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Covering Curves by Translates of a Convex Set 

K. BEZDEK, Eotvis University 

R. CONNELLY*, Cornell University 

KAROLY BEZDEK: I received my degrees in Budapest (Hungary), the M.S. 
Degree in 1978 and the University Doctorate Degree in 1980 at Eotv6s 
Lorand University, the Kandidatus Degree (Ph.D.) in 1985 from the Hungar- 
ian Academy of Sciences. I have been teaching at the Department of 
Geometry of Eotvos Lorand University since 1978. I was on leave in the 
academic years 1985-86 and 1988-89 visiting Cornell University in Ithaca. 
My research focuses on different problems of discrete and convex geometry. 

ROBERT CONNELLY: I received my Ph.D. in topology at the University of 
Michigan in 1969. Since then I have been at Cornell University on and off 
with excursions to I.H.E.S. in France, Syracuse University, the Max Planck- 
Institut fur Math. in Bonn, West Germany, the University of Dijon and 
Savoie University in France, Eotv6s University in Budapest, Hungary, and 
the Center for Research at the University of Montreal, Canada. My interests 
were compulsively attracted to geometry in the mid-1970's and since then I 
have been interested in the rigidity of frameworks and surfaces, reconstruct- 
ing asteroid shapes, simplexwise-linear homeomorphisms of a two-disk, and 
the rigidity of packings. 

I. Introduction. Turning a key in a lock is a familiar experience. Imagine a "key" 
that is a cylinder with convex planar cross-section. Imagine a "lock" which is a 
cylindrical hole with another convex cross-section. When can such a key fit inside 
the lock and turn 3600? Clearly for this problem we need only consider the 
cross-sections of the lock and key. For instance, the shaded set of Figure la can turn 
completely 360? inside the square, but the line segment of Figure lb is longer than 
the length of a side of the square so it can never be rotated inside the square so as to 
be parallel to one of the sides of the square. 

(a) (b) 
FiG. 1 

*Partially supported by NSF grant number MCS-790251. 
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790 KAROLY BEZDEK AND ROBERT CONNELLY [November 

Being mathematically curious, one might ask the following related basic question: 
What geometric conditions will insure that a convex set can be translated into 
another? For instance Wetzel [8] shows that for a given acute triangle, if a closed 
curve has length equal to or less than the length of the perimeter of the pedal 
triangle, then the closed curve can be translated into the given acute triangle. The 
pedal triangle is the triangle formed by the three feet of the altitudes of the triangle. 
See Figure 2. 

FIG. 2 

Since rotating a curve does not change its length, any of the curves in Wetzel's 
Theorem can be rotated inside the given triangle. (It turns out for compact planar 
sets C and X, X convex, if for every 0 < 9 < 3600, C rotated by 9 can be 
translated into X, then C can be translated and then continuously rotated 3600 
inside X.) 

Another example is when the covering set is a circular disk of diameter 1/2. Then 
any closed curve of length one or less can be translated into the disk. This is an old 
result that can be found in the standard reference in this area, Bonnesen and 
Fenchel [2, p. 82]. (See also Nitche [14].) Note that since the covering set is a 
circular disk, the problem reduces simply to finding some congruent copy of the set 
to be covered in the disk. Any key can be turned in a round lock. 

In section II we collect some principles and techniques that can possibly reduce 
the problem (of covering every element of a collection of sets by a translate of a 
fixed convex set) to a routine exercise. 

Wetzel [21] looked at the problem of finding a plane convex set of minimum area 
that can cover any closed curve of length one or less with a translate. We do not 
know the answer to this problem either, but in section VI we find another set, with 
smaller area than the ones that Wetzel found, that can cover any closed curve of 
length one or less with a translate. 

Another natural problem is to find a plane convex set of minimum perimeter that 
can cover any closed curve of length one or less with a translate. Our Theorem 
below answers this problem. 

A line is called a support line for a compact set if the line has a non-empty 
intersection with the set, and the set is contained in one of the closed half planes 
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1989] COVERING CURVES BY TRANSLATES OF A CONVEX SET 791 

with the line as boundary. A compact convex set has constant breadth b if the 
distance between any pair of distinct parallel support lines is the constant b. 

We will prove the following: 

THEOREM. Let X be any compact convex set of constant breadth 1/2 in the plane, 
and let C be a closed curve of length one or less in the plane. Then C can be covered by 
a translate of X. Furthermore, if Y is any compact convex set such that every closed 
curve of length one or less can be covered by a translate of Y, then the length of the 
perimeter of Y is equal to or larger than v/2 with equality if and only if Y has constant 
breadth 1/2. 

