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10.1 Introduction.

‘Throughout this chapter,' the word tensegrity is used in a
broad sense, to describe any frameworks with cables, struts and
bars. Over the last 30 years, such jstructures have appeared in many
experimental designs, and been thé subjebt of much speculation.
Snelson (1973) describes his rigid masts built, during the 60's, with
an envelope of cables and vertex—'disjoint bars inside, forming
discrete versions of a balloon. 'Emmerich (4966) describes other
early structural experiments with .s'uch patterns. These tensegrity
frameworks (tension + integrity) were popularized by Buckminster
Fuller (1975) as lightweight rigid forms, often with fewer members
than an infinitesimally rigid bar framework. For a more current
engineering summary of these étructures see Callidine (1978) and
Motro (1983).

*“Work supported, in par, by grants from FCAR (Québec) and NSERC
(Canada)



FIGURE 10.1.

Pugh (1975) gives detailed instructions for constructing sorne

basic examples. In these models, the cables are pulled tight around
fixed bars, forcing the configuration into a position of a minimum,
or at Ieast..a local minimum, of energy. The resulting self-stress,
with tension in the cables and compression in the bars gives a
remarkable:, but typically not infinitesimal, rigidity.

Working from such experifnental evidence, Griinbaum&Shephard
(1975) offered some stimulating conjectures about frameworks
with cables, in the plane and in space. This class of examples and
these specific conjectures motivated a series of mathematical
studies of tensegrity frameworks over the last decade.

Chapters 2 and 3 presented the basic definitions of rigidity,
infinitesirpal rigidity and static rigidity for tensegrity frameworks.
The basf¢ result of chapter 2 showed that infinitesimal rigidity
implies rigidity for tensegrity frameworks. However other basic

facts, such as the equivalence of static and infinitesimal rigidity,



were only provided for bar frameworks. In this chapter we will
complete the basic pattern of results for infinitesimal rigidity and
rigidity of tensegrity frameworks. In chapter 16 we will describe
the more subtle global rigidity, and second-order rigidity for
tensegrity frameworks, building upon these basic results. These
results will also be the foundation for the results of chapter 15 on
rigidity ans sphere packing.

Throughout this chapter, and chapter 16, we will encounter a
principal theme: the intimate connection between the the mechanical
rigidity of a tensegrity framework, and the patterns of the proper
self-stresses of the framework, which are have only tension in the
cables and compressions in the bars.

This connection appears implicitly in the equivalence of
infinitesimal rigidity and statical rigidity for tensegrity
frameworks (section 2). We draw out the explicit connecfion as a
corollary which we call the "first-order stress test’. The
connection also forms an explicit part in the characterization of
static rigidity of a tensegrity framework from the static rigidity of
the underlying bar framework, with bars replacing all cables and
struts, and the self-stresses of this underlying framework (section
3).

In section 4 this characterization is used to check the
infinitesimal rigidity of a number of basic examples of tensegrity
frameworks which are used throughout the rest of the book. The
core of the techniques used involves tracing the sign pattern of the
self-stresses in the new frameworks, when we modify the

framework by: reversing cables and struts; projective



transformations; exchange on two subframeworks; inserting
crossing points etc.. These techniques for infinitesimal rigidity are
.essential for the effective use of rigidity in the analysis of the
density of sphere packing, which is described in chapter 15.

In section 5, we show for a framework G(p) ata fully regular
point p, rigidity is equivalent to infinitesimally rigid. Althought
these infinitesimally rigid realizations form an open set in RV, the
dependence on the sign of the self-stresses means they will not, in
general, be dense in Rvd. We also show that for the special class of
affine infinitesimal flexes, an infinitesimal flex is equivalent to a
finite flex. To understand the statics of rigid, but infinitesimally
’flexible, tensegrity frameworks, we need to use energy functions
which attain at least a local minimum at G(p). These are introduced
in section 7 to show that every rigid framework with at least one
cable or strut has a proper self-stress. Such energy functions also

form a basic theme of chapter 16.

10.2 Infinitesimal Rigidity of Tensegrity Frameworks.

For clarity, we partition the edges of our graph into three
disjoint classes — the edges E. for cables, E, for bars and E, for

struts, creating a signed graph G=(V:E_,Eo,E,) . In our figures,
cables are indicated by dashed lines, struts by double thin lines, and
bars by regular thick lines (Figure 10.2). Some authors allow the
cables and struts to overlap, and replace each bar by a cable and a
strut on the edge (see section xx.7). We will stick with our

convention throughout this chapter.



FIGURE 10.2.

We recall some basic definitions from chapters 2 and 3.

DEFINITION 10.1: Atensegrity framework in d-space ‘G(p) is a
signed graph (V;E.,Ey,E.), and an assignment pe RAv such that p#pj
if {ije E=E_UE,UE,. The members in E. are cables, the members
in E° are bars and the members in E, are struts.

An infinitesimal flex of a tensegrity framework
 G(p) is an assignment p': V-Rd, of velocities p'(vj)=p'; to the
joints, such that for each edge {ijle E (Figure 2E)

(PP (P'|-P')<0 for cables {ijle E.

(PirPj)(P'yP")=0 for bars  {ijle Eo

(Pi-Pj)(P'-p")20 for struts {ijle E,.
An infinitesimal flex p' is trivial if every there is a skew
symmetric matrix S and a vector t, such that p'= Sp; +t, for all

vertices V.



A tensegrity framework G(p) is infinitesimally rigid if every
infinitesimal flex is trivial, and inﬁnitesimally fleiib_le"i 7
otherwise.

An equilibrium load on a tensegrity framework  G(p)
is an assignment F:V-Rd, or F=(...Fj...)e Rdv such that for each

trivial infinitesimal flex p'=(...,Pj..-)€ Rdv, F.p'=0. A resolution
of an equilbrium load F=(...,Fj,...)e Rdv by a tensegrity framework
G(p) is an assignment of scalars to the edges oe R®, such that ;20
if {i,jjeE. and ;<0 if {ij}e E,, and for each vertex i (Figure
2B,C): |

2 oj (PP +F; =0 (sumover j with {ije E= E.UE,UE,).
or Yo Fjj+ F=0 (sum over {i,jjeE).
A tensegrity framework is statically. rigid if every equilibrium
load is resolvable.

