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Abstract

A bicycle (n, k)-gon is an equilateral n-gon whose k-diagonals are equal. S. Tabach-
nikov proved that a regular n-gon is first-order flexible as a bicycle (n, k)-gon if and only if
there is an integer 2 5 r 5 n− 2 such that tan (π/n) tan (krπ/n) = tan (kπ/n) tan (rπ/n).
In the present paper, we solve this trigonometric diophantine equation. In particular, we
describe the family of first order flexible regular bicycle polygons.

1. Introduction

Sergei Tabachnikov studied in [6] diverse questions related to the prob-
lem of how to determine the direction of a bicycle motion from the tracks
of the wheels. He calls a closed smooth curve Γ a bicycle curve, if there is
another closed curve γ, possibly with cusp singularities, such that the infor-
mation that Γ and γ are the tracks of the front and rear wheels of a bicycle,
respectively, is not enough to determine which way the bicycle went. Bicy-
cle curves can be characterized by the property that a pair of points x, y
can move around Γ in such a way that the length of the chord [x, y] and the
distance of x and y along the curve Γ do not change. Bicycle polygons are
discrete analogues of bicycle curves. A bicycle (n, k)-gon is an n-gon having
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equal sides, and equal k-diagonals. (A k-diagonal is a diagonal connecting a
vertex to its kth neighbor.)

Stanislav Ulam asked whether spheres are the only solids of uniform den-
sity which will float in water in equilibrium in any position (problem 19 in
”The Scottish Book” [5]). The question, known as the floating body prob-
lem makes sense in any dimension d = 2. Bicycle curves are closely related
to the two-dimensional floating body problem. Namely, a closed convex pla-
nar curve is a bicycle curve if and only if its convex hull D is a solution of
the floatation problem with a certain density ([1]). Since k-diagonals of a
convex bicycle (n, k)-gon cut off from the polygonal domain pieces of equal
area, convex bicycle polygons seem to be proper discrete analogues of the
solutions of the planar floating body problem as well.

Regular n-gons are bicycle (n, k)-gons for any 2 5 k 5 n− 2. One can
try to find non-regular bicycle polygons by deforming the regular one within
the family of bicycle (n, k)-gons. Such a deformation is known to exist in
the following two cases:

(1) n is even, k is odd;
(2) n = 2k (see [6] for details).

S. Tabachnikov (see [6]) also gave the following algebraic characterization of
infinitesimally flexible regular bicycle polygons:

Theorem. A regular n-gon is first-order flexible as a bicycle (n, k)-gon
if and only if the equation

(1) tan (kπ/n) tan (rπ/n) = tan (π/n) tan (krπ/n)

has an integer solution r belonging to the range 2 5 r 5 n− 2.

We shall refer to equation (1) shortly as the flex equation. The aim of
the present paper is to describe all integer solutions of the flex equation. To
formulate our main result, we start with some simple observations.

Observation 1. Although k and r play different role in the original
geometric problem, their role is symmetric in the flex equation. If (n, k, r)
is a solution of (1), then (n, n± k, r) and (n, r, k) are also solutions, so it is
enough to find solutions of the equation which satisfy the inequality 0 5 k 5
r 5 n/2.

Observation 2. (n, 0, r) and (n, 1, r) are solutions for any n and r, call
them the trivial solutions. Trivial solutions are related to the obvious flexibil-
ity of regular n-gons as bicycle (n, 0)-gons or (n, 1)-gons. [(n = 2k, k, r), r is
odd] is a singular solution (both sides are ∞). Singular solutions correspond
to the two classes of deformable regular bicycle (n, k)-gons mentioned above.
Trivial and singular solutions can be excluded assuming 1 < k 5 r < n/2.
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Observation 3. If n = 2(k + r) and n | (k − 1)(r − 1), then (n, k, r) is
a solution. Indeed, in this case

tan (kπ/n) = tan (π/2− rπ/n) = cot (rπ/n),(2)

tan (krπ/n) = tan (π/2− π/n) = cot (π/n),(3)

so for these solutions, both sides of the flex equation are equal to 1.

Theorem 1. The only integer solutions of the flex equation are the ones
listed in the above observations. Equivalently, if 1 < k 5 r < n/2 is an inte-
ger solution of the flex equation, then k+r = n/2 and n divides (k−1)(r−1).

2. Proof of Theorem 1

Suppose throughout this section that 1 < k 5 r < m = n/2 is a solution
of the flex equation (1). Set φ = π/n.

2.1. Verification of Theorem 1 for n 5 200

Let ξ denote the nth primitive root of unity e2πi/n. Since

tan (sπ/n) =
(ξs − 1)
i(ξs + 1)

,

(n,k, r) is a solution of (1) if and only if ξ is a root of the polynomial equation

(4) (xkr − 1)(x− 1)(xk + 1)(xr + 1) = (xkr + 1)(x + 1)(xk − 1)(xr − 1).