Remark 1. An easy compactness argument shows that there must be a compact 
convex set X of minimum perimeter such that any closed curve in the plane with 
length one or less can be covered by a translate of X. What is surprising is that any 
compact convex set of constant breadth will serve as such a minimal X. A famous 
theorem of Barbier [1] says that all compact convex sets of constant breadth, 1/2 
say, have perimeters of the same length v/2, so they all are at least candidates. 

Figure 3 shows some examples of the Theorem. Each of the sets on the top is a 
convex set of the same constant breadth and each curve on the bottom has length 
less than twice that breadth. Thus each curve on the bottom can be translated into 
each set on the top (and then turned 3600 inside it). 

FIG. 3 

Let W be any collection of sets in the plane. We say a set X is a translation cover 
for W if every set in W can be covered by a translate of X. Let 2, be the collection 
of closed curves in the plane of length one or less. Our theorem then can be restated 
as saying that the compact convex sets of constant breadth 1/2 are all the 
translation covers for 2, with minimum perimeter. 
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792 KAROLY BEZDEK AND ROBERT CONNELLY [November 

The terminology " translation cover" comes from Wetzel [21, p. 368]. If a 
compact convex set X can cover any element of le by some congruent copy, then 
Wetzel calls X a displacement cover for W. Eggleston [6, p. 131], uses the word 
"universal cover" instead of displacement cover. Chakerian [3, p. 759], and Lay 
[12, p. 85] use the word "strong universal cover" instead of translation cover. A 
displacement cover is just a lock that allows the key to enter, but the key might not 
be able to turn. 

We prefer Wetzel's terminology. However, Chakerian and Lay have an interest- 
ing discussion of such covers, whatever they are called, as well as other related 
subjects. The reader is also referred to [4], [5], and [17]-[21] for further information 
about more related covering problems. 

In the following proof of the main Theorem (which occupies sections II-V of this 
paper) the exposition will be self-contained, except for three results: Helly's Theo- 
rem (Lemma 1, below), Sperner's Lemma (Lemma 5, below), and Fagnano's 
Theorem about pedal triangles (Lemma 7, below). These are all basic results that 
have been amply discussed elsewhere, and we have nothing to add to their proofs. 
However, we can apply a result of Chakerian to shorten the last step of the proof of 
our main Theorem. Nevertheless, we will also provide another proof, without using 
Chakerian's result, following our ideas of using billiard triangles. 

Section II contains a series of general lemmas that, roughly speaking, reduce the 
covering problem to covering triangles, and the "local" problem to the case of 
covering a triangle by a triangle. In our case this turns out to be the billiard 
condition as discussed in section III. This in turn gives us a way of calculating a 
number for a convex set X that is the upper bound for the length of a closed curve 
to insure that it can be covered by a translate of X. This is applied in section IV to 
the Reuleaux triangle, in section V to prove the main Theorem, and in section VI to 
investigate Wetzel's problem. 

In section VII we look at other related problems and generalizations regarding 
translation covers, and mention several more results, without proof, that we can 
obtain with our techniques. 

We thank the referees for many helpful comments, especially for informing us of 
Chakerian's result, and suggestions regarding an earlier version of this paper. We 
also thank John Wetzel for referring us to his papers [18], [20], and [21], and Maria 
Terrell for helpful advice. 

II. General Helly-type facts. There are many reductions that are very helpful. 
We start with Helly's Theorem. 

LEMMA 1 (Helly). Let W be any collection of compact convex sets in the plane. If 
every 3 sets of if have a nonempty intersection, then the intersection of all the sets of W 
have non-empty intersection. 

A good reference for the many proofs and generalizations of this result is Danzer, 
Grunbaum, Klee [5]. 

For any set X in the plane, and a point p in the plane, define 

p + X= {p + XIX E X}. 

the translate of X by p. All points in the plane are regarded as vectors in some 
coordinate system. 
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1989] COVERING CURVES BY TRANSLATES OF A CONVEX SET 793 

The following observation changes our covering problem to an intersection 
problem. 

LEMMA 2. Let X and Y be subsets of the plane. A translate of X contains Y if and 
only if 

n (-y ? x) ? 0. 
yE Y 

Proof. p E nyf y(-y + X) if and only if p E (-y + X) for all y E Y if and 
onlyif p +y E Xforall ye Yifandonlyif p + Yc X. O 

We can now reduce the covering problem to the case of 3 points. This can be 
found in Chakerian [3] and is due to Klee [11]. The next Lemma follows immedi- 
ately from Lemma 1 and Lemma 2. 

