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16 Global and Second-Orjer Rigidity of Tensegrity

Frameworks
Walter Whiteley”
16.1. Introduction.

Previous chapters presented a number of techniques for
verifying the infinitesimal rigidity of both bar frameworks and more
general tensegrity frameworks. ‘These results included the |
corr;spondence between infinitesimal rigidity and rigidity for
various classes of realizations, such as regular points, or affine
motions. However many interest,ing structures are rigid, but not
infinitesimally rigid. For example, chapter 4 introduced
second-order rigidity for triangulations of convex surfaces built as
bar frameworks. We~now return to this general problem: how can
we analyse the general rigidity of tensegrity frameworks, and how
can we generate new rigid structures? |

The experimental rigid structures described in the
introduction to chapter 10 pose these problems in an explicit form.
Grunbaum&'S_hephard (1976) gave some explicit conjectures drawn
from this eviaence, and Connelly (1982) gave some initial results
usihg the global' minima of a simple gﬁergy function. Recently
Gonnelly&Whiteley (1987) combined this work and some recent

engineering speculations [Pelligrino&Calledine (1986)] to give an

* Work supported, in part, by grants from NSERC Canada and FCAR
Québec.



extended theory for the second-order rigidity of tensegrity
frameworks.

In this chapter we will summarize ‘a‘nd connect fhesé_ results.
The basic theme of this chapter is the interaction between
-deformations of the framework (general displacements,
infinitesimal flexes or second-order flexes) and the self-stresses of
the.framework. We emphasize that this connection is purely
geometric. Both the self-stresses and the deformations are
properties of the signed graph and the Vpositio'ns of the joints.

This interaction between self-stresses and deformations can
be recorded by energy functions. The self-stress is used to define
an energy function. If this energy function has a sufficiently strong
local, or global minimum under the allowed deformations, we show
that the framework has a corresponding rigidity. In the extreme
case of second-order rigidity, a number of energy functions may be

used simultaneously to cover all the infinitesimal motions.

The theory remains essentially incomplete. We face the ’ o
y y P l/ﬁm/@
embarasing fact that all of the available methods do not % VS
demonstrate the rigidity of many of the original experimental _ﬂ
structures in space. The analysis of these structures remain a Cop v €C

major task for the students of rigidity.
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In chapter 10 we introduced energy functions to show that a ——

16.2.  Global Rigidity for Spider Webs.

rigid tensegrity framework, with at least one cable or strut, has a
proper self-stress. The basic method extracted at least local

minima of the energy from the rigidity of the framework.



For some self-stresses on tensegrity frameworks there is a
.simple energy function which has a global minimum at the
realization. If the other realizations with this same minimum value
are sufficently restricted, this guarantees that the framework is
globally rigid or uniquely embedded, i.e every G(gq) which is
dominated by G(p) is congruent to G(p). We illustrate this process
with an example for pinned frameworks.

Recall from chapter 2 that a pinnhed tensegrity framework
(G(p),Vo) is a tensegrity framework G(p) and a subset VoCV of
fixed vertices. A flex of the pinned tensegrity framework
(G(p),Vo) in d-space is a continuous path p(t) with pj(t)=p; for all
jeVo. A self-stress on a pinned tensegrity framework (G(p),Vo) is
an assignment of scalars to the edges (...,wj,...) such that ;20 if
(i.jJe E. and w;<0 if (ij)eE,, and an equilibrium holds for each
vertex v; notin V.

The tensegrity'frameworks of the following theorem are called
spider webs, since they are threads (tensed cables) anchored to
“pinned joints, and the web of a spider has the form described (and
the corresponding étability). For simplicitly we assume that the

framework has no zero length bars

THEOREM 16.1. Connelly (1982) Given a pinned tensegrity
framework (G(p),V,) with a connected graph, only cables and a

strict self-stress « then (G(p),Vo) is globally rigid.

Proof: We define the simple quadratic function on G(p+p'), for
pinned displacements p', with p'i=0 for all pinned verticées in
Vo:
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H(p) = Zoj(pj+p'-(Pi+p%))2 (sum over f{ijlcE )

‘As a quadratic function in the p', this has the gradlent

VH(p) = 2(...Zoy(Py pm/p\\’

Since o is a self—stress on G(p), we have VE(0)=0

For any nontrivial pinned displacement p'-#0, H(tp') gives a
simple quadratic function in t, which approaches o« as t
approaches ‘ioo. Some free joint will go to infinity as t approaches
+. Since all members are cables, an edge can only have tension if it
is connected through the graph to pinned vertices. Sihce there is a
strict self-stress on a connected graph, each free vertex is

connected to some fixed vertex in the graph. Therefore some cable
in the path to the fixed vertex in V, will become unbounded. This

gives an unbounded energy E(tp')Zm;j(pj+p'j-(pi+p'i))2. This
quadratic function has its unique minimum at its critical poin}ga
Since the derivative at t=0 is VH(0).(p')=0.p'=0, the minimum
occurs at t=0. This shows that 0 gives the unique minimum for
H(p").

Assume G(q) < G(p). This means that the cables can only be
shorter. Setting p'=q-p , this gives a smaller energy with E(q-
pP)<E(0). By the previous argument, we have a unique minimum at q-

p=0, or gq=p. We conclude that G(p) is globally rigid. 0

REMARK 16.2. The reverse of these spider webs, formed with all
struts in compression, will have a local maximum of the energy
E(p') at 0. In chapter 15, we saw that such frameworks are rigid

if and only if they are infinitesimally rigid.



EXERCISES.

16.1.

16.2.

-

B

16.3.

16.4.

that:

Show that if a tensegrity framework G(p) is globally rigid,
and a new joint pg is added in the interior of a cable, then the

modified framework is also globally rigid.

Show that a pinned framework with at least one free vertex,

and only struts attached to the pinned joints, cannot be

globally rigid.
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FIGURE 16.1
Assume (G(p4),V1,) and (G(ps),V2,) are globally rigid

tensegrity frameworks with disjoint members, such that
p2(V2,) is contained in p4(V1) (Figure 16.1A,B). Let
(G(p1)<G(p2),V1,) denote the pinned framework formed by
combining the joints and members of the two frameworks, and
keeping the pinned joints of V1, (Figure 16.1C). Show that
(G(p1)<G(p2),V1,) is globally rigid.

If G(p) is a rigid pinned framework with only cables, show



(i) there is a sequence of subframeworks Gi(p;) and
pinnings Vi, such that each (Gj(p;),Vi,) has a strict
self-stress, each pj,.1(Vi+1,) is contained in pi(\/'i)‘,;ahd
(G(P).Vo)=(G(p1)-G(P2)...<C(px) ,\V1o);

- (ii) G(p) is globally rigid.
.SZQM D/ZP —_— =

%.5. If a planar graph G is 3-connected in a vertex sense, a face
polygon is a polygon such that the removal of the vertices and
edges of this polygon leaves the remaining edges connected. -7
Assume that a single face polygon is pinned, a( /
convex polygon in the plane and all other vertices of G are
free in the plane, and define the energy function:

H(p)= Zija)ij(pj-p;)2 (sum over all other edges of the graph)
for arbitrary positive constants oj.
(i)  Show that H(p) has a unique global minimum at which the
o are the scalars of a spider web stresss;
(i) Show that at this minimum the framework is planar,
with no crossing members, no zero-length members and no
overlapping members (Tutte (1964)).
(iii) Show that if the pinned face is a triangle, the
equilibrium position is the orthogonal projection of a convex
polyhedron in 3-space, using the results of chapter 12.
(iv) Show that any 3-connected planar graph either has a
triangular face, or the plane dual has a triangle (i.e. the graph
has a 3-valent vertex), using Euler's formula;
(v) Use parts (iii) and (iv) to give a proof of Steinitz's
Theorem (Griinbaum (1967)):



Every 3-connected planar graph can be realized
as the edges. (1-skeleton) of a convex polyhedron

in 3-space.
- 16.3. Stress Matrices and Global Rigidity

For an unpinned tensegrity framework we have a similar

stress enérgy form

H(p) =Zwjj(pj-pi)? (sum over {ijleE)
for a tensegrity framework G(p) with a strict self-stress .
Clearly if G(p)=G(q) then H(p)zH(q).