A self-stress on a tensegrity framework is a

resolution of the zero equilibrium load 0 =(...,0,...) -i.e. an
assignment o of scalars to the edges such that ;20 if {i,j}e E.
and ;<0 if {i,j}e E,, and for each vertex i:

" So;(pp) =0 (sumover j with {ijleE= ELEQUE,).
A self-stress is proper if some o;®0. A self-stress is strict if
w;>0 for all {ijje E. and ;<0 for all {i,jljeE,.

As expected, infinitesimal rigidity and static rigidity coincide
for tensegrity frameworks. We will make particular use of the
special gquilibrium loads

Fij=(0,...,O.pj-p;,o,...,O,pi-pj,o,...,O)

for any pair of joints in the frameworks. Intuitively the framework
G(p) does not resolve the load Fik if and only if the framework can



move, at least infinitesimally, to decrease this distance when the

force is applied (Figure 10.2 D,E).

‘THEOREM 10.2. Roth&Whiteley (1981) A tensegrity framework in
d-space is infinitesimally rigid if and only if it is statically rigid.

Proof. Given a tensegrity framework G(p), we define the set of
basic loads "

F+ = {~Fjj | {i}e E.UEo } U { Fyj| {ijle EouE, )
The equilibrium loads resol'v'ed by the framework can be written as
positive linear combinations of these basic loads:

L =-Zs wsFs = -Z{n,ie E+;JEo lohil Fri - Zij,kje E-uEo Ojk Fik = ZokFik
where all the ay in the final sum are positive. In the language of
convexity theory, these positive _l'i'near combinations of F+ form a
closed convex cone in Rvd: ,

L= {L | L =XxayFx,a>0}

(The limit of such positive linear combinations is another positive
combination, and any convex cémbination BL1+al2, «,B20, is another
positive combination.)

We also have a dual cone

L*={ue RV |ulL<0 forall Lel}
={ue Rvd| uF;20 for (ijeE., u.Fj =0 for (ij)eEo,

u.F;<0 for (ijeE,}
={ue RYI| (p-p).(ui-u)s0 for (ij)eE., (Pi-pj-(ui-uj=0 for
(ij)e Eo, (P-Pj)-(ui-up)20 for (ij)e E,) (1)

This set is, of course, the infinitesimal motions u=p' of G(p.). It is

a simple exercise to check that this set and the subspace of trivial



infinitesimal motions are closed convex cones, with the apex at the
origin.

If the framework is not statically rigid, there is an
equilibrium load L° which is not in this convex cone. Therefore, by
a standard result on convex sets [Rockafellar (1970)] applied to such
cones through the origin, there is a hyperplane p' in Rvd such that
p'.LT < 0 for all loads in L, and p'.L° >0. Since each trivial motion
satisfi.es'. u.L< 0 for all equilibrium loads, this p', with p'.L° >0,
is a nontrivial infinitesimal motion. We conclude that the
framework is not infinitesimally rigid.

._Conve'r.sely, i the framework is not infinitesimally rigid, by
equation 1 there is an nontrivial infinitesimal motion p', with p'.L<
0 for all Ioad_s LeF+. There is a hyperplane L° which separates
this motion from the closed convex cone of trivial motions: p'.Lo>0
but u.L°s' 0 for all trivial infinitesimal motions. Since both u and
—-u are trivial motions, we have u.L%= 0 for all trivial infinitesimal
motions. Thus Lo is an equilibrium load, and p' separates Lo from

the resolved loads. We conclude that G(p) is not statically rigid ]

In this proof, we have implicitly shown that the set of
infinitesimal motions of any tensegrity framework, and the set of
resolvable loads are dual cones. At the center of this duality is a
connection between the edges which are changed by infinitesimal
motions and the edges which participate in proper self-stresses. We
call the follwing corollary the first—order stress test. In
chapter 1'6.,we will presént an extension which we call the

second—-order stress test.



COROLLARY 10.3. G(p) has a self-stress with w0, for an edge
(i,k)e E_UE,, if and only if every infinitesimal motion p' of G(p)

- satisfies (Pj~Pk)-(P-P'k)=0.

A
A Proof. (i) Assume that wp;> 0, for a cable (h)eE_. For any
infinitesmal motion p', and any proper self-stress © we have:
Yojk(PPk)= 0. On the other hand we have:

mjk(pj-pk).(p'j—p'k)so for each cable;

o)jk(pj-pk).(p'j-p'k)so for éach strut;

and mjk(PrPk)-(P'rP'k)=0 for each bar.

Thus T ojk(Pj~Px)-(PPk)<0 if @hi(Ph=Pi)-(P'h—P')<0 Since wp;>0,
we conclude that (pp—P;).(P'h=P")=0.

A similar argument works for struts.

Conversely, assume that for some cable (k) ©K=0 for all
seli-stresses of G(p). This means that Fjx is not in the convex cone
Lr. By the proof of Theorem 10.2, there is an infinitesimal motion
pj which makes pj'.Fyk>0, or (Pj~Px)-(Pjk’Pjk'k)<0- 0

One form in which we use this stress test is to use
infinitesimal motions to change the lengths of all unstressed
members of a tensegrity framework. We call the set:

A ={ (jk)e E_UE, | =0 for all proper self-stresses of G(p) }

the open members of tensegrity framework

COROLLARY 10.4. There is an infinitesimal motion p' of G(p)
such that (pj-Pk).(P'~P'k)<0 for each open cable, and with

(pj-pk).(p'j—p’k)>0 for each open strut.
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Proof. By Corollary 10.3 we have such an infinitesimal motion for
each cable in A and a similar infinitesimal motion pjk" for each

. strut in E*, (Pj~Pk)-(Pjkj-Pjk'k)>0 or Pj«’-Fjk<0. If we add up all
these infinitesimal motions over A, we have, for each cable:
Fik-(E(hijee* (P'h)) = Fik-Pjk'+Z(n,i=(.k)Fik-Pni’ > 0+0 =0.