LEMMA 3. Let Y be any set in the plane with at least three points. A compact 
convex set X has a translate which covers Y if and only if X has a translate which 
covers every three-point subset of Y. 

Proof By Lemma 2 a translate of X covers Y if and only ifny E y(-y + X) ? 0. 
Since every three-point subset of Y has a translate of X which covers it, every three 
of the sets in the intersection have a nonempty intersection. By Lemma 1 the whole 
intersection is nonempty. Thus Lemma 3 follows. {1 

Remark 1. Since any three points on a closed curve of length one or less form a 
triangle of perimeter one or less, by Lemma 3 we can assume, without loss of 
generality, that the curve we want to cover is a triangle with the understanding that 
we allow the triangle to possibly degenerate to a line segment. 

To ease the development we introduce a bit of notation. A triangle in the plane is 
written as A = KPl, P2, P3), where Pi, P2, P3 are the vertices of A. Note that lA can 
degenerate into a line segment when some pair of the vertices coincide. We define 
the length of the perimeter of A as 

'(A)= IP1-P21 + IP2 - P31 + IP3-P1l 

For a set X in the plane and L > 0, let 

7x = { A a triangle I there is a point p such that p + A c X 

YL = {LA a triangleIl(A) < L} . 
int X denotes the topological interior of the set X, and similar to what was done 
with translates we let 

aX= {axlx E X}. 

For sets A, B we denote the difference set 

A \B = {ala E A and a q B}. 

R2 denotes the Euclidean plane. 
We now wish to look at the covering problem from another point of view. We 

investigate the triangles that have no translate in the interior of X and relate the 
minimum of their lengths to the maximum length that insures that a triangle (or any 
closed curve) with that length can be translated into X. 
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794 KAROLY BEZDEK AND ROBERT CONNELLY [November 

LEMMA 4. Let X be a compact convex set with non-empty interior in the plane. 
Then there is a triangle (possibly degenerating into a line segment) Ao E 9x \ .Y., X 
such that 

1(,o) = inf{l(A) IA isa triangle with A intXI 

= sup{ LI'L c $jx). 

Proof. Since triangles with sufficiently small perimeter clearly can be translated 
into X, for some E > 0, Y, C X-x Thus sup{LIYL c X} = Lo exists. Let A E YL. 
with 1(A) = Lo, Then for every 0 < a < 1, aA has a translate in X, since l(aA) = 
aLo < Lo, Thus aA E YaL. c 3x. As a -* 1, a limit of translates of at will be 
contained in X, and since X is compact, A c $?x. Thus YLo c Sx 

For every 8 > 0, let A6 be a triangle with A,, i .7x with Lo < 1(A8) < Lo + 3. 
By fixing a vertex of A6 and bounding all the A6, we may choose ,6 such that 
lim6 OL,6 = A0, a triangle in the plane. Then by the continuity of 1, 1(A0) = Lo = 

sup{ LIYL C &7-x}, and A0 E7 'x. 
If a triangle A has 1(A) < Lo, then for some a > 1, 1(aA) = al(A) <Lo, aA E- 

5X, and A E nt X. Thus 

Lo < inf{l(IA)A I SintX} 

Similarly for every 8 > 0, for AL chosen as above, A 8 gin, X implies that 
Lo l(A0) > inf 1(A)I A 1 7int X} Thus sup{ LI L c.Y>} = Lo = inf{ l(A)A 1\ ? 
g-int X } - 

Since A0 = lim_ 0A6 and A L,, ntX then A0 O gint X- Thus A0 EYX\.\int X 

The following Lemma is a version of Sperner's Lemma for open (convex) sets. 
We show how to deduce this from the statement in Lyusternik [13, p. 162], where it 
is stated for closed sets. The following Lemma is the contrapositive stated for the 
complementary open sets. 

LEMMA 5 (Sperner). Let A = ( Pl, P2, p3) be a triangle in the plane with non-empty 
interior. Let Ul, U2, U3 be open sets in the plane with the line segment <Pi -1, Pi ) C 

Ui, i = 1, 2, 3, (indices taken modulo 3). If A C U1 U U2 U U3 then A n U1 n U2 n 
U3 =/ 0. 

Proof. Suppose for some i = 1,2,3, Ui n Ui+1 n (pi, Pi+,) ? 0. Then U1 n 
U2 A U3 ? 0. If piE Ui, for some i = 1,2,3, then piE U1 n U2 n U3. 