If this energy function is has a global minimum at G(p), the
rigidity depends on the set of G(q) with the same minimum value.
We search for this minimum at critical points of the form. Recall
that a critical point of the stress energy form is a point q such
that

VH(q)=2(...,Z;wi(q;-q),...)=0.
Note that this means that © is a self-stress on G(q) for every
critical point q, and every point q with this self-stress is a

critical point.

PROPOSITION 16.3. The stress energy form H(q) and its
gradient VH(q) have the following properties:

(i) VH(q) is a linear function of q;

(i) VH(p) = 0;

(iii) H(q) = 0 for every critical point;

(iv)  The critical points of H(gq) are invariant under affine linear

transformations.



Proof: (i) This is clear from the fact that VH(q)=2(...,Xj0(q;
qj),...). |

- (i) VH(p)=2(...,Xj0;(P;-Pi);---) = (...,0,...) since o is a proper
self-stress of G(p).

- (i) F‘or any critical point ¢, the real valued function
g(t)=H(tq)=t2H(q) has the derivative g'(t)=VH(tq).q=tVH{(q).q=0 for
all t. Therefore g(t) is a constant g(t)=g(0)=0 so H(q)=0.

(iv) A general affine transformation has the form T(p;=Lp;+b,

where L is a matrix and b is a constant vector.
VH(T(q)) = 2(....Zje(T(qp)-T(d)),...) = 2(....Zjoj(LajLg),...)
= 2(..., L(Zjo4(q5-9)),--) =2(...,L(0),...) = 0.
Note that this means that H(T(q)) = 0 by (iii). 0

The energy form can be written with a symmetric matrix Q as
H(q)=qTQq. If this matrix Q is positive semidefinite ( qTQq=0 for
all q ) then the critical points are the null space of the matrix:
Qq=0. The previous proposition shows that this null space must
contain the affine images of the the original critical point p. If the
null space is small enough, we show that the only possible flexes
are affine motions.

We recall two basic facts about positive semidefinite
matrices. A positive semidefinite matrix M corresponds to a
quadratic form xTMx which is the sum of squares. Therefore the
sum of several positive semidefinite matrices is also positive

semidefinite. Recall also that a matrix is positive semidefinite of

rank r if there is a subset of r variables and for all k<r, the k by



k submatrix using the first k of these variables has positive
| determinant.

We condense the information in the matrix Q for H(q’).
Expanding the energy function, and grouping terms, we find that:
' the coefficient of the terms for p;.p;= Xjoj (sum over j with
{i.jle E)

the coefficient of the terms for pi.p;= -0jj

Grouping the first coordinates of all points, we have a copy of the
stress matrix introduced in chapter 3. Specifically, the stress
matrix Q for a self-stress ® is the symmetric matrix with entries
Qjj=-0j for izj, and Qj= Zjoj = Zjji. If QX) = xTQx is the
quadratic form of the stress matrix, then H(q)=2xQ(p.ex) where
ex=(ek,...,ex) ( v copies) for the standard basis (...,e,...) of Rd. As
a result H is positive semidefinite if and only if Q is positive
semidefinite. By the definition of Q, the row and column sums of Q
are 0,so (1,..,1) isin the null space and the matrix Q, and the

extended stress matrix Q, are never positive definite.

EXAMPLE 16.4. Consider the tensegrity square of Figure 16.2 A. A
strict self-stress has coefficients 1 on the cables and -1 on the
struts (Figure 16.2B). This gives the self-stress matrix of Figure
16.2C. It is a simple exercise to see that this is positive
semidefinite of nullity 3. It also easy to see that any affine
transformation of this framework produces a new self-stressed

framework, with the same stress matrix.
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\T 101 -1 1
0
4‘_
B C
FIGURE 16.2

Some of the spider webs of the previous section convert to
unpinned tensegrity frameworks in d-space which have a positive

semidefinite stress matrix.

PROPOSITION 16.5. If framework G(p) in d-space with a strict
self-stress « has a d-simplex Pp1,...,Pq4 +1, Of struts, and all other

members are cables, then the stress matrix Q is positive

semidefinite of nullity ~d+1.

Proof.  Consider any displacement q of G(p). By an affine motion
A, we'move p onto q with A(P)1=Q1,...,A(P)g.+1=0d +1, SO that q is
a displacement of the G(A(p)) with A(p)1,...,A(P)g +1 pPinned. Such
an affine motion does not change the strict self-stress, so G(A(p))
is a stressed spider'web. If q-A(p)#0, then the spider web has
E(q)>E(A(p)).- Since both realizations have the same length for the
added struts, when we switch to the energy function H of the
unpinned framework we still have H(q)>H(A(p)) unless q=A(p).
Since p and A(p) are both critical points of H, Proposition

16.3 guarantees that H(p)=0=H(A(p)). We conclude that H(q)>0
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unless ¢g=A(p) for some affine motion A of p. This means that Q
is positive semidefinite with kernal equal to the space of affine
infinitesimal motions. Since the affine motions form a spacé of
dimension d(d+1) and Q is d copies of Q disjoint cOIumns,‘we

< conclude that Q is positive semidefinite of nullity d(d+1)/d = (d+1).
I

- We offer a geometric interpretation of the nullity of Q, which
is used to check the nullity for some tensegrity frameworks.

PROPOSITION 16.6. Assume G(p) in Rd has a self-stress o and
the affine span of p; in Rd is a k-dimensional space K.

(i) the nullity of Q(w) is k+1.

(i) if d> (nullity of Q(w))-1, then there is a G(q) in Rd with q
projeéting to p orthogonally to K, such that o is a self-stress of
G(q) and the dimension of the affine span of q is (nullity of
Q(w))-1.

Proof. Recall from chapter 3 that Q is a solution to the equations
PQ=0, where P is the matrix of affine coordinates of the joints p;.

Conversely, since Q is symmetric, QP!'=0 is also the condition
that G(p) is a framework with ® as a self-stress.

Since the p; have an affine span of dimension k, we know

that P. is a matrix of dimension k+1. Since QP!r=0, we conclude

that Q has a null space of dimension =k+1.
For convenience in the converse, assume that d=(nullity

of Q)-1=m-1 and that the affine space of the p; is Rk inside Rd.

P to forman m by v matrix Qi which is basis

—

We édd rows to



for the null space of Q. Deleting the row (1,...,1) we have a set of
- points q; such that @ is a self-stress on G(q). Moreover
qi=(Pi1,---,Pik,Qi(k+1)»---»Ti(m-1))- We conclude that q P.l'OJ'_eCffS

orthogonally onto p, as required. : 0

For example, the tensegrity square of Figure 16.2 A has nullity
3, so this self-stress cannot be realized in a larger space than the
plane. Conversely, any of the triangles with interior spider webs of
Proposition16.5 cannot be realized with this self-stress in a larger
space than the plane, so the stress matrix must have nullity 3. The
next proposition points out a specific advantage of a positive

semidefinite stress matrix.

PROPOSITION 16.7. If a tensegrity framework G(p) whose
vertices affinely span Rd has a proper non-zero self-stress ® with
a positive semidefinite stress matrix Q of nullity d+1 then all

G(q) dominated by G(p) are affinely equivalent to G(p).

Proof. Let G(p') be dominated by G(p). Since the energy form is
positive semidefinite, H(p')20=H(p). If the inequality is strict,
some cable is longer, or some strut is shorter, which is impossible.
Therefore H(p')=0=H(p). Therefore H(q)=0=H(p") for all other q, and
p' is a local minimum. Therefore VH(p)=0 and G(p') is in
equilibrium for .

