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Chapter 2: Basic Concepts

R. Connelly

1. Introduction:

We present here some of the fundamental ideas used in the
analysis of "rigid structures". For us the structures that we
will focus on are what have come to be called frameworks in
Euclidean space, which can be thought of as a collection of rigid
bars connected at their end points with joints that allow the bars
to make any angle with each other.

The joints are mathematical points, and the bars are simply
certain of the pairs of the joints. Our point of view treats
frameworgs as mathematical geometrical objects, and our results
are theo;ems in Geometry. However much of the motivation and
inspiration has come from Structural Engineering and Physics.
Indeed, one can reinterpret many of the results in terms of forces
being the basic object as in Physics and Mechanics. We ré%ard the
the tfeatment here as being more fundamental, and we derive forces
as mathematical objects, starting only from basic Euclidean
Geometry and Linear Algebra.

Tt turns out that there are several notions of the rigidity
of frameworks. The basic notion of rigidity is that the framework
does not flex. That is, there is no motion of the joints that
preserve the lenths of the Bars other than the restriction of a
rigid congruence of all of Euclidian space.

Another important kind of rigidity is infinitesimal rigidity.

An infinitesimal flex is a vector'assigned to each joint in such a



’“way that if the joints move with velocities egu. %o the given
vectors, then the first derivative of the (square of the) bar
lengths is zero. A framework is called infinitesimally rigid if
the only infinitesimal flexes are those that extend to an
infinitesimal flex of the entire Euclidean space. Roughly
speaking, infinitesimal rigidity is the linearized form of
rigidity.

A basic goal of this chapter is to give three proofs that an
infinitesimally rigid framework is rigid. (The converse is
false.)

Yet another form of rigidity is the notion of static
rigidity, a form of rigidity fimiliar to structural engineers. If
vectors are éssigned to the joints of a framework in such a way
that their sum is zero and such that there is no net angular
velocity, then we say that this set of vectors, now thought of as
forces, is in equilibrium. Such a set of egquilibrium forces is
said to be resolved if there are scalars that can be assigned to
each bar such that at each joint the vector sum of the scalars
@imes the bars is equal to the given force at that joint. The
framework is called staticly rigid if every set of equilibrium
forces can be resolved. Our next fundamental result is that
static and infinitesimal rigidity are duals, and thus they are
equivalentf

Throughout it also helpful to extend the notion of a
framework to include cables and (what have come to to be called)
struts between the joints. Cables allow the corresponding joints
to decrease or stay the same distance apart, but they do not allow

the joints to increase their distance. Struts do not allow their



. Jjoints to decrease their distance. Must of the ideas for bar
ﬂframeworks extend to these frameworks, which are called tensegrity
frameworks, and we have included them here so that we can compare
the proofs of infinitesigal rigidity implies rigidity.

We start with a discussion of the classification of the
congruences of Euclidean space as well as basic linear algebra to
set the notaion as well as to motivate and to calculate the notion
infinitesimal congruences. These serve to define the trivial

infinitesimal flexes that extend to all of Euclidean space.



© 2. Linear Algepra: 5HasSic vclalldidiis

-May governments, linear algebra, and the following notation

stay out of your way but provide the greatest possible service.-

We use the following notation, where points in real

d-dimensional space are written as column vectors.

X
d 1
R = {[ :] | %; real, i = 1,...,6}.
Xa
g 1 Y1
For p, qe€R , p=| -], q= [ ] getfine
L") LY'J
d d .
P'q = XY, +oo.. 4 X3V E the (standard) jinner product,
(1Y, tx, .
ptg-= l . , tp = . , for t € R = R” = reals.
xdiyn : txd
ip'j = Jp'p = the norm of p-p.,
lp - q] =P - @)-(P - Q) = distance fromp 1o q
_ _ 2 _ 2
--J(:-:1 Yl) +...%+ (xd yd) .
. - o2
We abbreviate p'p = p .

Exercise 2.1: Show that *he inner product can be written in terms

of the norm as follows:

p-q= %(IPIZ + IQI2 - |p - ql?.

We call this the polarization identitv.



d n

L: R o R? is called a linear map (or linear function or
linear transformation) if for all p, q € Rd, t € R

L(tp + q) = tL(p) + L(q).

I is called an affine map (or affine linear functiop or gjjing_.

transformation) if for all p, q € Rd. t e RY,

L(tp + (1-t)q) = tL(p) + (1-t)L(q).

Provosition 2:1: L: Rd - R® is an affine map if and only if

there is a linear map i: Rd -~ R® such that for all p € Rd

L(p) = L(p) + L(0).