Let A c U1 U U2 U U3, i.e., nf3=l(A \ U;) = 0, and from the above we may 
assume that for all i = 1,2,3, pi E A\ LUi and (pi, pi+1) c (A\ \UI) U (A\ Ui +). 
Thus by Sperner's Lemma for closed sets U 3=1(A \ UI) does not contain A, i.e., 
A n U1 n U2 n U3 * 0, finishing the Lemma. rO 

Let H = (H1, H2, H3) be three closed half planes. We say that H is nearly 
bounded if H1 n H2 n H3 = A is contained between two parallel lines. In the case 
when two of the Hi's are the same we can write H = (H1, H2). If A is bounded, 
then H is clearly nearly bounded. It is easy to show that the following are 
equivalent: 

1. H is nearly bounded. 
2. (Pl + H1, P2 + H2, P3 + H3) is nearly bounded, for all Pi, P2, P3 in the 

plane. 
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1989] COVERING CURVES BY TRANSLATES OF A CONVEX SET 795 

3. (p1 + H1) n (P2+ H2) n (p3 + H3) = 0, forsome P1,P2, p3 intheplane. 
4. ((R 2 \ int H1), (R 2 \ int H2), (R 2 \ int H3)) is nearly bounded. 
5. A has no translate contained in int Z. 
If we look at the inward pointing vector ni perpendicular to the boundary of Hi, 

i = 1, 2, 3, we see that H is nearly bounded if and only if the 0 vector is in the 
convex hull of the ni. 

Let (Pl, P2' P3) = A be a triangle in the plane, and let H = (H1, H2, H3) be 
closed half planes with A = H1 n H2 n H3. If H is nearly bounded and pi int Hi, 
for i = 1, 2, 3, then we say that H (or Z) separates A (from any set contained in Z). 
See Figure 4. 

FIG. 4 

We can now provide a criterion for when a triangle cannot be translated into a 
convex set. 

LEMMA 6. Let X be a compact convex set with non-empty interior. A triangle 
(possibly degenerating into a line segment) A 0 '197X if and only if there are closed 
(nearly bounded) half planes H = (H1, H2, H3) that separate a translate of A from 
X, or H = (H1, H2) (with parallel boundaries) separates a translate of an edge of A 
from X. 

Proof Suppose H = (H1, H2, H3), which is nearly bounded, separates A = 

(P1, P2' P3) with H1 n H2 n H3 = Z D X. If a translate of A, p + A c int X, 
p + Hi c int Hi, i = 1, 2, 3, and p + Z c int Z, which is impossible by property 5. 
Thus A 

- 
j. X If H = (H1, H2) separates (p1, P2), the proof is similar. 

Suppose A t nt X. By Lemma 2, flu=j(-pi + int X) = 0. 
If for some i, (-pi-, + int X) nl (-pi-, + int X) = 0 (indices taken mod 3), 

then a line B separates (-pi-, + int X) and (-pi+, + int X) in the usual sense. 
Thus there is a point p on B and closed half planes Hi-1 and Hi+1 such that 
p E bdyHi_1 n bdyHi+1 = B,-Pi-1 + int X c Hi_1, and -pi+1 + int X c Hi+1, 
where bdy denotes the topological boundary. Thus pi-, + p E bdy(pi-, + Hi-,), 
pi+1 + p E bdy(pi+l + Hi+,), pi-, + Hi-, D X, pi+, + Hi+, D X, and thus 
<Pi-l + Hi-l, pi + + Hi+1) is nearly bounded and separates (p + Pi-l, p + Pi+1), 
an edge of p + A, from X. 
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796 KAROLY BEZDEK AND ROBERT CONNELLY [November 

So we are left with the case when (-pi-, + int X) n (-Pi+, + int X) * 0, for 
all i=1,2,3. Let qiE(-pi-,+intX)fn(-pi+,+intX), for i=1,2,3. We 
choose A' = (q1, q2, q3) with non-empty interior as a triangle. Then (qi-1, qi+>) c 
-pi + int X, for all i = 1,2,3. Thus Lemma 5 and Lemma 2 imply that 
U3=1(-pi + int X) does not contain A'. Let q E A' \U3=1(-pi + int X). Then for 
i = 1, 2, 3, let Hi be a closed half plane with q E bdy Hi and (-pi + int X) c 
int Hi. Thus q E nf3=l(R2\int Hi) = A", and A" n (qi-1, qi+1) = 0, for i = 
1, 2, 3, because Hi D (qi-1, qi+1). Thus A" n bdyA' $ 0 and A" c A'. Thus A" 

is bounded. (It turns out that A" = { q }.) Thus H = (H1, H2, H3) is nearly bounded 
by property 4. pi + q E bdy(pi + Hi) and so (Pi + H1, P2 + H2, P3 + H3) is 
(nearly) bounded by property 2 and separates q + A = (q + P15 q + P25 q + P3) 
from X. See Figure 5. C 

q+ PI 

q ~~~~~~~X 

Pi + X P2 q Xq + 3 

FIG. 5 

Remark 2. All of the above Lemmas and their proofs generalize to Euclidean 
space of any (positive) dimension. Both Helly's Theorem and Sperner's Lemma are 
true and well known in this generality. 