The affine maps T generate a subspace of the null space of Q

of dimension d(d+1). Since Q is d column disjoint copies of Q,

the entire null space also has dimension d(d+1). Thus p'=T(p) for

some affine map. a0

12
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Recall that affine images G(T(p)) are not, in general,
‘dominated by G(p), and a tensegrity framework dominates a
nontrivial affine image if and only if it has a flex which is a -path of
affine images. We will find it easy to check whether a framework
“has such affine flexes, so that a positive semidefinite stress matrix
will give quick information on the rigidity, of the framework.

We are interested in other examples of tensegrity frameworks
which have positive semidefinite stress matrices of nullity d+1.

Projective transformations are one way to create them.

THEOREM 16.8. If a self-stress ® on a tensegrity framework G(p)
has a positive semidefinite stress matrix Q of nullity k, then the

corresponding self-stress on the proper projective image, TG(T(p)),
with appropriate sigh switches, has a positive semidefinite stress

matrix T(Q) of nullity k.

Proof. T(w) multiplies each wj by the scalars w;.j, the weights
of the images T(p;). For the stress matrix Q this has the effect of
multiplying each row and column for vertex v; by ;. Such a scalar
multiplication cannot change the rank of the matrix. A symmetric
matrix is positive semidefinite of rank n if, and only if there is a
symmetric set of n rows and columns such that the n minors down
the diagonal of this submatrix are >0. Since we multiplied both
rows and columns symmetrically, these determinants remain >0

and T(Q) is positive semidefinite of nullity k. 0

L/(/ZL"\% :/3 ‘/(’(w) >T(}2) o
s /K‘NF"
.m\w N R Wt pee ds wepe ens

C,'L>Cq7(;-(av] J
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EXAMPLE 16.9. Consider the frameworks in Figure 16.3 A,B. These
are both projective images of the tensegrity square of Example 16.2,
so they have positive semidefinite stress matrices of nuility 3. If

we combine these pieces in the tensegrity exchange of FigL;ré 16.3.C,

“we have a new framework with a positive semidefinite stress

matrix.

FIGURE 16.3.

However this framework is not globally rigid in the plane
(Figure 16.3D). The stress matrix has nullity 4, and the' lifted
framework in 3—space has the flex consisting of rotating the one
component about the hinge ab. The reader can check that this is an
affine flex, and that the two realizations of Figures 16.3 C,D are
projections of affinely equivalent liftings on 3-space, as required by

the theorems.

B EXERCISES.
16.6. Show that the stress matrix for the framework G(p) in Figure
?7 16.4A has nullity 4 by constructing a framework G(q) in
( 3—-space.

Q‘ 96* V\w\\ﬁb 3 ?
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FIGURE 16.4.
16.7. (i) . Show that the stre'sis' matrix for the framework of Figure
16.4B has nullity }(Hﬂ L

(ii) By constructing a dominéied framework of lower energy,

show that the stress matrix is-not positive semidefinite.
(iii) Show that the underlyingi‘vbar framework is not globally

rigid in the plane.

16.8. (i) Show that the underly.irtig"[bar framework for Figure 16.4C
is globally rigid in the plane','..fj"

(i) Show that the tensgri.tyk’has a single strict self-stress,
up to a positive scalar, and this self-stress has an indefinite
stress matrix of nullity 3. -

(i) Show that the tensegri.ty‘framework is rigid, but not

globally rigid, in the plane.

16.9. Show that if a rigid framework in d-space G(p) has a proper
self-stress ® which is non-zero at all vertices, with a
positive: semidefinite stress‘:m"a'.trix Q of nullity d+1, then

G(p) is globally rigid in ali';dirﬁehsions >d.

15



16.10. Give an example of a plane tensegrity framework G(p) with
a strict self-stress which is positive semidefinite of nullity

3, but G(p) is not rigid in the plane.

16.11. (i) Show that for any polygon G, with vertices at

algebraically independent positions p4,...,py on the line, the
bar framework G(p) is globally rigid on the line.
(ii) Show that any polygon on the line, with no zero—length
edges, has a self-stress of nullity 2.
(iii) Characterize the collinear tensegrity polygons which
have a self-stress which is positive semidefinite.
(iv) Show that the polygons of part (iii) are the only

tensegrity polygons which are globally rigid on the line.

16.12. Assume that Gqy(py) and Ga(p2) are frameworks with
positive semidefinite stress matrices Q4 and Qs of nullity
ki+1= affine dimension (p1)+1, and ko+1= affine dimension
(p2)+1 respectively. Let kq2 = affine dimension(pinp2), and
Giu2(p1up2) be the framework formed by identifying common

joints (assuming any common members have either the same
sign or cancel on at most one common member in the combined
stress of Q1+Q5»).

(i) Show that Gi_2(pi1up2) has a positive semidefinite

stress matrix Qq1+Q»;

(ii) Show that this stress matrix has nullity kq{+ko-kqio+1;

(ili) Show that if Gi(py) and Goa(p2) are globally rigid
frameworks then Gy 2(p1up2) is globally rigid if and only if

ky2=min(kq,k2).
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16.4. Global Rigidity of Convex Polygons

We begin with a sample tensegrity pattern which is positiye
semidefinite, of nullity 3, on the vertices of any strictly—convex

_plane polygon.

W)

} SN//7288
N

A P1

FIGURE 16.5

COROLLARY 16.10 Every Griinbaum polygon with cables on the
exterior, struts on the interior (Figure 16.5A), has a positive

semidefinite stress matrix of nullity 3.

Proof. In Example 10.8 we saw that the Griinbaum polygon has a
proper self-stress. If we apply a projective transformation, as
indicated in Figure 16.5B, we create a spider web suspended in a
triangle. By Proposition 16.4this has a positive semidefinite stress
matrix of nullity 8. We project back to the Griinbaum polygon,

which now has a positive semidefinite stress matrix of nullity 3, by
Theorem 16.7. 0
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THEOREM 16.11. Connelly (1982) Given a tensegrity framework
on the vertices of a convex polygon, with cables on the boundary,
- struts on the interior, and a proper self-stress ®, then the stress

matrix is positive semidefinite with nullity 3.

“Proof. The nullity of Q s at least 3, since it is realized in the
plane. If the nullity is greater than 3, it is the projection of a G(p)
in RS3, with the same self-stress . Let & be a diagonal edge
between upper faces of the convex hull of G(p). Take a vertical
plane P through e which creates a cut-set of the edges in a
self-stressed framework (Figure 16.6A). By Proposition 2.xx, the
forces from the edges on the left of P are in equilibrium. All
forces at the two vertices of e intersect this line, and any other
forces must be from struts crossing below e (Figure 16.6A). Such
lower forces, all pushing right on H, cannot be in equilibrium with
forces through the line of g. (Note that this force would "flatten
out" G(p) along this hinge and decreases the energy). We conclude

that there are only zero forces below the line.

b v
-7 \\//”\\

h

Vo f"\\ -
. N\ . Ai,:ﬂ

FIGURE 16.6.



After vertical projection into G(p), we have a diagonal e,
with no crossing struts in compression (Figure 16.6B). Again, e
cuts a self-stressed framework, so the net forces on the left, at the
two ends of e, must be in equilibrium. These two forces must be
“ collinear, along e, and by the signs of the members, must point
outward (Figure 16.6C). However the force at the top end from-the
left must also reach an equilibrium with the forces at this vertex
from the right. Since this force is also outwards, it cannot be in
equilibrium with an outward force along e (Figure 16.6C). We
conclude that no such G(p) exists and nullity of Q is 3.