A similar inequality holds for each strut, and we are finished.[]
10.3. From Bar Frameworks to Tensegrity Frameworks.

There is a simple connection between the static rigidity of a
tensegrity framework G(p) and the static rigidity and self-stresses
of the induced bar framework G(p) on the same joints p and the
underlying unsigned graph G=(V:E) (i.e. all the members become

bars).

THEOREM 10.5. Roth&Whiteley (1981) For a tensegrity framework
G(p), G=(V;E.,Eo,E,), the following are equivalent:

(i) G(p) is statically rigid;

(ii) G(p) has a strict self-stress and the induced bar framework

G(p) is statically rigid.

Proof: Assume that G(p) is statically rigid. Since G(p) has the
same equilibrium loads, and carries all the resolutions of G(p), it is
also statically rigid. For any edge ({i,jleE., the load -Fj IS _ —~
resolved by the tensegrity framework, using "proper scalars” h\'c_oy/‘
-Fjj +Zhloy Fx =0. This defines a proper self-stress on the
tensegrit)} framework which is non-zero on this member.  Similarly,
for any edge {h,}eE,, the load Fp; is resolved by the tensegrity

framework, defining a proper self-stress Fpi+Zjk MayFk =0.- The



sum of these self-stresses will be the strict self-stress on the
ténsegrity framework. ,

Conversely, assume that G(p) ‘has a strict self-stress Bk
and the induced bar framework G(p) is statically rigid. Any
equilibrium load F has a resolution F+XojkFj =0 on the bar
framework. If we add a positive multiple of the strict self-stress
to this, we have

F+ZojkFk +aZojkFj =0 or F+Z(opk+aBk)Fik= 0.

For a sufficiently large o, each (wjk+caBjk) Wwill have the sign of

Bjk- This gives a resolution of the load by the tensegrity framework,

as required. : 0

This characterization is used in two directions:
(i) Given a tensegrity framework, we check the infinitésimal
rigidity of G(p), and then prove that there is a strict self-stress.
(ii) Given an infinitesimally rigid bar frameworks with extra
members and a nontrivial self-stress, we define the cables and

struts of a tensegrity framework by the signs of the self-stress.

Recall that a circuit is a framework which is a minimal
seli-stressed subframework, and will have a self-stress which is
non-zero on every member. Therefore any generic realization of a
generically rigid circuit will have a single self-stress which is
non-zero on all members. If this self-stress is used to assign signé

to the members, we have a statically rigid tensegrity framework. |

EXAMPLE 10.6. By Laman's theorem (Theorem 7.xx ), generic plane

circuits are characterized by e=2v-2 and e's2v'-3 for proper



subsets E' of edges. Simple examples include the bipartite graph
'K3,4 and Ks 3 plus one bar (see chapter 7 and see Exercise 10.4). In

generic position for some pattern of cables and struts following the
single stress, these generic circuits will be infintesimaly rigid with
e.+e, = 2v-2.

In general, an infinitesimally rigid plane tensegrity framework
with at least one cable or strut must have e22v-2. If all members
are cables and struts in an infinitesimally rigid tensegrity
framework, and e.+e, =2v-2, we must have e' <2v'-3 for proper
subsets of edges, and the framework is a circuit realized with a

single strict self-stress.

The pattern of cables and struts in a plane tensegrity
framework can require e >2v-2 to. keep infinitesimal rigidity.
Figure 10.3 shows a few examples. It is a simple exercise to create
minimal infinitesimally rigid plane tensegrity frameworks:
frameworks which are not rigid if even one member is removed, with
e.+e, =3v-6 (Figure WS_& any number of
joints in @Ga'éition. If we put the joints in special position,
this count can be raised to e.+e,= 4v-10. Figure C shows an
example with v=5, but this can be extended with any number of new

joints at the position p.

P

!
- et 7
4

—_—
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. FIGURE 10.3.

If a minimal infinitésimally rigid- plane tensegrity framework

has its joints in generic position, and every proper stress is
non-zero at each vertex, then e=2v-3 (see Exercise 10.8)
In chapter 2, the followin‘g"- upper bound was given for the

number of members in a tensegrity framework:
e. + e, +2ey S 4v-6.

If the there are no bars, this gives the upper bound e+ e, < 4v-6. TL\A L,’

We conjecture that the examples of Figure 10.4 B, with c.,.-/l"f‘['/
e_+e,=4v-10 give the sharp upper bound for minimal infinitesimally aud .\47:“’\5‘
rigid tensegrity frameworks. Further, we conjecture that for g«:/‘f‘cz
vertices in @al position e.+e,=3v-6 is the sharp upper bound. L\M 0’3 7

Finally, we note that for infinitesimally rigid plane tensegrity
frameworks with no bars, the sharp minimum \éaal e for e,, or for
e, is 2, as illustrated by the examples of Figur@

b2

There is no characterization of generic circuits in 3-space

(see Tay 1986)). However, examples of generic infinitesimally rigid
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circiuts include Ksg and Kg 7 (see chapter 7) and any 4-connected

triangulated sphere, with one added diagonal (see Figures 10.6, 10.8
and Whiteley (1985a)). |

B FIGURE 10.4.

For minimal infinitesimally rigid tensegrity frameworks in
3-space with at least one cable, we have e23v-5. Modifying the
plane examples, we can create minimal infinitesimally rigid
tensegrity frameworks with e=4v-10, with the joints in general
position (Figure 10.4 A), and e=6v-21 with the joints in special
position (Figure B). These should be compared with the upper bound:
e+ e, +2e, < 6v-12 given in chapter 2.

Finally we note that in 3-space there are generic circuits
which are not infinitesimally rigid (recall the two bananas of
Example 2.xx). In generic realizations, these frameworks have a
nontrivial self-stress, which leads to a tensegrity mechanism - a
tensegrity’ framework which moves as a mechanism with a constant

self-stress throughout the range of motion.
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EXERCISES.