Remark 3. We can use other functions for / besides the length of the perimeter. 
The properties of / that we need are that / is a real-valued function defined for at 
least convex sets in Euclidean space and the following hold. 

1. 1 is continuous. 
2. 1(AL) < l(aA), for a > 1. 
3. l(p + A) = 1(A) for all points p. 
4. {A I l(A) < 1, 0 E A)} is bounded. 

For instance we could take 

1(X) = diameter of X = sup{lx - yl Ix, y E X}. 

III. Billiard triangles. We can now further reduce the set of triangles that need to 
be considered for our covering problem. Let X be a compact convex set with 
non-empty interior in the plane. For i = 1, 2, 3, let pi be three distinct points on the 
boundary of X, and let Hi be a closed half plane containing X with pi E bdy Hi. If 
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1989] COVERING CURVES BY TRANSLATES OF A CONVEX SET 797 

pi+1 - pi and pi-1 - pi (regarded as vectors) make equal angles with the line 
bdy Hi at pi, for all i = 1, 2,3 (indices taken modulo 3), then we say A = (Pl, P2, P3) 
is a billiard triangle for X. Note that the Hi containing pi as above, in general, may 
not be unique. However, we will only consider billiard triangles that are separated 
from X by a unique (H1, H2, H3), where A = H1 n H2 n H3 is a triangle. See 
Figure 6 below. 

P1 

FIG. 6 

We look at our covering problem for the special case when X is a triangle. This is 
a very old problem of Fagnano with some pleasant solutions involving a "reflection 
principle." Some very elementary proofs are described in Rademacher and Toeplitz 
[16, p. 27-34], as well as Kazarinoff [10, pp. 75-77]. 

LEMMA 7 (Fagnano). Let A be a triangle in the plane. If A is acute then the 
triangle A with smallest perimeter inscribed in A is the pedal triangle formed by the 
feet of the three altitudes of -. Furthermore A is the unique billiard triangle for -. If 
A is not acute, then there is no billiard triangle in -, and any inscribed triangle has 
perimeter greater than twice the minimum altitude. 

We state the main criterion by which we can calculate which closed curves can be 
covered by a given compact convex set X. 

Let m. = inf{ l(A) A is a billiard triangle for X }. If X has no billiard triangle 
mA = 00. Let b be the minimum breadth of the set X, i.e., b is the minimum 
distance between two distinct parallel support lines of X. 

LEMMA 8. Let X be a compact convex set. Any closed curve of length one or less can 
be covered by a translate of X if and only if min{ m, 2b } > 1. 

Proof. We will show that min{ m,2b} = 1(A 0), where A 0 E X\ntx X is as in 
Lemma 4. The result will then follow using Lemma 3 as well as Lemma 4. 

Suppose that A0 does not degenerate to a line segment. If (H1, H2) separates an 
edge of AO from X, then A0 degenerates to a line segment. Thus by Lemma 6 there 
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798 KAROLY BEZDEK AND ROBERT CONNELLY [November 

are half planes H = (H1, H2, H3) that separate a translate of tO from X. We take 
A0 c X. By Lemma 7 (Fagnano) the pedal triangle of A = H1 n H2 n H3 is the 
shortest triangle separated by (i.e. inscribed in) E, if there is such a shortest triangle. 
Thus AO must be this pedal triangle for Z. So AO has the billiard property at each 
Pi, i = 1, 2, 3, A is unique, and thus l(A ) > m,. By Lemma 4, Lemma 6, and the 
definition of a billiard triangle l(A0) < m,. Thus 1(A0) = m, < 2b. 

If AO is a line segment, then clearly 1(A0) = 2b < m,. E1 

Remark 4. If we replace I (the function that gives the length of the perimeter) by 
the diameter function, we can also provide a similar analysis as above. The critical 
triangle AO of Lemma 4 can be taken to be either an equilateral triangle, an isosceles 
triangle with its base shorter than its two legs, or a line segment, since any such AO 
is contained in one such triangle. 

