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CHAPTER 1

INTRODUCTION

Ben Roth
Department of Mathematics
University of Wyoming
Laramie, Wyoming 82071

1.1. Introduction.

What do the words in the title The Geometry of Rigid Structures mean, at
least in an informal, intuitive way? What are some of the fundamental concepts and
questions of the subject? Where do they arise and why are they of interest? What
are some historical lines of development and current trends of the geometry of rigid
structures? How are these reflected in this book? These questions are our concerns in
this introductory chapter.

Precise definitions of the basic concepts appear in Chapter 2 but these fundamental
notions are easy to describe informally. For the most part, the structures that concern us
are frameworks which consist of bars of fixed length and joints which connect some of the
ends of the bars. The connecting joints allow the angles between bars to change freely (as
if the bars were connected by universal joints). For example, Figure 1.1 show two very
simple frameworks. The book treats a (perhaps bewildering) assortment of meanings for
rigidity, but two of these notions of rigidity lie at the heart of the subject. Tl';e easiest
of the two to describe is known simply as rigidity and means the absence of (relative)
motion in the framework. For instance, the triangular framework shown in Figure 1.1(b)
is rigid since the lengths of its three ‘bars (a‘nd the ways they are joined) determine the
relative positions of the three joints by the side-side-side congruence theorem from plane

Euclidean geometry. On the other hand, the bent arm framework shown in Figure 1.1(a)
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is not rigid (and thus called flezible) since it can open or close with the unattached ends
of the two bars moving away from or toward one another. Thus, as these examples
indicate, the question of rigidity deals with certain points in Euclidean space (the joints)
which are constrained by specified conditions (the bars have fixed length). And the
conclusions we reach regarding rigidity will be mathematics theorems of a geometrical

nature.

(a) (b)
Figure 1.1

An equally fundamental notion is the tangential or linearized version of rigidity,
known as “infinitesimal rigidity”. In the study of rigidity the basic constraints require
that the lengths (or the squares of lengths) of the bars remain constant. Thus if p(¢)
and q(t) represent the location in Euclidean space of the joints at the end of a bar at

time t, we require that the square

of the Euclidean distance from p(t) to q(t) remains constant as ¢ varies. Here “ .7

denotes the standard Euclidean inner product and |-+-|” denotes length. One way to
think about infinitesimal rigidity is that now the lengths of bars are allowed to vary, and

the basic constraints of infinitesimal rigidity require that the initial rate of change of the



square of the length of each bar is zero. This amounts to conditions of the form
(p(0) — q(0)) - (p'(0) - 4'(0)) =0

for the bars of the framework. In other words, one attempts to assign a mnontrivial

velocity vector p’ to each joint p of the framework in such a way that
(p-q) (P —4q)=0 (1.1)

for every bar pq of the framework (see Figure 1.2). Here the meaning of nontrivial is
that the velocity vectors are not given by tangent vectors at the joints to some movement
of the whole framework as a rigid body. To avoid a detailed discussion of the issue of
trivial velocity assignments, for the remainder of this chapter we consider only planar
frameworks for which two joints joined by a bar are thought of as fixed (where, of course,
we assign zero velocity to these two joints), Such a framework is infinitesimally rigid if

(p—q)- (p'—q') =0 for every bar pq of the framework implies every p’ = 0,

Figure 1.2

After fixing two joints joined by a bar in Figure 1.1, it is very easy to check that

the triangular framework is infinitesimally rigid while the bent arm is not (and thus is
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said to be infinitesimally flezible). As one might expect, infinitesimally rigid frameworks
are rigid since if a framework cannot move even “infinitesimally”, it‘surely is not able to
actually move. (Note that this rather dogmatic assertion is not a proof! Chapter 2 gives
three proofs of the important fact that infinitesimal rigidity implies rigidity.) However,
there exist rigid but not infinitesimally rigid frameworks so the two notions are not
equivalent. Perhaps the simplest such framework is shown in Figure 1.3 where the two
end joints have been fixed. (This example violates our convention that the two fixed
joints be jovined by a bar. One can arrange things so that the convention is honored
by creating an infinitesimally rigid “truss” connecting the joints and fixing two adjacent
joints in the truss. This is illustrated by the dashed lines in Figure 1.3.) However, the
important issue is that a nonzero velocity vector satisfying Equation (1.1) can be assigne;d
to the middle joint (as shown by the arrow in Figure 1.3) and thus the framework is
infinitesimally flexible. But clearly this “infinitesimal motion” does not extend to an
actual motion since the two bars have fixed length when rigidity is the issue. Hence the

framework is rigid.
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Figure 1.3

