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AMERICAN MATHEMATICAL SOCIETY 
Volume 43, Number 1, March 1974 

AN EXTENSION OF BROUWER'S FIXED-POINT 
THEOREM TO NONACYCLIC, SET 

VALUED FUNCTIONS 

ROBERT CONNELLY1 

ABSTRACT. If f is a set valued function defined on an n-ball 
such that each f(x) is a subset of the n-ball, and the graph off is 
closed, then all that is needed to insure that there is a fixed point 
(x ef(x)) is that the singularity sets not be too high dimensional. 
I.e., the dimension of {x E BnjH (f(x))0O} is <n-q-2. Examples 
are given to show that the dimension requirements are the best 
possible. The proof involves defining an analogue of the retraction 
in the "no retraction" proofs of the Brouwer theorem, and then 
applying the Leray spectral sequence to the projection of the 
graph of this retraction onto the n-ball. 

The following is inspired by some recent results of D. G. Bourgin, 
who has obtained similar results by somewhat different techniques. 

We wish to prove an extension of the Brouwer fixed-point theorem 
in which the function involved is set valued, and eachf(x) need not always 
by acyclic. 

Let X and Y be topological spaces, and let 2y denote the set of all sub- 
sets of Y. We say a function f: X--2y is upper semicontinuous iff 

(a) 0 $f(x) is closed in Y for all x E X, and 
(b) if Fc Y is closed, thenf-1(F)= {x E XIf(x) r)F$ 0 } is closed in X. 
It is easy to check that, if Y is compact, Hausdorff, then f is upper 

semicontinuous if and only if the graph off, which is equal to 

r(f) = {(x, y) EcX X Y I y ef(x)}, 
is closed in Xx Y. 

We make some standard definitions: 

Rn = euclidean n-space and I I is the standard norm. 

Bn = {x E Rn| lxI < 1} Bn = {x E Rn lxl < 1}, 

Sn-1= aBn = {x e Rn I jx = 1}. 
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cl will denote the closure operation (in Bn). In the following, the cohom- 
ology theory will be sheaf theoretic cohomology theory, and if coef- 
ficients are not mentioned, it will be understood that the coefficient 
sheaf will be the constant sheaf with each stalk isomorphic to some 
fixed, nonzero L module, G. (In this case the cohomology will coincide 
with, say, Alexander-Spanier or Cech cohomology in our applications.) 
See Bredon [1] or Godement [3] for definitions. dimL will denote the 
cohomological dimension over L (see Bredon [1, p. 73] for a definition), 
and in our case is always less than or equal to the covering dimension 
(Godement [3, p. 236]). H7* denotes reduced cohomology. 

THEOREM. Letf: Bn---*2Bn be an upper semicontinuous function. Suppose, 
for q=O, 1, n-1, 

(1) dimLcl{x e Bn IH(f(x)) $ O} < n - q -2. 

Then there is an x e Bn such that x ef(x). 

If (1) were replaced by the stronger condition that eachf(x) be acyclic, 
then the theorem would be a consequence of a theorem of Eilenberg 
and Montgomery [2]. The proof below, however, is quite independent 
of their results. See also O'Neill [4] and [5]. 

It is interesting to note that, if the dimension requirement is reduced 
by 1, then there need not exist a fixed point (x E Bn such that x ef(x)). 
E.g., if we regard RkcRn, k<n, in the standard way ((x., * * *, Xk) 
(x1,, * * , xk, O, * * *, 0)) and thus Bkc Bn, we define g: Bn--->2BfB as follows: 
Let IT: Bn---*Bk be projection onto the first k coordinates. If x E Bn-Bk, 
g(x)=the unique point in aBn on the ray from Tr(x) through x. If x E Bk, 
g(x)=1rr-1(x) nBn. Define f(x)= -g(x). Clearly f: Bnl-*2Bn is upper 
semicontinuous and has no fixed points. {x E B nJJ7(f(x))$O}= 0 
except when q=n-k-1, and 

dimL cl{x E Bon I n-k-1(f(x)) ? o} 

= dimLBk k > n - (n - k - 1) - 2 = k - 1. 

PROOF OF THEOREM. Suppose x Of(x) for all x E Bn. We wish to 
arrive at a contradiction. r(f) is closed and thus compact and J(f )C 
BnxBn_A={(x,y) E Bn xBnlxy}. We wish to find a new set valued 
function g: Bn ->2Rn-Bn such that 

(3) r(g) is also compact, 

(4) g(x) = {x}, if x E aBn, 

(5) g(x) is homeomorphic tof(x), if x E Bo. 
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216 ROBERT CONNELLY [March 

We define g as follows: Let rB 'xB _-A--*aBn=Sn-1 be defined by 
r(x, y)=the unique point on aBn on the ray from y through x. This is 
the same function as used in the "no retraction" proofs of the Brouwer 
theorem, and is easily shown to be continuous. Note r(x, y)=x, if x E aBa. 
Define a continuous map 

F:Bn X Bn _- A -- Rn - Bn 

by 
F(x, y) = r(x, y) + Ix - r(x, y) (x -y). 