A corollary of the above observation is that if every circular wedge with a 600 
vertex angle and leg length one can be translated into X, a compact convex set, then 
any set of diameter one or less can be translated into X. Of course the same is true 
for the Reuleaux triangle (see the next section) of diameter one, replacing the wedge. 
This is a curious dual to Chakerian's Theorem mentioned in section V. 

We can continue with an analogue of Lemma 8. Namely AO must be separated by 
Z in only a particular way. 

If A0 is an equilateral triangle, then the lines perpendicular to the edges of Z at 
Pi, i = 1, 2, 3, must meet at a point in A0. See Figure 7. If the perpendiculars do not 
meet at a point as above, A can be "rotated" out of Z and then contracted to obtain 
another A', still separated by Z but with l(A') < 1(A) (1 now being the diameter). 

Pi 

P2 

FiG. 7 
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1989] COVERING CURVES BY TRANSLATES OF A CONVEX SET 799 

If AO is an isosceles triangle, then the equal sides of A L must be perpendicular to 
the corresponding sides of E, as in Figure 8 below. 

FiG. 8 

If A0 is a line segment, then A0 is of minimal breadth, as before. 
IV. Reuleaux triangles. We now apply Lemma 8 to prove a special case of the 

Theorem, namely when X is a Reuleaux triangle. A Reuleaux triangle is the convex 
set of constant breadth r obtained as the intersection three circular disks of the 
same radius r with the centers of the circles at the vertices of an equilateral triangle 
of side length r. See Figure 9. 

FIG. 9 

LEMmA 9. Let R be a Reuleaux triangle of constant breadth 1/2. Then R has only 
the one symmetric billiard triangle joining the midpoints of the circular arcs as below. 
Thus mA = ( - 1)/2 1.098 > 1 and every closed curve of length one or less is 
covered by a translate of R. 

Proof From Lemma 7 the only billiard triangle in a triangle A is the pedal 
triangle P formed by the feet of the three altitudes of Z, and this billiard triangle 
exists only when A is acute. 
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Suppose A = { Pl1 P2' P3) forms a billiard triangle in R. Let Li, i = 1, 2, 3, be 
the corresponding support lines. Clearly each pi is on a separate circular arc of the 
Reuleaux triangle R. Let ri be the vertex of R opposite pi, and let C be the center 
of the inscribed circle of A. Then ri, C, pi, are collinear because ri - pi and C - pi 
are both perpendicular to Li. See Figure 10. 

FIG. 10 

Thus A is a billiard triangle for the triangle A formed by L1, L2, L3, as well as R. 
Thus A is the pedal triangle of A, and C is the altitude center of A. With all this 
information we wish to show that C is the center of R. This will show that A is the 
desired symmetric triangle. 

Let CR be the center of R. Let qi be the midpoint of the circular arc from ri 1 to 
ri 1, as in Figure 11 below. 

r2 1 

r33 1 

FIG. 11 
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Assume, without loss of generality, that C lies in the closed region of R defined 
by CR, q3, r2. It is clear that the support lines L3 and L2 intersect at a point on the 
q3 side of the line CRrl. On the other hand the ray from r1 outside R on the line Cr1 
lies on the other side of CRrl. Thus the three lines L2, L3, Cr1 intersect only if 
C= CR andpi=qi, i=1,2,3. a 

V. Proof of the theorem. We thank one of the referees for pointing out that, at 
this point, we can complete the proof of the Theorem by using the following result 
of Chakerian [3, p. 760]. 

THEOREM (Chakerian). Let R be a Reuleaux triangle of constant breadth b in the 
Euclidean plane, and let P be a compact subset of the plane. Suppose that each 
congruent copy of P can be covered by a translate of R. Then if K is any compact 
convex set of constant breadth b, each congruent copy of P can be covered by a 
translate of K. 

Remark 5. The proof of Chakerian's Theorem above uses yet another variation 
of Helly's Theorem and a simple property of sets of constant breadth, and it is not 
difficult. However, we include another proof using the ideas of finding billiard 
triangles using Lemma 8 above. 

By Lemma 8 we need only prove that all billiard triangles A = (Pl, P2' P3) C X 
have 1(A) > 1, since we assume b = 1/2. Thus we suppose A is a billiard triangle 
with 1(A) < 1, and we look for a contradiction. 

Let ql, q2, q3 be the points on the boundary of X such that the segment (pi, qi) 
is perpendicular to the support line for X at pi, i = 1, 2, 3. Note that the segments 
are coincident at the incenter of A, each qi is outside A since qi is on the boundary 
of X, and lpi - qiI = 1/2 since X is of constant breadth 1/2. 

qF 

FIG. 12 
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Consider for t > 1, r,(t) = tqi + (1 - t)pi. Let 

St = { P 1 P2, P3' rl(t), r2(t), r3(t)} 
to = sup { t I diameter of St < t/2 }. 