We now show that Q is positive semidefinite. Let Q* be the
reduced stress matrix of the Griinbaum polygon on the same vertices.
The reduced stress matrix Q(t)=(1-1)Q+tQ* 0Li<1 gives a
continuous family of self-stresses on the graph with cables on the

boundary and struts on the interior edges of the Griinbaum polygon

19
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and G(p). By the above, each Q(t) has nullity 3. We checked that
Q‘;=Q(1) is positive semidefinite. If we restrict Q(t) to. ;he
complemlent of the constant null-space, then Q(1) is pos'iti've
definite, and the rank is constant, so Qf(t) is positive definite on
this subspace for all t. We conclude that Q(0)=Q is positive

semidefinite on the whole space. ' 0

COROLLARY 16.12. Connelly (1982) Given a tensegrity framework
on the vertices of a convex polygon, with cables on the boundary,
struts on the interior, and a non-zero proper self-stress @, then

G(p) is uniquely embedded and rigid in Rd for all d=2.



Proof. Since Q is positive semidefinite of nullity 3, Proposition
16.4 guarantees that frameworks G(q) dominated by G(p) are
affine images T(p), in the plane of the polygon. We show _thgt T is

a congruence of the plane.

A B Pis1-Pi

FIGURE 16.7.

If T is a nontrivial affine motion, we know by Theorem 10.22
that there is a flex of the framework, whose derivative A is a
nontrivial affine infinitesimal motion. Now this affine
infinitesimal motion must preserve, instantaneously, the lengths of
all cables and struts which are self-stressed in the framework. At
any vertex, there is at least two struts and one cable with a non-
zero coefficient - so there are at least three constant directions for
the affine motion. A nontrivial affine motion of the plane moves the
unit circle to an ellipse (Figure 16.7). The only affine motions of the
plane with three distinct constant directions are the trivial

congruences. This contradiction completes the proof. 0

The next corollary shows one effect of reversing from cables
on the boundary of the polygon to struts on the boundary and cables

in the interior, as conjectured by Grinbaum&Shephard (1975).
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COROLLARY 16.13. Connelly (1982) Let G*(p) be the tensegrity
framework on a convex plane polygon with rods on the boundary and
cables on the interior. If G*(p) is rigid then the reversal G(p), with
cables on the outside and struts on the interior is ‘uniquel S,
betl, wigid

“ realizable in Ed for d>2. . 0’

Proof. The framework G*(p) must have a non-zero self—stress o.

By its form at the convex vertices, there must be compression in

some bar and tension in some cable. The compression at one vertex

passes around the polygon - requiring compression in all bars. Thus

-» is a proper self-stress on G(p), so G(p) is uniquely realized,

and rigid in Ed. | ' 0 ~ . .
b &

We close by stating a stronger result which was conjectured «»’l Sﬂa«?—e/-

7
by Roth (Roth&Whiteley (1981)). One step of the proof wil be given o /7 ﬂ/'zz‘“f

in the section 16.6.

THEOREM 16.14. Connelly&Whiteley (1987). If a tensegrity
framework G(p) on the vertices of a convex polygon, with
bars on fthe exterior and cables on the interior, is rigid then it

is ‘infinitesimally rigid.
EXERCISES.

16.13. Given the vertices of a regular plane n-gon as joints
(n>4), prove that the smallest rigid tensegrity framework has

3n/2 members for n even, (3n+1)/2 members for n odd.

16.14. Give an example of a non-rigid tensegrity framework on the

vertices of a convex polygon with one interior vertex, with
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cables on the boundaries, bars in the inside, and a strict

self-stress.

16.15. Consider a simple, strictly convex polyhedron with each face
replaced by a self-stressed polygon with cables on the
boundary and struts on the interior. : |
) Show that there entire framework has a:: ‘strict self-
stress with a positive semidefinite stress rf1étkix of nullity
a. |
(ii) Show that the tensegrity framework is gi_ébally rigid.
(iii) Show that if a simple, strictly convex d.—-bblytqbe is
realized with each 2-face as such a self—stresééd céble .
polygon with interior struts then the tensegrity frahﬁework is

globally rigid in d-space.
16.5. Gale Transforms and Global Rigidity.

How can we generate examples of frameworks in '_c:ifsbace
which have positive semidefinite stress matrices of ndl!ity d+1?
We offer one technique which is adapted from the study of convex
polytopes. | }

Consider any positive semidefinite stress matrix Q of nullity
d+1. We can make this into a diagonal matix D by an invertible
orthogonal transformation D=0QOtr, where Olr=0-1. Since D is
still positive semidefinite of nullity d+1, we can take the square

root of the v-(d+1) positive diagonal entries. This gives . -f A e@(/(l

D=(VD)t"(ND) and: ‘ : {/_'*’ e
Q= OtDO = Ot (VD) (vD)O= [ "f«/_[‘)O]ff[y\'\fDO]=.(:\/"‘$—2),_"\l?2
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It is a simple exercise to check that DO]=VQ also has ranku (et cnt

1), P et it Fle s T JTL ame @ L Gy 4(1('-) =e
Conversely, consider any (n-d-1) by n matrix A‘//WIth w-aLy-m s

%
independent rows. The matrix AfA is automatically positive

* semidefinite of rank (n-d-1), since qUAAq= (Aq).(Aq)20. To read
these entries as the coeficients of a self-stress on a tensegrity
framework, we solve the equations AVAPIr=0 for positions of the
points in d-space, as above. If we now choose the members
corresponding to positive entries in AlFA to be struts, those with
negative entries to be cables, and omit those with zero coeficients,
we have the induced tensegrity graph Gp such that Ga(p) has the
stress—stress with stress matrix A"A=Q.

Since AlYA is positive semidefinite of nullity d+1, we know
that the solution set to AlrAPr=0 is a vector space of dimension
d+1. Therefore this must equal the subspace of solutions to
AP!r=0, which also has dimension d+1. Given a set of points p
spanning d-space, the rows of a matrix satisfying AP!=0 must be
affine dependencies of the points. Since A has rank n-d-1, the
rows of A must generate the space of all affine dependencies. In
the theory of convex polytopes the columns of such a matrix A are
treated as points in (n-d-1)-space, forming the Gale transform of
the original points.  For this reason we call this matrix A a Gale
matrix for the points p.

We summerize the argument so far.
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PROPOSITION 16.15. Given a set of points p in d—space with
affine matrix P, the induced tensegrity framework Ga(p) for any

Gale matrix A is positive definite of nullity d+1.
Consider the following three examples.

EXAMPLE 16.16. Consider the set of points (1,0), (-1,0), (0,1),
(0,-1) in the plane (Figure 16.8 A). This creates the matrix P

This matrix has rank 3, so we have an orthogonal space of dimension
1 spanned by the Gale matrix A=[ 1 1 -1 -1 ]. This gives

the stress matrix Q=AtrA,

11 1 o4 4] [ A a]
1 11 -1
Q = =
-1 41 1
-1 -1 - 1 1]

This matrix corresponds to the tensegrity framework of Figure
16.8A. Since the matrix A is unique up to a scalar, this is, up to a
positive scalar, the only positive definite stress matrix for these

points.
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FIGURE 16.8.

EXAMPLE 16.17. What happens if we extend this set of points by a

point (2, 0)? This extends the matrix P to Q
1 -1 0 0 2

Q= 0 0 0 0 0
1 1 1 1 1

Since this has rﬂ_s\, we have a choice for the Gale transform,
We extend the previous matrix by the obvious

affine dependence of the points (1,0), (-1,0) and (2,0).
1 1 -1 A1 0
3 - 0 0 -2

This leads to the stress matrix

which has rank 2.

A =

13111 4 1 o0 (10 2 -1 -1 -6
1 -1 [3-1 0 0 -2] 2 2 1 1 2
Q=|-10 =1 14 1 1 0
-1 0 4 14 1 1 0
| 0-2 | | 6 2 0 0 4

and the tensegrity framework of Figure 16.8B.
However we can simplify this tensegrity framework by a more

delicate choice for the Gale matrix, which gives more zeros in the
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the stress matrix by making another pair of columns orthogonal.
Consider the Gale matrix B:

=J5J§J§'J§o

3 - 0 0 -2

B

-This gives the stress matrix:

12 0 -3 -3 -6

-6 2 0 0 4

and the corresponding iensegrity framework of Figure 16.8C.
Note that all these examples have no affine flexes, so they are

all globally rigid.