10.1. In a tensegrnty framework on the line, an oriented polygon is
‘a closed polygon such that all members traversed right (left) are
struts and all members traversed left (right) are cables. Show that
a tensegrity framework on the line with no bars is infinitesimally
rigid if and only if every pair of joints is contained in an oriented

polygon (compare with section 5.7).

10.2. If a minimal infinitesimally rigid plane tensegrity framework

has its joints in generic position, and every proper stress ns non-

zero at each vertex, show that e=2v-3 7 = Qv-4 (. s
SAW( syrcen f? QA ’/ 5 07/
a e
10.3. Generating Infinitesimally Rigid Tensegrity e}%
u
Frameworks _

)
In sectiorh( we describe some standard examples of
infinitesimally rigid tensegrity frameworks and explore methods for
transforming or combining infinitesimally rigid tensegrity

frameworks into new infinitesimally rigid tensegrity frameworks.

EXAMPLE 10.7 Consider the plane convex quadrilateral, with two
diagonals (Figure 10.5). As a bar framework, this is clearly
statically rigid, Since e=2v-2, it contains a self-stress . At each
corner, there are 3 edges with distinct directions, so the Iocal
equilibrium is unique at this corner, up to a scalar. The local
equilibrium gives the two boundary edges one sign and the interior
edge the opposite sign. If we choose one boundary edge to have

tension, the rest of the boundary is tension and the interior members
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are compression (Figure B). This shows that the tensegrity
framework with cables on the boundary, and struts in the interior is
also statically, or infinitesimally rigid (Figure C). On the other
hand, we can choose compression for one boundary edge', reversing
the signs of all members in the self-stress, and prove the static

rigidity of the tensegrity framework in Figure D.

o) = ¢
f 1S
l \ . /
\\ V4
/
I\\
/ AN
T , / \
O o) — ®i
—>
A B D
FIGURE 10.5.
In general, the + and - signs on the edges of a proper |
( 413 S self-stress at a vertex cannot be separated by a hyperplane. If such
9 a hyperplane H did exist, with normal n towards the + side, the
o

equilibrium  0=(Zw; (P;-Pi)).N would break up into the sum of two

positive terms X aj ((Pi-Pj)).N for the + and for the - sides, which

is a contradiction.

REMARK 10.8. The reverse of a tensegrity framework G(p),

G-(p), is the tensegrity framework on the same joints, with the
signed graph G—=(V:E,,Eq,E-) which interchanges cables and struts.

G(p) and G-(p) have the same underlying bar framework, and a

strict self-stress ® on G(p) reverses to a strict self-stress -0 on

G-(p). Therefore a tensegrity framework G(p) is statically 'ﬁgid if
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and only if the reverse framework G;(p) is statically rigid. We will
see below that this equivalence does not extend to general rigid |
frameworks. In fact, for some classes of tensegrity framewo::k,
G(p) and G-(p) are both rigid only if they are infinitesimally rigid.

FIGURE 10.6.

EXAMPLE 10.9. Consider a convex wheel formed by a-convex

polygon and one interior vertex (Figure 10.6).  This triangulated
polygon is infinitesimally rigid as a bar framework. With e=2v-2, it
has a one-space of nontrivial self-stresses. At the exterior
vertices, the three edges require one sign for the boundary edges and
the opposite sign for the interior edge. This gives a strict
self-stress for all edges, proving the infinitesimal rigidity of the

two tensegrity frameworks in Figures B and C.
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FIGURE 10.7.

EXAMPLE 10.10. Consider a Grinbaum polygon built on a convex
k—gon of struts k=24, with k-3 interior cables joining joint pq¢ to

all non-adjacent joints, and a cable joining P2 and pk (Figure
10.7). (For k=4 this is the convex quadrilateral with the two
diagonals.) As before, with edge {2k} removed we have a
triangulated polygon which is statically rigid as a bar framework
(Figure B). With the added member, the framework has a nontrivial
self-stress. At the 3-valent joints pa,...px the separation property
shows that the boundary edges have one sign (+) while all interior
edges have the opposite sign (-), as required for the tensegrity

framework of Figure C.

EXAMPLE 10.11. Consider the tensegrity framework in Figure
10.8A. Removing one bar leaves a 2-simple graph (Figure B), so G(p)
is infinitesimally rigid. If we add the two self-stresses on
subframeworks G1(q) and G2(r) shown in Figure C, then
appropriate scalars give a cancellation on the common edge {1,2},
leaving a proper self-stress for G(p). Thus G(p) is infinitesimally

rigid. We call G(p) the tensegrity exchange of G'(q) and G2(r).
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If we choose the different sign pattern of Figure 10.1, the tensegrity
graph is not infinitesimally rigid, or even rigid, as shown in Figure
1D.

~ As this examples illustrates, the qualitative pattern Ef a
convex polygon of struts with cables in the interior, which often
appeared in the preceeding plane examples is not sufficient to |
guarantee rigidity. Chapte( 16 will give an extensive analysis of
such patterns.

This example also illustrates the following general technique.

e H

FIGURE 10.8.
PROPOSITION 10.12. Roth&Whiteley (1981) If G'(q) and G2(r)
are two plane statically rigid tensegrity frameworks sharing at
least two joints py and pp, with (1,2)eEl, and (1,2)e E2,, and all

other common members of G'(q) and G2(r) agree in sign, then the
tensegrity framework G(p) with V=V1uV2, E_=E1_UE2_-{(1,2)},
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E°=E1°uE2o, E,=E1,UE2,-{(1,2)} and with the same positions for the

joints, is statically rigid in the plane;

Proof.  Since the induced frameworks G'(q) and G2(r) are
infinitesimally rigid with a nontrivial self-stress on (1,2), they
are infinitesimally rigid with this bar removed. Therefore their join
on at least the two joints, G(p), is also infinitesimally rigid

(Chapter 3).  If we add the strict self-stresses on G'(q) and G2(r)
with @lyo=1 and w243=—1 we obtain a strict self-stress for G(p).