After simplification (4) reduces to the equivalent equation

(5) G(x) = (xkr+1 + 1)(xk + xr)− (xkr + x)(xk+r + 1) = 0.

Let Φn be the nth cyclotomic polynomial. Φn is the minimal polynomial of
ξ, therefore, ξ is a root of G if and only if Φn divides G.

Thus, the question whether a given triple (n, k, r) satifies the flex equa-
tion or not is equivalent to a divisibility question for some explicitly com-
putable polynomials with integer coefficients, therefore, it can be answered
exactly with the help of a computer algebra system like Maple, Mathematica
or MuPAD. For example, the following MuPAD session finds all solutions of
the flex equation satisfying 1 < k 5 r < n/2, n 5 200 and writes the results
into the file RESULTS.
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//MuPAD-SESSION
FILE:=fopen("RESULTS",Write,Text):
for n from 5 to 200 do
for r from 2 to (n-1)/2 do

for k from 2 to r do
Phi:=polylib::cyclotomic(n,x):
G:=(x^(k*r+1)+1)*(x^k+x^r)-(x^(k*r)+x)*(x^(k+r)+1):
if divide(G,Phi(x),Rem)=0 then
fprint(Unquoted,FILE,n,",",k,",",r)

end_if:
end_for

end_for
end_for:
fclose(FILE):
//EVAL
//INPUT

Looking at the solutions given in Table 1 we can see that Theorem 1
holds for n 5 200.

(24,5,7) (78,14,25) (114,20,37) (144,17,55) (174,28,59)
(30,4,11) (80,9,31) (120,29,31) (150,26,49) (176,23,65)
(40,9,11) (84,13,29) (120,19,41) (152,37,39) (180,19,71)
(42,8,13) (88,21,23) (120,11,49) (154,34,43) (182,27,64)
(48,7,17) (90,19,26) (126,8,55) (156,25,53) (184,45,47)
(56,13,15) (96,17,31) (130,14,51) (160,31,49) (186,32,61)
(60,11,19) (102,16,35) (132,23,43) (168,41,43) (190,39,56)
(66,10,23) (104,25,27) (136,33,35) (168,29,55) (192,31,65)
(70,6,29) (110,21,34) (138,22,47) (168,13,71) (198,10,89)
(72,17,19) (112,15,41) (140,29,41) (170,16,69) (200,49,51)

Table 1. Solutions (n, k, r) of the flex equation satisfying
1 < k 5 r < n/2, n 5 200

2.2. Reduction to the equation cosω1 + cosω2 + cosω3 + cosω4 = 0

Let l be the residue of kr to base n. Since

tan (lφ) = tan (kφ) tan (rφ)/ tan (φ) > 0,

we have 1 5 l < m.
Let

(6) 0 < α 5 β 5 γ 5 δ < π/2
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be the angles α = φ, lφ, (m− k)φ, (m− r)φ arranged in increasing order.
Then these angles satisfy the equation

(7) tan (α) tan (β) tan (γ) tan (δ) = 1

Using the identity tan (x) tan (y) = cos (x−y)−cos (x+y)
cos (x−y)+cos (x+y) , (7) can be written as

(8)
cos (α− β)− cos (α + β)
cos (α− β) + cos (α + β)

· cos (γ − δ)− cos (γ + δ)
cos (γ − δ) + cos (γ + δ)

= 1.

After simplification this equation turns out to be equivalent to

(9) cos (α + β) cos (γ − δ) + cos (α− β) cos (γ + δ) = 0,

and also to

cos (α + β + γ − δ) + cos (α + β − γ + δ)(10)

+ cos (α− β + γ + δ) + cos (−α + β + γ + δ) = 0

in virtue of the identity 2 cos (x) cos (y) = cos (x + y) + cos (x− y). Set

ω1 = |α + β + γ − δ|, ω2 = α + β − γ + δ,(11)

ω3 = α− β + γ + δ, ω4 = π − ∣∣π − (−α + β + γ + δ)
∣∣ .

By (6) and (10), these angles satisfy

(12) 0 5 ω1 5 ω2 5 ω3 5 ω4 5 π,

and

(13) cosω1 + cosω2 + cos ω3 + cos ω4 = 0.

Equation (13) in ωi commensurable with π has been completely solved by
ÃL. WÃlodarski in [8]. We recall his result.