EXAMPLE 16.18. Consider the graph of a cube (Figure 16.9A).

('13071)

0,0,1)

FIGURE 16.9. (1,0,0)

B

(1,-1,0)
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Can we realize this in 3-space with a positive semidefinite

Vself—stress matrix of nullity 47

with a pattern of zeros: -

The matrix

P

x000
0x00
00x©0
000X
0 x x X
x 0 x x

x x 0 x

This will require a stress matrix

0 x X X
x 0 x x
X x 0 x
X X X 0
x 000
0x00
00xD0

X Xx x 000 0 x

Cleat s e (429/%}
-

will have rank 4, and the Gale matrix will also have

rank 4. This stress matrix requires that the Gale matrix A has Aq,

Ao, As, A4 as a set of mutually orthogonal vectors in R4. Similarly

AS: A6! A77 AB’

are mutually orthogonal, with the additional

constraint that corresponding vectors in the two sets, such as Ay

and Ag, are also orthogonal. The following matrix has these

properties:
-1 000 0-1 1 1
'0-1 00 1 0-1 1
0 01 01 1 0 1
0 0031110
We solve the equations A P =0 for the positions of the points:
-1 0 1 -;- 0100 |
o011 L 1000
p=| 3
110 ;- 0010
1111 11 1 1
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The reader can now check that this gives the tensegrity framework
in Figure 16.9B. Since each joint is only 3 valent, we know that
the joint and its 3 neighbours are coplanar. Such a pattern of two
_a "tetrahedron” P1 P2 P3 P4 and pspg p7 pg Wwith the vertices of
| _one, e.g. p1 on the faces of the other, e.g. its neighbours pg P7 P,
is called a Mdbius pair of tetrahedra.
How do we know that this is globally rigid? By Proposition
16.7 we know that all deformations are affine transformations. By
Proposition 10.22, any affine flex begins with an affine
infinitesimal flex. Since there is a self-stress in all members the
affine flex must preserve the length of all the members. A

nontrivial affine infinitesimal flex in 3—-space preserves at most a.

conic of directions in the plane at infinity. At any joint the 3
members define three collinear directions at infinity which must be
on this conic - so the conic contains this line. We conclude that the
required conic at infinity contains the 8 lines at infinity for the
7 eight joints. This contradiction shows that the framework is

AT ontradiction

globally rigid.

Note that any n by n stress matrix Q which is positive

semidefinite of nullity d+1, can be written as AffAW’é
4 Caqy V=

n-d-1 by n matrix, with row sums zero.@trix is the Gale

transform of an appropriate set of points, so every positive

i‘ﬁ/(t'ﬂ l‘c I?C
50!6[( /(40171 )La.f rorS

Oé(‘ﬁl(, are é(?!;/ﬂ (/ec'é/;
w| » ot ar
EXAMPLE 16.19  Consider the example of Kz g with the vertices 7= “~*>
P?na{ Ka ﬂ\w

semidefinite stress matrix comes by this construction.

of the two sides on two distinct lines in the plane (Figure 16.10). % gounre ool

From chapter 5 we know that this has a self-stress given by the a#fﬂe e%;.m

Ce weslom\ cfb'._pj
\
6’[09(/ vaiqyes.



product of the two affine dependencies on the two lines. A direct
'analysis of the corresponding stress matrix shows that it has rank
2 or nullity 4 (see example 16.27). This reminds us that the same
self-stress can be realized for two skew lines in 3-space (Figure
*16.10B).

A A

FIGURE 16.10.

Can this self-stress ever be positive semidefinite? We show

that answer is no, by showing there is no appropriate Gale
transform. The matrixE m 3-space has rank 4, so any Gale
transform of these points has rank 2, spanned by the two affine

. (‘ql(+

dependencies on the two lines. However to get the stress matrlx of w‘“&
K3,3 we must have two sets of three mutually orthogonal non-zero Scue &1{1’((

columns in this transform matrix. This contradicts the assumption goes (2> «
that the rank is 2. We conclude that no such Gale transform exists

and none of these realizations is positive semidefinite.
EXERCISES.

16.16. Consider the six points in the plane (1,1), (2,0), (1,-1), (-1,-

1), (-2,0), (-1,1). Find Gale transforms which give positive



30

semidefinite stress matrices for the three tensegrity

frameworks shown in Figure 16.11.

N7 LT
74 Vo I

FIGURE 16.11. o
16.17. Show that the tensegrity framework in Figure 16.12A has a

positive semidefinite stress matrix, by giving an appropriate

Gale matrix.

| li\\
s,

=== T ==
\
4 |
A

FIGURE 16.12.

16.18. Assume that a tensegrity framework G(p) has a positive

semidefinite stress matrix of nullity d+1.



16.19.

16.6.

(i) Show that a stressed cable (a,b) can be split in the
interior by a point ¢ (Figure 16.12B) to give a new framework
with a positive semidefinite stress matrix of nullity -d+1.

(i) Show that a stressed strut (a,b), can be split by a point ¢
exterior to b with Iohger collinear strut (a,c), and cable
(c,b) (Figure 16.12 C) to give a new tensegrity framework
with a positive semidefinite strevss matrix of nullity d+1.

(iii) Show that both of these operations also-preserve global

rigidity.

Recall from chapter 5 that any bipartite framework K(A,B)
realized with A spanning an affine subspace <A> of affine
dimension |A|-1, B spanning an affine subspace <B> of affine
dimension |B|-1, and with <A>nB= @ =<B>nA, has a single
self-stress of which is the product of the affine dependencies.
() Show that this self-stress has nullity |A|+|B|-2;

(i) Show that the stress matrix for this. self-stress is

indefinite.
Second-Order Rigidity of Tensegrity Frameworks.

In chapter 4, second—order rigidity was introduced to show the

rigidity of certain non-infinitesimally rigid bar frameworks. We

recall that a bar framework is second-order rigid if for each

nontrivial infinitesimal motion p' (infinitesimal flex), with

R(p).p'=0, no second-order deformation p" satisfies:

R(p').p' + R(p).p"=O0.
One critical feature of this rigidity was given in Theorem 4.xx:

31
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If a bar framework is second—order rigid, then it is rigid.
We complete our summary on second-order rigidity for bar

frameworks with a basic second-order stress test for the

second-order rigidity of the framework.

-PROPOSITION 16.20. Connelly&Whiteley (1987) An infinitesimal

flex p' of a bar framework G(p) extends to a second-order flex p”
if and only if for every self-stress o,

oR(p').p'=pTQp'=0.

Proof. An i_:nfinitesimal-motion p' has a second-order extension p"

if and only if R(b).p'=Q and R(p").p' + R(p). p"=0 are consistent

if and only if ex’)fery row dependence ® of R(p), which is a self-

— ™ stress of é(p), is a row dependence of -R(p').p'

~—~— o

if and only if fo'r each self-stress ® of R(p): oR(p').p'=0 0
We now_'é;ktend the definitions and these results to tensegrity

frameworks. ‘._ The analogue of Proposition 16.20 will show the

connection bétWéen our previous results on global rigidity and this

local second-order rigidity.

DEFINITION 16.21. A second-order flex for a tensegrity
framework is a v_s'olution P, p" to the equations:
(i) for bars: (pi-pj)-(P'-p'j) =0 and
(P'i-P'P(P-P') + (Pi-P)-(P"i-P"})= 0;
(ii) for cables: either [(p;-pj).(p'i-p'j)<0 or E@i-pj).(p';-p'j) = 0 £and
PERYERY + (Prp).(PUP)SO] j
(iiiy  for strUté; -either [(pi-pj).(p'i-p'j)>0 or%pi-pj).(p'i-p'j) = OJZ/
and ((p'-p)(P'P') + (P-P)-(p"-P")20. |
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A tensegrity framework is second-order rigid if all second-order
flexes have a ftrivial infinitesimal motion as p'. Otherwise G(p) is

second-order flexible.