0

EXAMPLE.10.13; Consider a tetrahedron with one interior vertex,
forming the complete graph Ks (Figure 10.9 A). With one edge
removed, this is a 3-simple, isostatic bar framework (recall chapter
2). Therefore the full bar framework contains a 1-space of
nontriviai‘ self-stresses. At each exterior vertex, this self-stress
must involve all 4 members, and no plane can separate the tension
members from the compression members. Thus the 3 boundary
members have one sign, and the interior member has the opposite
sign. This boundary sign determines all other boundaryksigns as the
same, and all interior members are the opposite. Thus the two

frameworks in Figure B are statically rigid in 3-space.
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FIGURE 10.9.
EXAMPLE 10.14. Consider a triangular bipyramid, with an added
member from the top to the bottom (Figure 10.9C). Without the
added .member this triangulated convex sphere is isostatic, by
chapter 4. With the added member in compression, there is a single
seli-stress. At the top and bottom vertices the three boundary
members must be in tension, since we can never separate the two
signs of a self-stress by a plane. At each vertex of the triangular
waist, the self-stress must show 4 sign changes to avoid separation
(recall the index lemma from chapter 4). The equator is therefore in
compression. This proves the infinitesimal rigidity of the

tensegrity framework in Figure D.

We can move from Example 10.14 to Example 10.13 by a
projectiove transformation, where the new plane at infinity passed
ho'rizontally below joint a. As we saw in chapter 3, this projective

transformation does not preserve infinitesimal rigidity, unless we
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switch  cables and struts which are cut by the image of the plane at

_infinity, or equivalently, were cut by the plane being sent to infinity.

DEFINITION 10.15. Given a tensegrity framework G(p), a
permissible projective transformation is a projective
transformation T of d-space which takes all points Pp; to finite

points T(pj)=q; For a permissible projective transformation T, the

projection of the tensegrity framework is T(G(p))=TG(q),
where TG=(V;TE.Eo, TE,) with TE.,TE, created from E.,E, by

replacing every cable (i,j of G (respectively, strut (ij) of G), for
which the line segment [q;,q;] intersects the image of the

hyperplane at infinity under T, by a strut (respectively, cable).

THEOREM 10.16. Roth&Whiteley (1981) A tensegrity framework
G(p) is statically rigid if and only if each permissible projection

TG(q) is statically rigid.

Proof. By Theorem 3.xx , G(p) Iis infinitesimally rigid if and only if Yo
T(G(q))= G(T(p)) is infinitesimally rigid. It remains @II the

correspondence of the strict self-stresses which was presented in

chapter 3.

We recall that the projective transformation T is the
composition of two maps on the affine coordinates for the points,
where we replace é=(x1,...,xn) by &=(x1,...,Xp,1). We first have an
invertible linear transformation A: (X1,..-.Xn:1) = (¥1:--,¥n:¥Yn+1)i
followed by a homogeneous multiplication D, taking:

D(Y1,--:¥Yn:¥n+1)= (;/Yn+1)(Y1----vYn:Yn+1)= (T(x4,---+Xn),1).



For each joint p; let o; be the divisor used in D. We saw in
chapter 3 that a self-stress (...,®jj...) ON G(p) goes to a
self-stress  (...,2j0®jj,...) ON G(T(p))= _Q(T(p)). Now oj and
ajejo; have the same sign unless the new plane at infinity cut the

line segment ppk. In this case we have aja<0, and we have

switched the member'in TG. 0

As this result empasizes, the infinitesimally rigid
realizations of a signed graph G, with many cables and struts and
few bars, will not be dense in Rdv, We recall the following simpler

result from chapter 3.

PROPOSITION 10.17. For any signed graph G, the set
{ pe RAV | G(p) is an infinitesimally rigid tensegrity framework in Rd}

is an open set in RdV,

Theorem 10.5 shows that the boundaries of this open region
arise in two ways:
(iy The induced framework G(p) becomes infinitesimally flexible,
on an algebraic variety defined by minors of the rigidity matrix of
G(p) (see chapter 11 for these "pure conditions”).
(ii) Some cables or struts drop out of the strict self-stress.
Figure 10.10B,C illustrates such boundary positions for the pattern
in Figure A. If we pass "through" this boundary, the self-stress
returns to all members, but the sign switch on the boundary
members (Figure D,E). Some preliminary study of these sign
switches appears in White&Whiteley (1983), but the general pattern

has not been characterized (see Figure 10.10 and chapter 11).
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FIGURE 10.10.

We close with the spatial analogue of the convex wheel.

EXAMPLE 10.18. If a convex triangulated sphere is built with
cables, and an interior joint is added with struts to all of the
original joints, the tensegrity framework is statica ly rng F The

ro w3
static rigidity Q(p) comes from Cauchy's theoreny plus the
insertion of a non-coplanar 3-valent joint.  The proper self-stress
will follow from Maxwell's theorem in chapter 12. (For the

tetrahdron, this is Example 10. 13)
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EXERCISES

10.3. Prove that a convex k-gon of struts, k24, with all joints p;,

i>2, joined by a cable to one of py or p2 is statically rigid (Figure

' 10.11A) [Roth&Whiteley (1981)].

'FIGURE 10.11
10.4. Prove the static rigidity of the Cauchy polygons (Figure

10.11B) by an inductive sequence of exchanges of the mixed polygons
of Figure C and the smaller Cauchy polygons of Figure D
[Roth&Whiteley (1981)].

10.5. If a plane infinitesimally rigid tensegrity framework is
modified by adding a new joint at the interior crossing point of two
members, splitting these members and preserving the signs (Figure
10.12A), show that the new‘tensegrity framework is also

infiniteéimally rigid.



Pt
FIGURE 10.12 C

10.6. Prove that the altered Cauchy polygons of Figure 10.12B
are infinitesimally rigid, using the exchanges in Figure C, and the
previous exercises [Connelly (1982)]. Note that the added vertices

can be arbitrarily close to the boundary polygon.