0
The proof is left as an exercise. Note the vector O = [E].
0

3. Matrices
A patrix A 4is an n by d rectangular array of real

numbers, which we denote by A = (aij) and

2,1 ®12 2,4
A= AnXd - a a a
nl n2 nd
If two matrices Anxd and dem are such that the number of

columns of A is the same as the number of rows of B, then we

define the matrix product C = (cij)' denoted by AB, by



cij = ailblj + ai2b2j + ... + aidbdj .

where C = Cnxm ijs an n by m matrix.

Note that we can now regard our column vectors in Rd as d

by 1 matrices.

For any matrix A

j ___—_E——— nxd ’

. Thus using this notation we can write the inner product as a

matrix product. I.e., for p, q € Rd

It is easy to check that if Anxd and dem are matrices

then

(aB)' = B'a",

and if A and B have the same number of rows and columns
(respectively),

A+B = (aij+bij),
and

(a+B)" = a'+B'.



a e

The following is a standard result in linear algebra.

Proposition 2.2: Any linear map L: Rd + R? can be written

uniguely as
L(p) = Ap

for all p € Rd, where A is an n by d matrix,
or ar : For matrices Anxd' dem' c

mxr’

(AB)C = A(BC).

4. Congruences

Basic to the study of rigidity is the notion of a congruence.

A function h: Rd - Rd is called a congruence if distances

between points are preserved. This means that for all p, q € Rd
(h(p) - h(q)| = [p - q].

For example, for any fixed Py € Rd, the following function,

called a translation is a congruence.
h(p) = P + Py
A sguare matrix Adxd is called orthogonal if

ATA =an" =1,



- A 4 e o o A4

‘where I = °© 1 0 "6 is the @ by d identity matrix. Note
0 0] 1
d

for p, @ ¢ R
(Ap)- (Aq) - (Ap)"Aq = p'A'Aq =p'Ig=pq=pq.

Thus orthogonal matrices "preserve" the inner product.

Let A be any orthogonal matrix, and let Py € Rd be any

fixed vector. Define an affine linear function L: Rd - Rd by

L(p) = Ap + Pg: for all p € Rd.

Then

iLp) - L(g)|? = ((Ap + py] - (AT + po])”
= (ap - AQ)?

= (alp - q)?

=(p-a

= |p - q|%

Thus |L(p) - L(g)| = |p - g/ and L is a congruence. We will

show that such functions are the only congruences.
d d

Suppose L: R = R is a linear function such that
L(p)2 = pz, for all p € Rd. Note that by the polarization
d

identity for all p, q € R
L(p)-L(q) = 2xm? + L@? - Lp - @) = prq.

By Proposition 2.2 L(p) = Ap for some d by d matrix A. A is

orthogonal, since for all p, qQ € Rd

L



pq = Ap-Ag = p A'Ag = p' Ig, or p (A'A - I)q = O.

But if for any matrix B, for all p, q € Rd, pTBq = 0, then
B=0. (E.g. take p, @ to be vectors with all zeros except in
the i-th and j-th position respectively. Then p’Bq is the
1,j-th entry of B, which must be 0.) Thus A'A = I. Since A

1

is a square matrix A" = A™%, the inverse of A, and thus

AR = I.

Proposition 2.4: Let h: Rd - Rd be any congruence. Then there

is an orthogonal matrix A such that for all p e Rd

h(p) = Ap + h(0).
. . d d
Proof: Define the function L: R- - R by

L(p) = h(p) - h(0).

Then for all p, q € Rd

Lip)-L() = AL(p? + Li@? - (L(p) - L(@)®)

1i(n(p) - h(on? + (n(@) - h(0)® - (h(p) - n(@)?]

=l v - (-



Thus if L were linear it would correspond to an orthogonal

matrix and we would be done. To show L 1is linear consider any

p. g € R, t er.

[tL(p) + L(Q) - L(tp + q)12

= t2n(p)2 + L(q)% + L(tp + @2 + 2tL(p)-L(q) - 2tL(p)-L(tp + Q)
- 2L(p)-L(tp + Q)

2 2 2
= t2p2 + g2 + (tp + @) + 2tp-q - 2tp-(tp + @) - 2p- (tp + Q)

= [tp + q - (tp + @12

Thus L is linear and corresponds to an orthogonal matrix as
desired.
Remark 2.5: It is clear, without going into detail about the
computation above, that the polarization identity and the inner
product preserving nature of L allow one to remove L from the
bracket above.

See Elmer G. Rees, Notes on Geometry, Springer Verlag (1983),

pages 1-11 for another treatment of this subject.