Note that I ri (t) - pi = t/2. The supremum exists since the diameter of S1 = 
1/2, and for some i and j the angle between qi - pi and qj - pj is greater than 600 
and thus 

lim iri(t) - r(t)llt > 1. 
t coo 

Let ri = r,(to), i = 1, 2, 3. Then for some i =A j either [pi - rjI = to/2 = diameter 
Sto or ri - rjl = to/2. By renumbering, one of the following cases occurs. 

Case 1. lp1 - r21 = to/2. 
We then have the following diagram where .- indicates that the distance is 

to/2. 

p i 

Wr2~~~~~~~~~~~~~~r 

P1 -~~~~~~~~~P 

R\\ 

FIG. 13 

Let R be the Reuleaux triangle with Pi and r2 as vertices with the third vertex on 
the same side of [ P1, r2] as P2 and rl. Thus the breadth of R is to/2. Then P2, r1 are 
on the boundary of R on the opposite sides of r2, Pi respectively, since lp, -r I = 
IP2 - r2j = to/2, IP1 - P21 < to/2, and Jr, - r2j < to/2. Thus (P2' r2) n (pl rl) 
= C is a point in the interior of R. Thus r3 and P3 lie in the open cones determined 
by Cp2, Cp1 and Cr2, Cr1 respectively. Thus Ir3 - r2j < to/2, Ir3 -p < to/2 
implies r3 is in R and IP3 - Pl I < to/2, IP3 - r2 < to/2 implies P3 is in R as well. 
The diameter of R is to/2. Thus r3 and P3 must be on the boundary with at least 
one of them equal to Pi or r2, which is impossible. Thus Case 1 cannot occur. 

Case 2. r1 r- r2j = to/2. 
We then have the following diagram, Figure 14. 
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P1~~~~rP 

ri~~~~r 

FIG. 14 

Let R be the Reuleaux triangle with rl, r2 as vertices as before and thus with 
breadth to/2 again. As in Case 1 (p1, rl> n (P2, r2) = C, a point in the interior of 
R on the same side of (rl, r29 as Pl, P2, r3. Since Ir3 - r21 < to/2 and Ir3 - rl I < 
to/2, r3 must be in R. Since I r3 - P31 = to/2, either p3 is outside of R altogether, 
or p3 is on the arc of R from r1 to r2 with r3 as the opposite vertex of R. In either 
case let p3 be the point on the circular arc from r1 to r2 of R on [r3, P31. This point 
exists since Cp3 is in the cone determined by Cr2 and Crl. 

Let H1, H2, H3 be the support half planes for R at Pi, P2, p3 respectively. 
Clearly H1 n H2 n H3 is bounded and thus by Lemma 6, A cannot be covered by 
int R. Thus by Lemma 9 

1 > 1(A) > to > 1, 

the final contradiction. 
To finish the Theorem suppose any closed curve of length one or less is covered 

by a translate of X. Then the minimum breadth of X is b > 1/2 by Lemma 8. Let 
b(O) be the breadth in direction 0. Then it is a well-known formula of Cauchy, see 
Hurwitz [8] for example (or Chakerian and Klamkin [4] for a similar use), that the 
length of the perimeter of X is 

l(X) = (1/2)f 2b(O) dO > (1/2)2X(1/2) = v/2, 

with equality if and only if b(O) = 1/2, a constant. O 
VI. Wetzel's problem. We have found all the sets of shortest perimeter whose 

translates cover any closed curve of length one or less. As mentioned in the 
introduction, Wetzel considered the question: What is a set of smallest area whose 
translates cover any closed curve of length one or less? In other words, what is a 
translation cover of smallest area for .. (the collection of closed curves of length 
one or less)? 

Among all compact convex sets of constant breadth 1/2, the Reuleaux triangle is 
the set of smallest area (v - F/T)/8 - 0.17619, and of course is a translation cover 
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for ?9. Wetzel [21] found a set shown in Figure 15 (with some of the billiard 
triangles indicated), which is also a translation cover for Y, and has area = 0.17141 
(and thus is necessarily not of constant breadth). (Wetzel claimed incorrectly that 
the area is 0.15900.) 

FIG. 15 

Figure 16 shows a set, looking a bit like a church window, with area 1/6 0.16667 
which is also a translation cover for Yl. The base has length 1/2 and the height is 
also 1/2. The curves are parabolas with their line of symmetry about the base. Since 
the common focus of the two parabolas is the midpoint of the base, it is easy to 
show that the indicated isosceles triangles (with horizontal base and vertex at the 
midpoint of the base of the church window) are indeed billiard triangles. It is a bit 
more difficult to show that there are no more shorter billiard triangles. 