—p  p=(L1D)

Y4

pﬁa(x.O)

N
—% p =(l.-1)

FIGURE 10.13
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10.7. For the realizations of Kz 3 +one bar in plane, shown in Figure
10.13, show that the framework is infinitesimally rigid for 1<x<2,

and not infinitesimally rigid for x22.

10.8. Extend Alexandrov's theorem, Theorem 4.x to show the static
rigidity of any convex polyhedron built with bars on the natural
edges and all facial diagonals as cables [Connelly (1980), Whiteley
(1984)].

10.5. Finite Rigidity and Infinitesimal Rigidity.

For convenience we recall the basic terminology, and the three
equivalent definitions of rigidity and flexibility from chapter 2. A
tensegrity framework G(p) dominates the tensegrity framework
G(q), written G(p)2G(q), if: _

lai-qjl<ipi-pjl if (i)e E.; lairajl=IPi-pjl it (ij)e Eos
lqi-q;12lpi-pjl if (ij)e E..

A tensegrity framework G(p) is rigid in Rd if any of these
three equivalent conditions holds:

(i) there is an e>0 such that if G(p)>G(q) and |p-g|<e then p
is congruent to Q.
or (i) for every continuous‘path, or continuous flex, p(t)e RV,
p(0)=p, such that G(p)>G(p(t)) for all 0<t<1, then p is congruent to
p(t) for all 0st<i;
or (iii) for every analytic path, or analytic flex, p(t)e Rvd,
p(0)=p, such that G(p)>G(p(t)) for all 0<t<t1, then p is congruent
to p(t) for all O<t<1.

The basic theorem of chapter 2 saysf
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THEOREM 10.19. If a tensegrity framework is infinitesimally rigid
~ then it is rigid. :

We recall that two of the three proofs given in chapter 2
actually applied to tensegrity frameworks.

The equivalence of rigidity and infinitesimal rigidity of bér
frameworks at regular points also extends. For tensegrity
frameworks we need a slightly stronger assumption. Recall that a
point peRVd is regular for a graph G if :

rank dfg(p)=max {rank dfg(q)| qe Rvd }

A point peRvd is fully regular for a signed graph G if p is
regular for all subgraphs G' of G.

THEOREM 10.20. (Roth&Whiteley 1981) A tensegrity framework
G(p) at a fully regular point p is rigid if and only if G(p) is

infinitesimally rigid.

Proof. Theorem 10.19 gives one direction.

Assume that G(p) is infinitesimally flexible for some fully
regular point p. Each nontrivial infinitesimal flex p’ of G(p) has
(Pi-pj)-(P'-p')=0 for some edges of G. Otherwise p' is an
nontrivial infinitesimal motion of the bar framework G(p), at a
regular point p, which proves that G(p), and G(p), are both flexible.

if (pi-pj)-(P'-P})=0 for all edges of G, we "integrate” p' as
the nontrivial flex of G(p):

) p(t) = p+tp' = (P1+tP'1,....Pv+PYV).
Clearly p(0) = p, and the derivative of [pi(t)-pj(t)[2 at t=0 is

2(pi~-p))-(P'-P")., which is non-zero of the correct sign. Thus for
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K small t, G(p(t)) is dominated by G(p), and all members are changed

in length. This is a nontrivial flex.

~ Assume (pi-P)-(P'-P)#0 for some edges of G, but
(Pi~p)-(P'—P'})=0 for the edges in a minimal set A. Since P is a
regular point of G, dfa has a maximum rank and f1(fa(p)) is a
manifold near p whose tangent space is ker(dfa(p)). Therefore
p'e ker(dfa(p)) is tangent to a smooth path p(t) through p in
=1(fa(p)).  IPi)-Pj(H)I2 =|pi-pj|2 for all t and all {ij} eA, and
IPi(t)-Pj(1)12 <Ipi-p;2 (respectively >) for all {ijle E_-A
(respectively E,-A) for small positive t. This is the required flex. [I

REMARK 10.21. By Corollary 10.4, the set A in this proof is the
set of bars and the members in a maximal proper self-stress. Thus
there is a flex at a fully regular point p which strictly ‘changes the
length of a cable or strut if this member is not covered by a strict
self-stress.
A converse also holds: a member is open in all strict
self-stresses at a fully regular point p if there is a flex which
_ strictly changes the length of the cable or strut (i.e.
é%;(t)—pj(t)ﬂxﬁ;(0)-—pj(0)@ for all t0). Proof. Assume such a flex
{

\_4/1’7 exists. For >0, but close to 0, (pi(t)—pj(t)).(p'i(t)-p'j(‘t))seo. By the

-

first-order stress test, this means that for t>0, but close to 0, the
edge (i,j) has w;=0 for all proper self-stresses.

Since the set of fully regular points in open we can know that
the point p(t) are also fully regular. At all fully regular points q,
we have the same sets of minimal dependences (circuits) in G(q).

Moreover the coefficients of the self-stresses change continuously
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as we move along p(t). If there is a proper self-stress wi{h ;=0 |
at p(0), then such a self stress exists for p(t), t>0. This
contradiction completes the proof. | 0

EXERCISES.

10.9 Show that joining two rigid tensegrity frameworks in k-space
by identifying k+1 affinely independent joints creates a rigid

framework.

10.10(i) Show that a tensegrity framework (with no zero length
edges) is rigid on the line if and only if it is infinitesimally

rigid.

(i) Give an example of tensegrity framework which is rigid on

the line, but flexible in the plane.

(iii) Give an example of a tensegrity framework on the line

which is rigid in the plane, but flexible in 3-space.

10.11. Show that the tensegrity exchange of two plane-rigid
‘ ténsegrity frameworks sharing two vertices a,b, (deleting an
edge {a,b} which is a cable in one and a strut in the other),
creates a rigid plane framework (an analogue of Proposition
10.11).

. 10.12. Give an example of a tensegrity framework G(p) at anon-
regular point which «;=0 for all proper self-stresses, but

G(p) has no flex changing the distance lIPi-Pjll-

10.6. Affine Flexes.
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Beyond these fully regular points, there are other special
pétterns for which an nontrivial infinitesimal flex guarantees a flex.
This is true for frameworks on the line with no zero length bars
(Exercise 10.1). This was also true for the plane grids discussed in
chapter 5. We will see that it holds for pinned frameworks with
pnly struts (chapter 15) and for special patterns on a convex polygon

(chapter 16). We present another basic example.