Theorem 2 (ÃL. WÃlodarski [8]). If the angles 0 5 ωi 5 π are commen-
surable with π and satisfy (13), then {ω1, ω2, ω3, ω4} either belongs to the
infinite families of solutions

(14) {λ, µ, π − µ, π − λ}, (0 5 λ 5 µ 5 π/2),

or

(15)
{

ν,
2
3
π − ν,

2
3
π + ν,

1
2
π

}
, (0 5 ν 5 π/3),
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or is one of the quadruples
{

2
5
π,

1
2
π,

4
5
π,

1
3
π

}
,

{
1
5
π,

1
2
π,

3
5
π,

2
3
π

}
,(16)

{
0,

1
5
π,

3
5
π,

1
3
π

}
,

{
0,

2
5
π,

4
5
π,

2
3
π

}
,(17)

{
2
5
π,

7
15

π,
13
15

π,
1
3
π

}
,

{
2
15

π,
8
15

π,
3
5
π,

2
3
π

}
,(18)

{
1
15

π,
11
15

π,
4
5
π,

1
3
π

}
,

{
1
5
π,

4
15

π,
14
15

π,
2
3
π

}
,(19)

{
2
7
π,

4
7
π,

6
7
π,

1
3
π

}
,

{
1
7
π,

3
7
π,

5
7
π,

2
3
π

}
.(20)

Since the numbers ωi defined in (11) satisfy the cosine equation (13),
they coincide with one of the quadruples in Theorem 2. We distinguish three
main cases. First we study the case, when the quadruple {ω1, ω2, ω3, ω4}
belongs to the family (14). Then we consider the case when it is a member
of the second infinite family (15) and finally we deal with the case when it
is one of the sporadic solutions (16–20).

2.3. Solutions associated to the family (14)

If {ω1, ω2, ω3, ω4} belongs to the family (14), then ω2 + ω3 = 2(α + δ) =
π. In this case, we have

tan (α) tan (δ) = tan (β) tan (γ) = 1,

and therefore, α+ δ = β +γ = π/2. Since φ < (m− r)φ 5 (m−k)φ, δ equals
either lφ or (m−k)φ. If δ = lφ, then β +γ = π/2 implies k + r = m; α+ δ =
π/2 implies kr + 1 ≡ m = k + r (mod n) and we are done. Case δ = (m−
k)φ is not possible, since then α + δ = π/2 would imply k = 1.

2.4. Solutions associated to the family (15)

If {ω1, ω2, ω3, ω4} is equal to the quadruple (15), then ω1 = ν, ω4 =
ν + 2π/3 and {ω2, ω3} = {π/2, 2π/3− ν}. If we know the values of the num-
bers ωi, then we can determine the values of α, β, γ, δ using the system of
equations (11), which becomes a linear system of equation if we know also
the signs of the two quantities α + β + γ− δ and π− (−α + β + γ + δ) in the
absolute values. We consider four subcases depending on these signs.
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Case 2.4.1. If both α + β + γ − δ and π − (−α + β + γ + δ) are non-
negative, then solving (11) gives α = π/8− ν/4 = π/8− π/12 = π/24. Since
α = π/n, we see that n 5 24 in this case, however, the theorem has already
been verified for n 5 200.

Case 2.4.2. If α + β + γ − δ < 0 5 π − (−α + β + γ + δ), then we have
α = π/8− 3ν/4

|β − γ| = |ω2 − ω3|/2 =
∣∣(2π/3ν)− π/2

∣∣/2 = |2α/3|.

However, this is not possible, since |β − γ| must be an integer multiple of
α = π/n.

Case 2.4.3. If α + β + γ − δ = 0 > π − (−α + β + γ + δ), then

(21) α =
ν

4
− π

24
, {β, γ} =

{
ν

4
+

7π

24
,
3π

8
− ν

4
,

}
, δ =

5π

8
− 3ν

4
.

Since α = π/n, ν can be expressed as ν = (1/6 + 4/n)π. Substituting this
value into (21) we obtain

(22) α =
π

n
, {β, γ} =

{π

3
+

π

n
,
π

3
− π

n
,
}

, δ =
π

2
− 3π

n
.

Since nβ/π, nγ/π and nδ/π are integers, n must be divisible by 6. We may
assume that n = 6s with s > 2, since the theorem has already been proved
for n 5 200. Then we have that

{nβ/π, nγ/π, nδ/π} = {m− k, m− r, l} = {2s + 1, 2s− 1, 3s− 3}.

In consequence, the numbers −k, −r and kr are congruent to a permuta-
tion of the numbers 1, −1 and −3 modulo s, however, this is not possible,
since (−k)(−r) = kr, but no two of the numbers {1,−1,−3} has a product
congruent to the third one modulo s.

Case 2.4.4. If both α + β + γ − δ and π− (−α + β + γ + δ) are negative,
then (11) yields

2(δ − α) = (−α + β + γ + δ)− (α + β + γ − δ) = (4π/3− ν)− (−ν) = 4π/3.