Figure 1.4 shows three frameworks that are combinatorially the same since each
is a realization of the same graph - namely the graph K33 which consists of two sets
of three vertices with each vertex in one set is joined by an edge to all three vertices

in the other set. Among other things, interest in K3 3 stems from the fact that it has
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no triangles, The framework in (a) is flexible (and hence infinitesimally flexible), (b) is
rigid but not infinitesimally rigid, while (c) is infinitesimally rigid. Incidentally, since
our frameworks are really mathematical rather than physical objects, we steadfastly
jgnore any mechanical problems that may arise when bars cross or overlap one another,
By considering first the (orthogonality) constraints imposed by Equation (1.1) on joints
which are connected by bars to the two fixed joints, it is not difficult to see that (b) is
infinitesimally fexible and (c) is infinitesimally rigid. Showing that (a) is flexible and (b)

is rigid requires some geometrical ingenuity.

(a) (b) (c)

Figure 1.4

€

Exercise 1.1. Establish these claims.
Incidentally, doing this exercise will suggest to the reader that infinitesimal rigidity
is a good deal more tractable mathematically than rigidity. Much of the book will

reinforce this impression!



1.2. Historical Lines of Development.

Since the nineteenth century scientists, engineers, architects, and mathematicians
have formally studied the geometry of rigi'd structures in a variety of contexts employing
an incredible assortment of names — pin-jointed trusses, linkworks, mechanisms, frames,
linkages, framed structures, and others. But the origins of the subject are surely much
older than a few hundred years. As soon as our ancestors began to construct shelters
and assemble tools, questions of rigidity and flexibility in a general sense, not tied to
the specific context of frameworks, arise. One sees traces of an analytical approach in
the works of Archimedes and Leonardo da Vinci. The appearance of the connecting-
rod and crank mechanism late in the fourteenth century and the shift from the arch to
the wooden truss in bridge-building and architecture during the sixteenth century are

specific examples of important historical developments before the nineteenth century.

Nevertheless, the nineteenth century represents the veritable golden age of the ge-
ometry of rigid structures; the emergence of three distinct lines of development can be
clearly discerned during this century. One arose out of advances in the technology of ma-
chines and mechanisms that accompanied the industrial revolution and led to progress in
the understanding of flexible frameworks. Examples of the effects of the industrial revo-
lution on the study of flexibility for frameworks range from the attempts of James Watt
to find a mechanical device that moves in a straight line as part of his improvements
on the steam engine to a visit of P.L. Chebyshev to England in 1852 which aroused hisé’ P,ou el
interest in the same problem. (Chebyshev polynomials are said to be a by-;;roduct of C:‘ “ l’-,
this quest for rectilinear motion!) Perhaps the nineteenth century culminatién of this

line of development was the publication in 1875 of the classic work in the kinematics of

mechanisms, Theoretische Kinematik, by Franz Reuleaux.

Another line of development connects the phenomenal growth of railroads in Europe,
Russia, and the United States during the nineteenth century to dramatic progress in the

infinitesimal rigidity of frameworks. Railway bridges, fabricated from iron or wooden



trusses, were at the center of these advances and the basic problem was the determination
of the way in which an infinitesimally rigid framework regolves external forces (or loads)
by the formation of forces of tension and compression in the bars of the framework.,
Such considerations lead directly to the notion of “static ‘rigidity” for frameworks, a
notion which turns out to be equivalent to infinitesimal rigidity. Graphical statics, which
encompasses a variety of geometric techniques for determining these internal forces of
tension and compression, was developed by Rankine, Culmann, and Cremona, all of
whom combined engineering experience (often on the railroads) with geometrical insight.
Moreover, there was a growing recognition during this time of the important role that
projective geometry plays in infinitesimally (or statically) rigid frameworks. Our first
glimpse of this connection is provided by Figure 1.4; the infinitesimal flexibility of the
frameworks in (a) and (b) occurs because the joints of K33 in these two realizations lie
on conics. This line of development culminates in the work of James Clerk Maxwell on

stresses, reciprocal figures, and projections of three-dimensional polyhedra.