FIG. 16 

We do not know what the minimum area is for translation covers for Yl, but 
there are still other translation covers for Y, that are more complicated but have 
area smaller than 1/6, the area of the church window. The best translation cover 
that we have found has area = 0.16526. However, Wetzel [21], modifying an 
argument of Pal [15], derived a lower bound = 0.15544 for the area of any 
translation cover for Yl. 
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Note that the Reuleaux triangle, Figure 9, and the church window, Figure 16, are 
minimal with respect to being a translation cover for Yl, i.e., they do not contain a 
proper closed convex subset that is also a translation cover for Yl. A compact 
convex set X is a minimal translation cover for Y, if and only if it is the convex 
hull of all its billiard triangles of length 1, including the degenerate case of a doubly 
covered minimum breadth of length 1/2. Wetzel's wedge, Figure 15, is not minimal 
since a small amount of the set, near the lower left-hand corner, can be shaved off, 
and it will still remain a translation cover for ?9. 

VII. Related problems. As mentioned in Remark 3 and Remark 4, it is possible 
to use a similar analysis as in section II to consider other classes of objects to be 
covered, as well as minimizing with respect to functions other than the length of the 
perimeter. We mention, without proof, some results for some of these combinations. 

We consider three classes of objects, in the plane, to be covered: 
1. Yl, closed curves of length one or less. 
2. Compact sets of diameter one or less. 
3. Arcs of length one or less. 
Then we consider translation covers for each of the classes above and minimize 

with respect to the following: 
1. Length of the perimeter. 
2. Diameter, the largest distance between pairs of points in the set. 
3. Area. 

The results are summarized in the following table. 

minimizing functions for the translation cover 

sets to be length of 
covered perimeter diameter area 

closed curves all sets of all sets of ? .155 < area < .167 
of length S 1 constant constant 

breadth 1/2, breadth 1/2, 
length = T7/2 diameter = 1/2 

sets of a circle of a circle of ? 
diameter < 1 diameter 2V/3/3, diameter 2V3/3, 

length = 2 7ff /3 (Jung's Thm. [9]) 

arcs of all sets of all sets of the equilateral 
length < 1 constant constant triangle of side 

breadth 1, breadth 1, length 2V3/3 
length = '7 diameter = 1 (Pal's Thm. [15]) 

area = V3/3 

Each entry in the table represents the whole collection of minimizing sets, if 
known. A ? indicates that the minimizing object is unknown to us. 

The line corresponding to closed curves of length < 1 has already been discussed, 
except for the entry under diameter. However, from our main Theorem, any set of 
constant breadth 1/2 forms a translation cover for all sets of perimeter of length < 1. 
In order to cover any doubly covered line segment, any translation cover X for ?' 
must have minimum breadth > 1/2, and thus X must have diameter > 1/2. If X 
has diameter = 1/2 and minimum breadth > 1/2, then X must be a set of constant 
breadth 1/2. 
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For the line corresponding to the sets of diameter < 1, Jung's Theorem [9] 
implies that the circle of diameter 2V3/3 is a translation cover for such sets, but it 
does not imply, and it is nontrivial to prove, that, in the case of the perimeter and 
the diameter, this circle is the only such minimal convex set. 

For the line corresponding to arcs of length < 1, it turns out that X is a 
translation cover for this collection if and only if X has minimum breadth 1. A 
theorem of Pal [15] states that the equilateral triangle has the least area among all 
sets of minimum breadth 1. 

In dimensions greater than two we have very little information. For a given 
compact convex set X in R d, if one can calculate the length L of the shortest 
billiard path with d + 1 or fewer bounces, X is a translation cover for curves of 
length L or less. For example, in Martin Gardner's Sixth Book of Mathematical 
Diversions [7, pp. 29-38], it is stated that the regular tetrahedron, with side length 
one, has three billiard paths, each of total length 4/ ViI0, with four bounces. It turns 
out that these billiard paths are the shortest, and thus the regular tetrahedron of side 
length g/ii0/4 is a translation cover for closed curves of length one or less. Similarly 
the regular simplex of side length one in Rd has d!/2 billiard paths of minimal 
length (d + 1)J6/d(d + 1)(d + 2); and thus the regular simplex of side length 

Vd ( d + 1) ( d + 2)/6 /(d + 1) is a translation cover for closed curves of length one 
or less in Rd 
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