PROBLEMS

Find all positive integers n such that the polynomial

$$a^n(b - c) + b^n(c - a) + c^n(a - b)$$

has $a^2 + b^2 + c^2 + ab + bc + ca$ as a factor.

10307. Proposed by John Calvin Williams, student, and I. Martin Isaacs, University of Wisconsin, Madison, WI.

Can one construct a set \mathcal{X} of finite groups satisfying the two conditions:

i. \mathcal{X} contains precisely one representative from each isomorphism class.

ii. If $A \in \mathcal{X}$ is isomorphic to a subgroup of $B \in \mathcal{X}$, then A is a subgroup of B.

10308. Proposed by Robert Connelly and John H. Hubbard, Cornell University, Ithaca, NY, and Walter Whiteley, York University, North York, Ontario, Canada.

Suppose that $p_1, p_2, p_3, q_1, q_2, q_3$ are six points in the plane and that the distance between p_i and q_j $(i, j = 1, 2, 3)$ is $i + j$. Show that the six points are collinear.
10309. Proposed by Walter Rudin, University of Wisconsin, Madison, WI.

Compute
\[\exp \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log(A + B \cos \theta) \, d\theta \right) \]
when \(A > B > 0 \). The answer should be given as an algebraic function of \(A \) and \(B \).

10310. Proposed by E. Rodney Canfield, University of Georgia, Athens, GA.

Fix an integer \(r \geq 2 \). Using Stirling’s formula we may find constants \(c_1 \) and \(c_2 \) such that
\[\left(\frac{rm}{m} \right) \sim \frac{c_1(c_2)^m}{m^{1/2}} \]
as \(m \to \infty \). Prove that the ratio \(\left(\frac{rm}{m} \right) m^{1/2} / c_2^m \) is an increasing function of \(m \) for \(m \geq 1 \).

10311. Proposed by Solomon W. Golomb, University of Southern California, Los Angeles, CA.

It is well-known that if \(g \) is a primitive root modulo \(p \), where \(p > 2 \) is prime, either \(g \) or \(g + p \) (or both) is a primitive root modulo \(p^2 \) (indeed modulo \(p^k \) for all \(k \geq 1 \)).

(a) Find an example of a prime \(p > 2 \), and a primitive root \(g \) modulo \(p \) with \(1 < g < p \) such that \(g \) is not a primitive root modulo \(p^2 \).

(b) Show that, among all \(\phi(p - 1) \) primitive roots \(g \) modulo \(p \) with \(1 < g < p \), at least half of them are also primitive roots modulo \(p^2 \).

10312. Proposed by Hongyuan Zha, IMA—University of Minnesota, Minneapolis, MN.

Let \(c \) and \(s \) be non-negative real numbers satisfying \(c^2 + s^2 = 1 \). Prove that, for \(n > 1 \),
\[s^{n-2} \sqrt{1+c} \]
is the second smallest singular value of the \(n \) by \(n \) upper triangular matrix
\[T_n(c) = \text{diag}(1, s, \cdots, s^{n-1}) \begin{pmatrix} 1 & -c & \cdots & -c \\ 1 & -c & \cdots & -c \\ \vdots & \vdots & \ddots & \vdots \\ 1 & -c \\ 1 \end{pmatrix} \]

Let \(a \in [-1/5, 1) \) and let \(\mathcal{B}_a^* \) denote the set of random variables \(X \) satisfying \(a \leq X \leq 1 \). Show that
\[\max \left\{ EX^2EX^4 - (EX^3)^2 : X \in \mathcal{B}_a^* \right\} = 2^{-6} \]
if and only if \(a \in [-1/5, 1/2] \).