitesimal flex, p′, will be nontrivial unless v arises as a
skew-symmetric affine image of p and thus can be written as vi = atpi + t for a fixed
d-vector a and scalar t. Thus we can generate a space of nontrivial infinitesimal flexes
of dimension n− d− 1.

From prestress stability in Rd+1, (G,p) must have an equilibrium stress matrix
Ω with vtΩv > 0 when p′ is nontrivial. Thus Ω must have positive energy on a linear
space of dimension n−d−1. As this is the maximum possible rank for an equilibrium
stress matrix (Proposition 2.10) it must in fact be PSD and of rank n− d− 1.

Lemma A.9. If (G,p), a framework with a d-dimensional affine span in Rd+1, is
prestress stable, then it cannot have its edge directions on a conic at infinity of 〈p〉.

Proof. Since (G,p) is prestress stable, it is rigid. A rigid framework cannot have
its edge directions on a conic at infinity [12].

This gives us the other direction of Theorem 2.12: If (G,p) is prestress stable in
Rd′

, it is certainly prestress stable when thought of as a framework in Rd+1. We now
simply combine Lemmas A.8 and A.9 to conclude that (G,p) is super stable.
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