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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 27, Number 1, January 1971 

A NEW PROOF OF BROWN'S 
COLLARING THEOREM 

ROBERT CONNELLY 

The aim of this note is to give a new proof that if a subspace B, 
compact for convenience, is locally collared in a space X, then it is 
collared. The idea of the proof is simply to add a collar B XI to X 
to get X+ and then to construct a homeomorphism of X with X+ by 
pushing B down on one collared open set at a time. 

The theorem, of course, is essentially that of [1]. However, the 
proof easily works in the piecewise linear (PL) category (i.e. all maps 
are PL and spaces are polyhedra), and when B, the boundary, is a 
pair or flag, cf. [3 ]. At the end of the paper we shall note briefly how 
the noncompact case and the PL case can be handled by our tech- 
niques. 

A closed subspace BCX is locally collared if B is covered by sets 
U, open in B, such that for each U there is a closed embedding 
h:UX[O, 1]->X such that h-1'(B) =UX{0}, h(x, 0)=x for xeU, 
and h(UX [0, 1)) is open in X. For metric spaces this is equivalent to 
the definition in [1]. B is said to be collared if one U can be taken to 
be all of B. 

THEOREM. If BCX is compact and locally collared in X, which is 
Hausdorff, then B is collared in X. 

PROOF. Let U1, U2, - *, U. be an open cover of B such that each Ui 
is as in the definition. By the normality of B, shrink the cover to find 
another cover V1, . . . , V. such that ViC Ui, i= 1, * * *, n. Let 
X+=XUBBX [-1, 0] where (x, 0) is identified to x, and let hi:Ui 
X [0, 1 ]->X be the embeddings given by the local collars. Let 
Hi:UiX[-1, 1]-->X+, i=1, * * , n, be the embedding defined by 

Hi(x) = hi(x) for x E Ui X [0, 1], 

=x forx UiX[-1,O]. 

Inductively we shall define maps fi: B- [-1, 0] and embeddings 
gi:X---)X+, i=0, 1, * * *, n, such that 
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(a)fi(x) =-1 if xCUj;iVj, 
(b) gi(x) = (x,fj(x)) if xCB, and 
(c) gi(X) = XU { (x, t) I t Z_-fi(x) } . 

Note that since the Vi's cover B, gn(X) =X+ and thus g-' will give 
the required collar. 

Define go= 1, and inductively suppose gi-i has been defined. Let 
i::Hi-lgii(X)- >UiX [-1, 1] be an embedding that pushes down 

along fibers such that 0 iHi-1gi_=(Vi)-Vi X { -11 and 4i I (Ui- Ui) 
X [-1, lN]fUiX {1 } =1. Such a Oi can be defined as follows: Let 
'Xi: Ui-> [O, 1 ] be a Urysohn function which is 0 on Ui- Ui and 1 on 
Vi. Let sx: [fsi-(x), 1]->[(1-Xi(x))fi_j(x)+Xi(x)(--1), 1] be the 
unique order preserving simplicial homeomorphism given by s,(t) 
= ((b-1)/(a--1)) (t-1) + 1 where a =fi_l(x) and b=(1-Xi(x))fi-l (x) 
+Xi(x) (-1). Now define Oi(x, t) = (x, s,(t)). Clearly 4i is continuous. 
Then define (bi: gi-(X) ->X+ by: 

4)i(x) = Hifi-1 (x) for x E gi-1i(X) n Hi (U X [-1, 1]), 

= x otherwise, 

and gi =Pigi-i. Clearly (is and thus gi is well defined and an embedding 
since kil (hUi-U) X [-1, 1 ]UJUiX { 1 } = 1, Oi is an embedding 
(since each s, is), and gi-,(X)G)Hi(UiX [-1, 1 ]) =Hi(UiX [0, 1 ]) 
U { (x, t) It?fi_1(x) and xCUi } by (c) for gi-1. Note that (b) now 
definesfi(x), and (a) and (c) are satisfied by construction. 

REMARK 1. The noncompact case. The method of proof used above 
can be extended to certain cases when X is not compact. For in- 
stance, the proof works if we assume that X has a slightly stronger 
property than paracompactness, namely if every open cover has a 
star finite refinement (cf. [2 ] for definitions). In this case it is possible 
to order the Ui's, although infinite, so that every point in X+ has an 
open neighborhood which moves only finitely often. 

REMARK 2. The PL case. The theorem is still true if all spaces and 
maps mentioned (including the definition of local collaring) are 
polyhedra and PL respectively. The same proof goes through except 
that the particular definition of 'pi must be altered slightly. Namely to 
make Oi PL it is easiest to triangulate UiX [-1, 1] so that Vi 
X -1, 1] and Hi-' g&1l(X)are subcomplexes and projection 7r: U 
X [-1, 1 ]->Ui is simplicial. Then it is easy to define a simplicial map 
'ps so that it has the desired properties. 

The author wishes to thank the referee for many useful comments 
and suggestions. 
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