THEOREM 10.22. (i)l a tensegrity‘framework has a nontrivial
infinitesimal flex p' which is an affine motion p'i=T(p;), then there
is a nontrivial flex p(t)i‘s'T(t)pi'. composed of affine images of p.

(ii) I :a teﬁsegrity'framework G(p) dominates an
non—congruent affine image G(q), q;=T(p;), then there is a nontrivial
affine flex p()i=T(t)(P). '

Proof. (i) Assume that Ap’i : is a nontrivial infinitesimal flex of
G(p). Since trivial infinitesimal flexes are represented by skew
symmetric matrices (recall chapter 2), after a trival mfmntesnmal
flex, we can assume A is symmetnc. Moreover

(P-P)T(P'-P") = (PP TA(Pj-p)) has the correct sign for each
member.

Any symmetric matrix can be made diagonal by an othogonal
transforfnation: D= O4TAO;4. For small t;>t20,tD+I is a diagonal
matrix with positive entries. We can take square roots down the
diagonal to create a diagonal matrix C(t), C(tlk = ViDyy+1, and we
define B(t)=04C(t)O47. We claim that pi(t)=B(t)p; is the desired

path. For each member:

’

a&P?JQ w4

ot l.
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(PP T (Pj(1)-Pi(1) = (P-P)TB(HTB() (P;-P))
=(pj-Pi) T[tA+II(pj~Pi) = t(Pi~P)TA(P~P)) +(Pj~P)T(P;—Pi)-
Since t(pj—pi)TA(pj—pi) has the correct sign for each member,
to>t20, G(p) > G(p(t)) for all t. A is nontrivial if and only if A=0,
which is equivalent to p(t) is not congruent to p for t>0.
(i) We need only show that a non-congruent G(q)<G(p), with q;=Bp;
implies that p'; =Ap;=[BTB-I]p; is a nontrivial affine infinitesimal
flex. Retracing the calculation shows that:

(p;-P) TA(Pj-Pi)=(Pj~Pi) T[BTB-I](pj~p))

=(pj~pi) TBTB(p;~Pi)-(Pj~P) T(Pj—Pi) =laj-qil2-|pj—pil?

Since G(q)<G(p), p'j =Ap; is an infinitesimal motion. This will be
nontrivial if, and only if A=[BTB-I] #0, which is true unless B is a

congruence . 1

In taking square roots in this proof, we made * choices for
each diagonal entry. These choices amount to choosing a reflection

of the dominated realization G(q).

EXAMPLE 10.23 What do these affine mechanisms look like in
3-space? The affine transformation B will define a projective
conic on the plane at infinity uTBTBu=0. The bars directions must
lie on this conic, the cable directions must lie in one component cut
by this conic (or on the conic) and all struts must lie in the other
component.

If the conic at infinity is two lines, then all bars are parallel
to two planes in space, and we have a simple mechanism, which is

illustrated in Figure 10.14 A.
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B

FIGURE 10.14.

If the conic is a projective ellipse, then all bars at a joint
must lie in a cone of directions to this ellipse. The resulting
mechanism can be very complex in structﬁre, but it will contain no
triangles. Figure 10.14 B shows a simple example: two rulings of an
hyperboloi‘d . The affine mechanism preserves these straight lines,
and moves to a new hyperboloid with the same axis. This is a
classic example in 3-space [Larmor (1886)].

We know that infinitesimal motions are preserved by
projective transformations. In chapter 6, we saw the brojective
image of these affine infinitesimal flexes, as special cases of

extended bipartite frameworks.
EXERCISES.

10.13. Show that an affine transformation of the plane which is
not'a congruence preserves distances parallel to at most two

lines.
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10.14. Show that affine transformations of frameworks dp‘ not a{ wan
preserve rigidity, by checking the following three facts:
() the bar framework of Figure 10.15A is flexible;
(i) the bar framework of Figure 10.15B is affine equ:valent to
the framework of Figure A;
(iii) the bar framework of Figure 10.15B is rigid.

A B

FIGURE 10.15.
10.15. Show that if G(p) has an affine infinitesimal flex Pp'i=Ap;j,

and T is an non-singular affine transformation of the space,
then q'=T-1Aq; is an affine infinitesimal flex of G(q) with
q;=Tp;. Show that G(q) has a nontrivial affine flex only if

G(p) has a nontrivial affine flex.

10.16. Show that no plane tensegrity framework with a proper
self-stress and no collinear polygons can have a nontrivial

affine flex.
10.6. Proper Self-stresses and Energy

Any rigid tensegrity framework at a regular point has a strict

self-stress. This fails for some rigid tensegrity frameworks at



singular points. Figure 10.16A shows a rigid plane framework which
does not have a strict self-stress. We will prove that this failure is
very local (Figure B) and all figid tensegrity ﬁ'ameworks with at
least one'cable or strut have a proper self-stress (Figure C), which

 may be zero on some members.

A Y BV C

FIGURE 10.16
To prove this result, and to prepare for the chapter 16, we
introduce energy functions on the tensegrity framework. For each
member we write Lj for the length |pj-pil. Any rigid bar
framework G(p) gives a local minimum at p for the simple energy
function:

H(q) = £ (q7qil2 - IPFPi2 )2=(la;-qil2-(Lj))2 (sum over {ijleE)
since rigidity is uniqueness within some open neighborhood, and any
change of even one length increases the energy. Since this energy is
constant for conguences classes, we can say that H(g) has a strict
minimum, modulo congruences.

Similarly, a rigid tensegrity framework G(p) gives a local

minimum of the energy function:
H(q) = %Zfi(larqi2) (sum over f{ijleE)
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where f;(lq;-qil2) = (laj-qil2-(L;))2 for bars, and the function fj
|s modified to fij(lqj-qﬂ?) =0 for longer struts, with
la;-qil2zlp;-pil2, and fj(larqil2) =0 for shorter cables, with,
Iqrqi]2s[prpil2 (Figure 10.17A). Again this is a strict minimum,
modulo congruences.