. Figure 16.13 shows first and second-order flexes of some
tensegrity frameworks, (light arrows for p", heavy for p'). The flex
in Figure 16.13A is trivial for both' p', and p", that in Figure 16.13B
is trivial for p', but not p", while that in C is nontrivial for p', and
p". This means that only the flex in Figure 16.13C is a nontrivial

second-order flex.

FIGURE 16.13

Since the second-order extensions are solutions to an
inhomogeneous system of equations and inequalities, we can add on
any solution ' to the homogeneous system to the second-order flex

p'u.



PROPOSITION 16.22. If (p',p") is a second-order flex of a
tensegrity framework G(p) and q' is any infinitesimal flex of G(p)

then (p'.p"+q') is a second-order flex of G(p).

Proof. Assume that for each cable (resp. bar, strut) with
“(Pi-Pp-(P'-P) =0,
(P'~P')-(P'i~P')+ (Pi—P)-(P"-P") <O (resp. =0, 20)
| and (pi-pj)-(q'—4q) <0 (resp. =0, 20 )-
Therefore:
(P'—pY)-(P'i-P')+ (Pi-p) [(P"i+a)—-(p"+a)] <O (resp. =0, 20 ). (]

If we add a multiple of p' itself to any extension p" we can

make the second-order extension satisfy the second—order
inequalities for all members with (pi—-pj).(p'i—p’) #0. Since this

observation will simplify some of our arguments, we summerize in

the following corollary.

COROLLARY 16.23. An infinitesimal motion p' has a second-order
extension p" if and only if there is aricther second-order extension
q" with (p-p (PP} + (Pi-P))-(P"rP")< 0 (resp. =0, 20 ) for all

cables (resp. bars, struts).

We now confirm that second-order rigidity remains an

appropriate tool for checking the rigidity of a tensegrity framework.

THEOREM 16.24. Connelly&Whiteley (1987) If a tensegrity

framework G(p) is second—order rigid, then it is rigid.

Proof. Assume that G(p) has a nontrivial analytic flex p(t). Let

the first nontrivial derivative at t=0 be pK(t). (After adding a

34



trivial motion of the space, we can assume that pm(t)=0 for
0<m<k.) Differentiating (pi—pj)2SCij for each cable we have:

D-1(p;(0)-pj(0))2=0 and - T
DX (pi(t)=pj(1))2=Z (*m) [p (k=m)i(t)—p (k=m);(1)].[p™i(t)—p™;(t)]
“ However pmMm;(0)=0 for O<m<k, and at t=0 Di(pi(t)-pj(t))2<0, so we
have:

[pi-pjl.[pXi(0)—-pk;(0)] <O.
A similar equation ( =0 ), or inequality ( 20 ), holds for each bar and
for each strut, respectively. This means that pk(0) is a nontrivial
infinitesimal motion of the tensegrity framework G(p).

We will show that pk(0) has a second-order extension, built

from p2k(0). Consider the derivative
D2K(pi(t)-py(1)2 = Z(2Km)[p(2k-M)(t)—p (Zk=m)i(t)].[p™;(t)-p™;(t)]
At t=0, this is
[pki(0)-pk;(0)].[pki(0)-pK;(0)+[Pi-Pj].[P?Xi(0)—p 2K;(0)].

For a cable {i,j} either Dg@K(p;j(t)-pj(t))2<0 or there was a
previous derivative: Dtn(pi(O)—pj(O))2=[pi—pj].[p”i(O)—pnj(O)]<0 with
D™ (p;j(0)—p;j(0))2=0 O<m<n.

In this second case, for each cable (resp. strut) we will create
an infinitesimal flex ql with [pi-pj].[ali-qj]<0, (resp. >0 ). This
is done by induction on n. If n=k, then qii=pk(0). Assume the
construction works for all cables (resp. struts) {h,k} with
Dy (ph(0)-px(0))2<0 (resp. >0 ) r<n<2k, and that D{"(pi(0)—p;(0))2<0
f;)r a cable (resp. >0 for a strut). For each edge {g,h} either -
DI"(pg(0)—ph(0))2=[pi—pj].[p“i(O)—-p"j(O)]<O for a cable (resp. >0 for a
strut) or we have previously constructed an infinitesimal motion
qoh. For a suitable scalar Cgh, p"(0)+ocghq9h satisfies

35
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[Pg—Ph]-[P"g(0)-P"h(0)]+0gh[Pg—Pnl.[a9Mg—qIM,] <O (resp. >0 for a strut)
or [pg—ph].[(p"g(O)+aghq9hg)—(pnh(0)+ocghqghh)] <0 (resp. >0 for a strut)
and for all other cables (resp. struts, bars) {i,j} e
[p~P{l-L(P™(0)+0ghaSM)~(PNi(0) +argnaS")] < [P=Pyl.[PM(0)-PM(0)]
_(resp. 2, =). Thus we can add all these previous aghqgh to make
>qij=pn(0) +Zocghqgh into an infinitesimal motion with
[pi-pjl.[ali-aijl<0, (resp. >0).

For the equations of Dt2k’(pi(t)-—pj(t))2 we similarly create
q2k=p2k(0)+ZPghq9f so that all inequalities are satisfied. For each
cable (resp. bar, strut):

[pki(0)-pK;(0)].[p*(0)-pX{(0)1+[pi-pjl.[a%ki-q2Kl<0 (resp. =, 2)
since [pi-pjl-[q9N—qahjl<0 (resp. =, ). This shows that pX(0),q2k

is the required second—order extension of pKk(0). 0

How can we check the second-order rigidity of a tensegrity
framework? We offer an extension of Propositioh 16.20 which
connectes the proper self-stresses with the seéond-order rigidity of
the framework. The following result s a variant of the standard
duality of linear programming (Rockafellar (1970)). We will prove it
directly from the hyperplane separation theorem for convex cohes.

For convenience in this proof we use some modified notation.
For a tensegrity framework G(p), the rigidity matrix is rewritten in
two parts: R+*(p) is the matrix with rows:

for each cable {i,j}, i<j: [0 ... 0 pi-p; 0 ... 0 pyp; 0 ... O]

for each strut {i,j}, i<j: [0 ... 0 p;pP; 0 ... O pPj-p; 0 ... 0]
while the R°(p) is the matrix with rows: _

for each bar {ij}, i< [0 ... 0 pip; 0 ... 0 pj-p; 0 ... O]



In this notation, an infinitesimal flex is a solution to the equations:

R+(p)p' <0 and R°(p)p' =0.
A proper stress is now an assignment of scalars t+,0° such that:
w*;20 for all {ijle E.UE, and @*R+*(p)+w°R*(p) 0.
“ The second-order equations become:
R+(p")p'+R+*(p)p"<0 for cables and struts,
Re(p")p'+R°(p)p" = 0 for bars.

THEOREM 16.25. Connelly&Whiteley (1987) An infinitesimal
motion p' on a tensegrity framework G(p) extends to a
second—order flex p',p" if and only if p'rQ p' <0 for all proper

self-stresses .

Proof: In terms of the vocabulary of R+, R° etc. this statement
translates the following more general fact:
For any deformation p' there is an extension p"
satisfying:
Re(p)p'+R°(p)p" = 0 and R*(p)p'+R*(p)p"<0 ,
if and only if for all ®+20:
o*+R+(p)+w°R°(p) =0 implies (w*)R+(p")p'<0.
(i)  Assume that Re°(p')p'+R°(p)p" =0 and R+(p')p' + R+(p)p"<0

has a solution. Multiplying by any proper self-stress  ®+20, ®°, with

o+tR+(p)+0°R°(p)=0, we have:
o*R*(p)p' + @*R*(p)p" + 0°R(p)P' + ©°R°(p)p"

= 0*R*(p)p' + 0°R°(p')p' + 0 = @*R*(p")p’ + @°R°(p')p' < 0.