However, the heritage of the subject lies not only in these intensely practical ques-
tions from statics and kinematics — there is also a purely geometrical line of devélopment
that passes from Euclid through Cauchy in the early nineteenth century to the present.
The story begins with Euclid’s definition of equal and similar (i.e., congruent) solid fig-
ures as those with corresponding faces congruent and arranged in the same way. Does
this definition really guarantee that one of the solid figures can be made to coincide
with the other by a distance-preserving transformation of three-space? It does not for
nonconvex figures, but in 1813 Cauchy proved that convex polyhedra with congruent
faces arranged in the same way are themselves congruent. While Cauchy’s is really Ls'n f
a uniqueness theorem, its implications for the rigidity of surfaces are immediate since /iy "
it clearly gives the rigidity of convex polyhedral surfaces with rigid faces hinged along - Jse H[
common edges. Cauchy’s theorem has inspired analogous uniqueness and rigidity theo- yﬂ 4

rems for convex surfaces with varying degrees of smoothnes7 often involving techniques Mmj,,-;
Mc( Jla ko?;m,,{/,”_ﬁs
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reminiscent of Cauchy’s. Even more recently, Fuller’s geodesic domes and tensegrity
frameworks (which, in addition to bars, allow cables providing an upper bound for the
" distance between a pair of joints and carrying ohly forces‘of tension) are examples of
developments along this geometncal line. Note that replacmg the two bars in Figure 1.3
by cables gives a rigid tensegrity framework but replacing these bars by struts (which
are compression members providing only a lower bound for the distance between pairs of
joints) leads to a flexible tensegrity framework. It is interesting to note that recent appli-
cations of tensegrity frameworks to circle and sphere packing problems rely on tensegrity

frameworks involving struts.



| 1.3. Current Trends.

Chapter 2 develops in detail (with many examples) the fundamental concepts of the
geometry of rigid structures and, in a sense, the remainder of the book applies this basic
theory. Three threads can be seen running through current work on the geometry of
rigid structures and, as expected, these themes are reflected in the organization of this 4/67 %f
book. One is combinatorial, another projective, and the third deals with convexity.COf o He

s h Come D gl
course, in some chapters there is considerable interplay between several themes and in (. M

some cases our classification seems (and is) rather arbitrary. 0’ 4:’ ’
"
The convexity theme, which obviously grows out of one of the historical trends, is O,w
&(/9 4,

most clearly represented by the chapter on the rigidity of frameworks given by convex
surfaces. But, as was suggested in the discussion of the geometrical line of development,
convexity plays a central role in much (although éertainly not all) of the material in the
tensegrity chapter. Perhaps less clearly this thread can also be seen running through the

chapter on sphere and circle packing.
f (u-nu € —

The projective thread, also the direct outgrowth of an historical trend, is obviously
the focal point of the chapter on the projective geometry of frameworks. However, the
chapter on frameworks given by complete bipartite graphs (of which K3 3 is an example)
is substantially projective as is the chapter on Maxwell’s work on projected polyhedra

and reciprocal diagrams.

The final theme, namely the combinatorial one, has gained prominence only since
1975. Thus some discussion of its nature seems in order. Given a graph, one can
realize it as a framework in some Euclidean space in many v;ays. For instz;nce, three
planar frameworks with K3z 3 as their underlying graph appear in Figure 1.3. These
frameworks show that it is not the case that every realization of a given graph in a
given Buclidean space behaves the same from the point of view of, say, infinitesimal
rigidity. Do “most” realizations behave the same? They do. Every graph has a typical

or generic classification as infinitesimally rigid or infinitesimally flexible in each Euclidean



10

space. In the case of Ka3, one notices that the location of the joints in (a) and (b) of
Figure 1.3 seem very carefully contrived and one suspects (correctly) that, in some sense, V
(c) represents the usual behavior of K3 3 in the plane. Thus K3,3 is said to be generically
rigid in the plane. The chapter on generic rigidity seeks purely combinatorial or graph-
theoretic characterizations of this generic classification. The chapter on grids deals with
frameworks that exhibit a high degree of regularity (such as grids of squares or cubes)
and provides graph-theoretic characterizations of infinitesimally rigid grids. Incidentally,
matroid theory appears (rears its ugly head?) in both these chapters. The chapter on
polyhedral combinatorics deals with applications of the rigidity of frameworks to the

study of combinatorial and geometric properties of d-polytopes.