In itself, this provides no new information. The trick is to
modifiy the energy functions to get additional information about the
framework.

For example, if we take a rigid framework, lengthen each
strut and shorten the cables by a small anﬁount. then release the
framework to seek an equilibrium, we expect to find a nearby G(q)

with a strict self-stress. The modified functions fj; in the

following proof (Figure 17B) represent this intuitive process.

] fij iat’le/ fij strut fij bar
m ij

2

m i qigj? mij kgl iqi-qjf
A
cable fij strut ] . bar
mi;j .qi'q_j'Z mj k]i'qj'2 m; |qi-qj|2
B
FIGURE 10.17.

LEMMA 10.24. Connelly (1982) Theorem 2. Let G(p) be a rigid
tensegrity framework in d-space, then for each e>0, there is a

q(e)e Rvd such that |p-q(e)l<e and G(q(e)) has a strict self-stress.
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Proof. We modify the energy functions for cables and struts as
shown roughly in Figure 10.16B, to form a sequence of functions
f(n)j converging uniformly to  f;. Specifically, for f(n); ona
cable we 'add 1/n to the quadratic and then splice on a straight line
of siope 2/n ina C! manner on the left end (changing formulas at
the point (Ly+1/n, (1/n) +(1/n)2) where the two equations have the
same slope'). We do a similar operation for struts. If lq-pl< & for
e<t then |f(n)(laail?)-fijlaail@)< 1/n .

For simplicity, we pin doWn one"vertex of the framework po,
to remove translations and assume that all q have the same fixed
joint. We now tie down all congruences, by fixing directions, planes
etc. for joints of p, and keep the same directions, planes etc. fixed

for q, restricting g to the affine span of p. We write this set of
q as Fp. The set Se(p)={qe Fp| |q-p|=¢} is a compact set for each e,

since the restrictions of Fp are preserved by limits, and the set is

bounded. Since H(q) has a strict local minimum at p in this
~ compact set Be(p)={qe Fpl Iq-plse }, for small e: H(Sg) >0 and there

is a minimum value &; >0 for H on this sphere.
Consider the energy functions
H(n)(q) = %Zf(n)j(la;-ail?) (sum over {ij}eE).

For sufficiently large n, and e<1, IH(n)(q)-H(n)(q)] < (1/2)v/n<d, for
all q in B, and (1/2)8¢>|H(n)(p)-H(p)|>H(n)(p). Since the H(n) are
“continuous functions, there is a local minimum for H(n) in the open
set Ng(p)={qeFp | [q-pl<e }. Since the H(n) are differentiable, this

local minimum guarantees a critical point q(n) with [p~q(n)|<e ).

Taking derivatives d coordinates at a time, this gives
0 = VH(n)(q(n)) = (....Zj(f(n)y)(@(n)i-a(n)),...)-
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By our choice of functions f(n)j, (f(n)ij)'>0 for all cables and
(f(n)j)'<0 for all struts. This means that (.o(f(n))"...) i @ strict

self-stress for G(q(n)), as required. ' R |

Connelly (1982) gives a different proof of this theorem, using

more topological arguments, rather than the explicit limits.

THEOREM 10.25 Connelly (1982) Theorem 3. Let G(p) be a rigid

framework with a cable or a strut. Then G(p) has a proper Aoy Z<v¢

self-stress. =7

Proof: Lemma 10.é4 guarantees for each rigid framework, and each
e>0, there is q(g) such thét lq-q(e)|<e and G(q(e)) has a strict
self-stress. Take a convergent sequence of such frameworks
G(q(m)), with striqt.self-stresses o(m), approaching G(p). We
divide each m(m) by |o(m)|, so the sequence stays on the unit
sphere. Therefore a subsequence of these must converge to a
nontrivial © on G(p). The limiting process preserves the
equilibrium equations at the vertices and the non-strict inequalities
of a proper self-stress. Therefore o is the required proper

self-stress on G(p). 0

Note that the self-stress on G(p) may be zero on all cables
and struts. We only know that it is nontrivial and proper.

By the results of chapter 2, any rigid bar framework which is
not infinitesimally rigid also contains a proper self-stress. Can this
self-stress be used to place some cables or struts into the
framework, as we did for infinitesimally rigid bar frameworks?

The following e'xémple shows that this sometimes fails.



FIGURE 10.18
EXAMPLE 10.26. The framework of Figure 10.18 is rigid, with a

self-stress, but the member pq cannot be replaced by a cable or a
strut. With pq ‘removed and the lower triangle pinned, the joint q
traces out a 6th degree curve. We choose a position where the circle
of curvature actually crosses this curve, and placed p at the center
of this circle of curvature. Since the curve of @ and the circle from
p have ,'the same tangent lines, there is an infinitesimal motion, and
a nontrivial self-stress. If pq is a cable, the framework has a flex,
moving to the inside of the circle of cﬁrvature. If pq is a strut,
there is a flex moving to the outside of the circle of curvature. |If
pgq is a bar; there is no flex and the framework is rigid.

This example has a secondjorder flex (recall chapter 4). The

importance of this distinction will become clearer in chapter 16.

EXERCISES:

10.17. ° (i) Use energy functions to prove that for any rigid
tensegrity framework G(p) and any external load Fj there is

lss

/

a nearby position G(q(e)) which resolves Fyl= n,f Yhe s4m* 5

.
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(ii) Use energy functions to prove that for any rigid

tensegrity framework"qu(p) and any external load XZajjFjj o

there is a nearby po:'éitio;h;” G(q(e)) which resolves ZaijFij.
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10.18. Consider a local prolectlve transformatnon T ofa
tensegrity framework G(p) whrch does no cut any member of
G(p) by the new plane at lnfmlty - _ e
(i) Show that T takes.a proper self—stress of G( ) to a
proper self-stress of G(Tp) e
(i) Show that if G(p) rs ngrd the
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