(i) Assume that for all proper self-stresses w*+20, with

wtR*(p)+w°R°(p)=0, we have w*R+(p')p' + w°R°(p")p'<0.
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Consider the convex cone, with apex at the origin, generated by
positive multiples of the rows [R+(p')p',R+(p)] and arbitrary
multiples of [R°(p")p',R°(p)]. - This cone is the set of vectorfs. )

(0*)[R*(p")p",R*(p)]+w°[R°(p")P",R°(P)].
~We claim that [1,0,...,0] is not in this cone. If it |s then there is a
w+20, and a ©° such that: |
[1,0,...,0] = (@*)[R*(p")p",R*(p)]+@°[R°(p")p",R°(P)]

or o*R+(p")p' + @°R°(p)p'=1>0 and w*R*(p)+w°R°(p)=0.
This is a contradiction of our assumption.

Since [1,0] is not in the cone, there is a hyperplane through
[t, u] through the origin with. [R+(p')p’,R+(p)][t, ult <0,
[R°(p")p',R°(p)Ilt, ult =0 and t=[1,0][t, u]>0. Dividing by t>0 and
setting p"=[u/t]}, we have

R+(p")p' +R*(p)p"<0 and R°(p')p' +R°(p)p"=0. I

We call this the second-order stress test for tensegrity
frameworks. To illustrate this test we examine the second-order

rigidity of the convex polygons of Section 16.4.

PROPOSITION 16.26. Connelly&Whiteley (1987)

(i) If a tensegrity framework G(p) on the vertices of a convex

polygon, with cables on the exterior and struts on the interior, is

rigid then it is second—order rigid. ( T« fact fire 2Faees ”‘;fﬁly?{“é“g "";'7’/)
(ii) If a tensegrity framework G(p) on the vertices of a convex

polygon, with bars on the exterior and cables on the interior, is

second—order rigid then it is infinitesimally rigid.
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Proof. (i) If the tensegrity polygon G(p) is rigid, then it has a

self-stress. By Theorem 16.11, the stress matrix is positive

semidefinite, so p'rQ p'20 for all infinitesimal motions. ‘We also

know that Q has nullity 3, soif p''fQ p' =0 for some nontrivial

infinitesimal flex, this is an affine flex. = Such an affine flex

implies G(p) is not rigid, so we conclude that p'rQ p' >0 for all
nontrivial infinitesimal motions. Theorem 16.25 now gives the
second-order rigidity.

(i) We know that all self-stresses on G(p) have é negative
semidefinite stress matrix. Therefore every infinitesimal flex p'
will extend to a second-order flex. The second-order rigidity now

implies that the only infinitesimal flexes are trivial infinitesimal

flexes. -
('l‘vl_‘)

©,1) (1,1) 22 _ .

(0,0) (1,0)

(3 p"

A B 7 C D E

FIGURE 16.14.
EXAMPLE 16.27. Consider the bar framework of Figure 16.14A.
éince this is Kz g with the joints on two lines, we know that it has
a single self-stress and a nontrivial infinitesimal flex. It is a
simple exercise to check that the vectors of Figure 16.14B are a

nontrivial infinitesimal flex p', and all nontrivial infinitesimal
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flexes are a linear combination of this p' and the trivial
infinitesimal motions.  From chapter 5, we know that the
self-stress is a product of the affine dependencies of the two sets

of collinear points, so the stress matrix has the form:

000 1 -2 1
000-2 4 -2
000 1-2 1
12 10 00
2 420 00
|l 1210 00

The reader can now check that for this stress matrix and the given
infinitesimal motion: ptrQ p' =2#0. By Theorem 16.20, this p'
does not have a second-order extension. Clearly p' hasa
second-order extension if and only if some (all) infinitesimal flexes
p'+p# which differ by a trivial infinitesimal motion p# also havé a
second-order extension (see Exercise 16.23.) This also holds if we
allow non-zero multiples ap'. We conclude that no nontrivial
infinitesimal motions extend, and the ?ar framework is
infinitesimally rigid. Note that this bar framework is not globally
rigid.

If we follow the signs of the stress matrix to create a
tensegrity framework (Figure 16.14C), the calculation with the Szwe
proper stress shows that p''Q p' =2>0. By Theorem 16.25, this
infinitesimal flex still does not have a second-order extension. By
the same argument given above, only trivial infinitesimal flexes
have a second-order extension, and the tensegrity framework isga(/,7 .w[

second-order rigid.
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If we reverse the signs in the stress matrix, and follow these
new signs for a tensegrity framework (Figure 16.14 D), the
calculation gives p’tr(—g)p'=—éso. Since this now holds for all proper
self-stresses, we conclude that the tensegrity framework is
second-order flexible. Figure 16.14E shows the vectors of a second-

order extension p" for p' on this new framework.

REMARK 16.28. As an intermediate stage between the global
rigidity induced by a positive semidefinite stress matrix, and propes
second-order rigidity, we have frameworks for which a single, self-

stress o gives @f’iﬂ/\O for all nontrivial infinitesimal flexes. < X/
Such a tensegrity framework is called prestress stable
(Connelly&Whiteley (1987)).  Such prestress stable frameworks are
the basic kind which are built with tension in the cables or
compression in the struts.

This concept can be restated in energy terms. A tensegrity
framework G(p) is prestress stable if and only if there is a self-
stress ® such that the energy function:

H(p', w) = Zco,,(p, p')2 +Z((p, Pi).(P'P"))?
= p'"L_ + R(p)"R( )] P’
is positive semidefinite with only trivial infinitesimal flexes in the
kernal. The matrix R(p)I'R(p) is clearly positive semidefinite with
only the infinitesimal flexes in the kernal. If a single self-stress o

gives p'r(+Q)p'>0 for all nontrivial infinitesimal flexes, then some 7~
— .

—_ — ———

small multiple te will make H(p', to) positive semidefinite on all
but the trivial infinitesimal motions. For more properties of this
stab'ility, see Exercise 16.24, the next remark and

Connelly&Whiteley (1987).
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REMARK 16.29. |If we take gradients of this energy function, we
find a static interpretation of prestress stability. The forces that
are resolved, at first-order, by a displacement p' of the joints are:

F = —VH(p', @) = 2Zaj(p'-p") + 2Z((p;-P)-(P1-P){(P}-Pi)

| = [Q+R(p)TR(p)] P
All equilibriu'm loads are resolved if and only if the matrix
[Q+R(p)T_R(p)] is _invertible when restricted to the orthogonal
complement of the trivial motions. In this case, the displacement
p' resolves the load [Q+R(p)TR(p)]p'. This is a feasible physical
response of the structure, corresponding to positive work by the
force, if and only if p' is in the same direction as F or p'.F 20,
with equality only if F=0 or p' is a trivial infinitesimal flex. This
is a restatement of the fact that H(p',®) is positive definite on the
complement of the trivial motions.

If H(p',w) is only positive semidefinite on the complement of
the trivial infinitesimal motions, then there is a direction p* for
which'there is no change in energy. In the real world there may still
be third, or higher order effects of a real energy which produce
rigidity. However if H(p',) is indefinite there is a direction p' in
which the energy is strictly lower, and the framework is unstable
for @ in the direction p'. Such an instability means that the
framework cannot be physically built with «© as a prestress in the

cables and struts.
EXERCISES.