This equation contradicts 2(δ − α) < 2δ < π.
We conclude that there is no solution of the flex equation associated to

the second family (15) of the cosine equation (13).
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2.5. Solutions associated to a sporadic quadruple (16–20)

Any of the sporadic solutions of the cosine equation (13) can be written
in the form

(23)
(

p1

q
π,

p2

q
π,

p3

q
π,

p4

q
π

)
,

where p1, p2, p3, p4 and q are non-negative integers, and their greatest com-
mon divisor is 1. For any of the 10 sporadic solutions, q belongs to the
set {15, 21, 30}. If the numbers (ω1, ω2, ω3, ω4) derived from the solution
(n, k, r) of the flex equation coincide with the sporadic solution (23) of the
cosine equation, then the system of equations (11) takes the form

α + β + γ − δ =
p̂1

q
π, α + β − γ + δ =

p2

q
π,

α− β + γ + δ =
p3

q
π, − α + β + γ + δ =

p̂4

q
π,

where p̂1 and p̂4 are certain integers. Solving for α gives

π

n
= α =

p̂1 + p2 + p3 − p̂4

4q
π,

which implies, that n must divide 4q 5 120. As the theorem has already been
proved for n 5 200, this case cannot lead to solutions of the flex equation
not listed in the theorem.

3. Miscellaneous

Proposition 1. Let n = 2m = 4 be a fixed natural number. Identify two
solutions (n, k1, r1) and (n, k2, r2) of the flex equation if and only if k1 ≡ k2

and r1 ≡ r2 modulo n, and denote by Gn the set of equivalence classes of
those solutions for which k + r ≡ m (mod n). Then Gn is an Abelian group
with respect to the multiplication (n, k1, r1) ∗ (n, k2, r2) = (n, k1k2,m− k1k2).
Gn is isomorphic to the direct product of some cyclic groups of order 2. In
particular, the order of Gn is a power of 2.

Proof. Since r can be expressed from the assumption k + r ≡ m, a so-
lution (n, k, r) ∈ Gn is uniquely determined by k. In terms of k, (n, k,m− k)
belongs to Gn if and only if k2 = ms + 1 for an integer s, for which k + s is
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odd. Thus, all we have to check is that if k1 and k2 have these properties,
then their product k1k2 has them as well.

Case 1. If m is odd, then the parity condition on s is fulfilled automati-
cally as k ≡ k2 = ms+1 ≡ s+1 (mod 2). On the other hand, if k2

1 ≡ k2
2 ≡ 1

(mod m), then (k1k2)
2 ≡ 1 (mod m) as well.

Case 2. If m is even, then k must be odd, and s must be even. If
k2

1 = ms1 + 1 and k2
2 = ms2 + 1 are odd numbers with s1 and s2 even, then

(k1k2)
2 = ms3 +1, where s3 = ms1s2 + s1 + s2, k1k2 is odd and s3 is even. ¤

Remarks. 1. There is a general result of J. H. Conway and A. J. Jones
(see [3]) about trigonometric diophantine equations of the form

R(r1, . . . , rk, trig1

(
πθ1(r1, . . . , rk)

)
, . . . , trign

(
πθn(r1, . . . , rk)

)
) = 0,

where R, θ1, . . . , θn are rational functions with rational coefficients, trig1, . . . ,
trign are standard trigonometric functions from the set {cos, sin, tan, cot, sec,
cosec}. The equation is to be solved in integers for some of the ri and rational
numbers for the others. They prove that any such trigonometric diophan-
tine equation is equivalent to an ordinary diophantine equation, which is an
equation of the same type, but with no trigonometric functions involved. In
general, the solution of the resulting ordinary diophantine equation can be
arbitrarily hard. From this viewpoint, a Conway–Jones-type reduction of
the flex equation with the help of the result of ÃL. WÃlodarski was given in
subsection 2.2. All the other subsections were devoted to the solution of the
obtained system of ordinary diophantine equations.

2. It is natural to ask whether the regular bicycle polygons correspond-
ing to a solution of the flex equation admit a deformation or not. We know
the existence of a deformation in the case when n is even and k is odd. How-
ever, the flex equation has also solutions for which both n and k are even,
e.g., n = 30, k = 4, r = 11. For such solutions the question of deformability
is still open, though the following result by the second author clarifies the
order of infinitesimal flexibility for all of them.

Theorem 3 (see [4]). Suppose that the regular bicycle (n, k)-gon is first-
order flexible in the family of bicycle (n, k)-gons, where n and k 6= n/2 are
even. Then this regular bicycle polygon is second-order flexible as well, but
third-order rigid within the family of bicycle (n, k)-gons.

The natural definition of third-order rigidity does not always imply rigid-
ity. A counterexample is shown in [2].

3. F. Wegner has recently given an explicit deformation of the circle
within the family of bicycle curves with the help of elliptic integrals. See [7].
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