F(>,~ (r 
y) 

x 

Note if F(x, y)=F(x, y'), then y=y', unless x e B1, in which case 
F(x, y)=x. Now define 

g(x) = F(x, f(x)) = {F(x, y) I y e f(x)}. 

It is easy to check g satisfies (4) and (5). To show (3) consider the 
continuous map F:BnxBn-x-A--Bxn(Rn-Bn) defined by P(x, y)= 
(x, F(x,y)). Then F(Jr(f))=r(g) is compact. 

Thus, by (4) and (5), for each q, 

{x EBn I 1(f (x)) $ O} = {xEBn I J7(g(x)) $ O}. 

Let Pl: r(g)--*-B?l be projection onto the first factor. We wish to show 
fln-l(r(g))=O. Note pi'(x) is homeomorphic to g(x), and pi is a closed 
map. We now apply the Leray spectral sequence top, (see Theorem 6.1, 
p. 140 of [1]). We obtain a spectral sequence with E2 q=HP(Bn; 02q(pJ)) 
converging to HP+?(r(g)), where Xq(pl) is the sheaf generated by the 
presheaf &Hq(p- (&)). Since pj (x)-g(x) is taut (see [1, p. 52]) we 
obtain an isomorphism 

Xq(Pl)XH'(p- l(x)) -- H'(g(x)). 

Thus for q>O the stalks, >q(p1)x, are zero, except possibly on a closed 
set, A,=cl{x E BnJf7q(g(x))$0}, whose dimension is <n-q-2. Since 
Aq is closed we know (by 10.1, p. 51 of [1] or 4.9.1 of [3]), for q>O, 

E2n-l-q,q= Hn-q-1(Bn; _V'q(pl)) t Hn--1(Aq; dq(p) I Aq) = 0. 
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We have only E-1"? left to calculate. Let G denote the constant pre- 
sheaf on Bn. Then the following exact sequence regarded as an exact 
sequence of presheaves, 

0-O G -H -- I70(p- 1(t)) ---1t 0, 

induces an exact sequence of sheaves and thus a long exact sequence in 
cohomology. Let Y0(p_) denote the sheaf generated by the presheaf 
defined by tO(pl(t)). Then 

Hn-I(Bn) - Hn-l(Bn; ,?Y(pl)) - Hn-'(Bn; '_I?(Pl)) 

is exact, and, as before, the stalks, -#'0(pl)x, are zero except possibly on a 
closed set, AO, of dimension _n-2. Thus, as before, 

n- = H1 (Bn; n(Pi)) (Bn) 

Thus Hn-1(r(g))=0. 
Lastly we apply the functor, fn-i, to the following commutative 

diagram: 

{(X, X) I X C Sn-1} = F(g I Sn-I) > (g) 

IP1 IP2 { 
y1 

sn-1 < 
P Rn _ n_ n1x - K_B -SnI x 1?' 

where P2 is projection onto the second factor, and p is a retraction. We 
then obtain that p*p*:tn-l(Sn-l)Hn-l(r(g)) is one to one, and we 
finally get a contradiction. D 

REMARK. Just as with Theorem 6 in [2] we can strengthen the theorem 
to allow f: Bn---*2Rn, but insist that f(Sn-1)c Bn. The proof is as before 
except that we extend the domains of r and F to the appropriate spaces 

(BnxRn-{(x,y)lx$y, (x,y) E Sn-lx (Rn-Bn)}, r(x,y)=last point on 
Bn on the ray through x from y). 

ADDENDUM. The referee has pointed out that a strengthening of the 
theorem is possible. Namely, in (1) we need only assume that the covering 
dimension of every subset of {x eAn|J(f(x))$O } which is closed in 
Bn is _n-q-2. Under this hypothesis the fact that 7n-1(r(g))=O 
follows directly from Theorem 1 of [6]. In fact the idea above is much 
the same as in [6], except that Sklyarenko uses the following fact: Let 
X be paracompact and M be a subset of X such that every subset of M 
which is closed in X has covering dimension <d. (This is called the 
relative dimension of M in X.) Then if Q/ is any sheaf supported on M, 
HP(X; Q/) =0 for all p > d. The proof of this appears in [7]. 
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