16.21. Prove that if a tensegrity framework G(p) is

second—order rigid, then removing all struts and cables which
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have ;=0 in all self-stresses leaves a second-order rigid

tensegrity framework on the same joints.

| 16.22. (i) Prove that if a tensegrity framework — G(p) is
second-order rigid, then the adding a joint in the interior of
any cable with ;>0 in some self-stress, gives a
second—order rigid tensegrity framework.
(i)  Prove that if a tensegrity framework G(p) is
second-order rigid, then the adding a joint in the exterior of
any strut with ;<0 in some self-stress gives a second-order
rigid tensegrity framework.
(iii) If a tensegrity framework contains a cable which is zero
in all self-stresses, show that the framework formed by
splitting this cable in the interior is second-order flexible.
(‘iv) Prove that if a tensegrity framework G(p) is
second—order rigid and there is a strict self-stress, then the
equivalent bar framework, with all struts and cables
replaced by appropriately split bars gives a second-order rigid

bar framework.

16.23. (i) Show that for any proper stress @ and any trivial
infinitesimal flex p* of a tensegrity framework G(p), Qp*=0.
(i) Use part (i) to show that for any infinitesimal flex p’,
any proper stress‘ o and any trivial infinitesimal flex p* of a

tensegrity framework G(p), ptQ p' <0 if and only if
(P'+p*)'Q (p'+p*) <0.
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16.24. Extend Example 16.27 to the following general results

~ (Connelly&Whiteley (1987)):
(i) If a bar framework G(p) is second-order rigid, with a
i—-dimensional space of equilibrium motions then for some
proper self-stress « the tensegrity framework following this
self-stress is prestress stable.
(ii) If a bar framework G(p) Iis second-order rigid with a
1—dimension space of self-stresses generated by w, then for
either o or —w the corresponding tensegrity framework is

prestress stable.

16.25. (i) Assume that a tensegrity framework G(p) has an
independent set of bars, and a one dimensional cone of
self-stresses. Show that if G(p) and G—(p) are both
second—order rigid, then they are infinitesimally rigid.
(ii) Give an example of a plane tensegrity framework G(p) /b/awaé,,{{
which is second-order rigid, an'd its reverse framework G-(p) o %,/
is second-order rigid, but neither is inﬁnitesimally rigid. {,quwr/é?

’ ’ an ‘
16.26. For a tensegrity framework G(p) @ extreme set of —L

self-stresses is a finite set { w;} such that every
self-stress is a non-negative combination of the ;.

Similarly, an extreme set of infinitesimal equilibrium flexes
is a set which generates the cone of equilibrium infinitesimal
flexes as non-negative linear combinations.

(i)  Show that an infinitesimal motion p' of a tensegrity

framework has a second-order extension if and only if o
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ptrQp' <0 for all self-stresses in a fixed extreme set of
self-stresses { o;}.

- (ii) Show, by an example, that a second-order flexible
framework may satisfy p'rQ;p'; >0 for an extreme_set of
equilibrium infinitesimal motions p'; and a set of proper

self-stresses ;.

16.27. () If G(p) is second-order rigid, show there is a 8>0
such that G(T(p)) is second-order rigid for any projective
transformation T with |T(p)-p|<8.

(ii) Give an example of a framework G(p) which is
second-order rigid, but G(T(p)) is flexible fer some projective

transformation T. a;é/(a Ii 71%4{ é.p/pe} ;(/.,ﬂ%/oﬁ»ﬂ
—; . O ean

16.7. Structures in 3-space.

The rigid spatial frameworks in Fuller (1975), Snelson (1975),
Pugh (1976), Motro (1983) etc. continue to pose a problem. The M
known patterns from the previous sections and previdﬂg chapters:
the infinitesimal rigidity, the generic rigidity, the spider webs, the
convex polygons, do not apply directly.

These experimental tensegrity frameworks in space are
special position, rigid structures which fit the pattern: the vertices
of a convex polyhedron are joined by cables for the edges of the
polyhedron and struts are inserted in the interior to force an “’A‘E/I wrlens
. g -
equilibrium self-stress.  They are not, in general, infinitesimally
rigid. Motro (1983) shows the prestress stability of a few of these

spatial patterns. Hindrich (1984) shows that some simple patterns,
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based on symmetric prisms, are rigid, and Connelly (1982) applies
the methods of Sections 3 and 4 to show the global rigidity of a few
examples.

It is probable that all of these experimental examples are
prestfess rigid, and many are globally rigid with positive
semidefinite stress matrices. However no general qualitative
arguments, like those of the Section 16.4, have worked for the larger

class.

—T 0N
]

L/
A - B
FIGURE 16.15.

Proposition 16.7 still guarantees that a spatial tensegrity
framework with a positive semidefinite stress matrix of nullity 4
has at most affine flexes. Figure 16.15, adapted from Griinbaum
(private communication), shows a basic counter-example to the use
of this result for the rigidity (global rigidity) of the entire class.
Figure 16.15A has a nontrivial motion based on an affine motion
(Figure B). Since the self-stress is the sum of the four
self-stresses in the four planes, it is positive semidefinite. (This

self-stress is not strict, and the cables not in the self-stress are



drawn with thin lines.) However, the interior struts are not enough
to block all affine flexes.

Moreover, a local projective trar{sformation will bring the
point of intersection of the 4 "hinges" in from infinity, ler-:wi-ng a
T_ﬂex which is not an affine motion (Figure C). This confirms that the

underlying stress-matrices of both examples have nullity >4.

m

A Whal s BCPS

FIGURE 16.16.

Fiéure 16.16 illustrates a second counterexample, with a
- strict se.l'f—stress with cables on the graph of a convex polyhedron.
This is formed by using four versions of the basic "simplex"
framewark of Figures, on the four triangular faces of the
pattern of Figure D. Each piece is itself rigid, with a positive
semidefinite reduced stress matrix of nullity 4 (see Exercise
16.27). However the combined framework has the finite motion of
the underlying cycle of 4 triangular panels. Although the stress
matrix is positive semidefinite, the stress matrix has nullity >4.

These examples prevent any simple extension of Corollary
16.12. However, they suggest that the stress matrix is positive

semidefinite.
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CONJECTURE 16.30. A proper self-stress on a tensegrity
‘framework, built on the vertices of a convex set with cables on the
boundary of the set and struts in the interior, has a positive -
semidefinite stress matrix. , ~— ™ 4 ﬂc‘ss )
T
With the techniques of section 6 and Connelly&Whiteley
(1987), this conjecture would imply:
CONJECTURE 16.31. If a tensegrity framework, built on the 1:4 /K} > ?‘

vertices of a convex set, with struts on the boundary of the set and
cables on the interior, is rigid then it is infinitesimally rigid and
the reverse framework with cables on the boundary and struts on- the

interior is infinitesimally rigid.

We know of two classes of spatial frameworks which have a
positive semidefinite stress matrix of nullity 4 (see Exercises
16.15, 28). However we do not have a class of frameworks for which
alil self-stresses have reduced stress—matrices of nullity 4.

We close with a variant of a conjecture first offered by

- Griinbaum&Shephard (1975).

CONJECTURE 16.32. If a convex polyhedron in 3-space is built
with a plane-rigid tensegrity framework on the natural vertices of

each face, the spatial framework is rigid.
EXERCISES.

16.28. (i) Show that the stress matrix of the example in Figure

16.16A is positive semidefinite of nullity 4.
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16.29. If a convex polyhedron, with a 3-valent vertex v, is built
with cables on all edges except the triangle around the
3-valent vertex, and struts on this triangle as well as from vy
to all vertices off this triangle, show that any prope; -
self-stress is positive semidefinite of nullity 4. (In chapter

12 we saw that this framework has a strict self-stress.)

16.30. () Show that if a convex polyhedron is realized as the
cables of a tensegrity framework, and one interior vertex is
added, joined to each vertex by a strut, the resulting
tensegrity framework is not globally rigid.v
(ii) CONJECTURE: If a convex polyhedron is realized as the
cables of a tensegrity framework, and one interior vertex is _
added, joined to each vertex by a strut, the resulting /
tensegrity framework is prestress rigid. (Compare to Example

- 10.16 for triangulated convex polyhedra.)
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