-10-



5. Subspaces

Recall the usual definition a linear subspace X € Rd.
X 4s a linear subspace if for all p.qex.tekl.

tp + q € X.
1

X is an affine subspace if for all p, q € X, teRrR",
tp + (1-t)q € X.
The following is an easy result from linear algebra.

sitio : X ¢ Rd is an affine subspace if and only if X

=X+ Py = { P+ P, | pe X ) fora linear subspace i of Rd.

O

The affine span of a set S, denoted by < S >, 1s defined by

<§>={t,s, +...+ ¢

151 n®n | s, € 5, 1 =1,....0 ty+..ott, =1 }.

1

Exercise 2.2: Show that < s > is an affine subspace of Rd;'

Proposition 2.7: Let S c Rd be any set. Let h: S - Rd be any

function such that for all p., q € s
|h(p) - h(@)| = |p - a].

Then h extends uniquely to an affine linear function

h: <S> = % such that for all p, @ € < S > .

Mm)—&m|=w-qb

a

Furthermore, h extends to a congruence of R, but not uniguely

if < S > ¢# Rd.

-11~



Proof: Let Po € S. Applying Proposition 2.4 we see that

<s>-py= {s - Po | s € S) is a linear subspace of Rd. Let

P, - Porec+r Pp ~ Po be a basis for < 8§ > - Py See Halmos ( xx
), for the definition of a basis and linear independence. For any

s € <S>, we have 8 - p, = tl(p1 - po) R tk(pk - po). for

some t eo,t, € Rl. Then

) k

s (1 - [t1 + t2 +...])po + tlp1 +...+ t

kPr °

The coordinates ¢t ...,tk, and t. =1 - (t.+...t are unigque

0 1 k)
since Pp, - Pgyr---> Py - Pg .are independent.

1 4

For s € < S > as above, define

h(s) = tlh(pl) + tzh(pz) +...%+ tkh(pk).
We check that h is a congruence. Let p, @q € < S > be
arbitrary. Write p = topo + tlp1 +...4 tkpk' q = uypP, + u,p,

+...+ 1 , where ¢t_ + tl +...+ tk =u. +u, +...+ uk = 1.

kPk 0 0 1

h(g)1?

[h(p)

[(tg - ugIB(Pg) + (t; = Wy)h(py) +.oot (f = wh(p)1”
= [(t, - ) (B(B;) = h(Bg)) +--o# (t, = W) (A(B) = B(RG))1°
- [(t, - u ) (P, = Bg) +---t (t = W) (P = Py
1 1 1 0 et k k k 0
- [(t, - u)py + (t; = u )Py +.-et (- wIp1?
o~ Yo'Po 1 T WPy e TR T TPk

(p - @2,

-12-



. ,where the h's are removed by the polarization identity ayadil.
ﬂ is unique and is an affine map by an argument similar to

the one used in the proof of Proposition 2.3. By extending an

orthonormal basis for < s > - Po to all of Rd it is easy to
extend h to a congruence of Rd.

Problems:

Problem 2.2: Let P, Py Pyr Py be four distinct point in Ra
such that |p, - Pyl = |Pg = Pgl+ 1Py ~ Pyl = |p; - Pyl-

P3

P2

Figure 2.1

(a) Show that there is a congruence h: Ra - Rs such that

(b) If < Py Py Py Py > = R3 show that h fixes an

(affine) line in R°.

(c) If < py» Py Pyr Py s is an affine plane, show that h
can be chosen to fix all the points on a line.

(d) In both cases (a) and (Db) above, show h is 180°

rotation about a fixed line.

-13-



Problem 2.3: Let p = (pl. Pyr Pgr Py ps) be five points, a
3

pentagon, in R°, such that |p; = Py 4| = |pi_1 - py| and

Py - Pisol = [Py o - p;| for i=1,...,5 indices modulo 5.

Show that p is a planar pentagon, one of the two examples in

Figure 2.2.

Figure 2.2

2 2 2

Problem 2.5: Let h: R” = R a function such that if p, g € R
and |p - q| =1, then |h(p) - h(q)| = |p -q| =1. Show h s

a congruence.

-14-



., Problem 2.6: Consider six positive real numbers d12 = d21,

dyg = 95y @34 = 94y dp3 = G52 dgg = 943-

version of the triangle ineguality holds for every three of the

Suppose the following

dij's with exactly three distinct indices 1 ¢ jer ke i1,

i, J, ke {1,2,3, 4},

dij + djk 2 dik .

Is it necessarily true that there are four points
3 =
P,r Py Pyr Py € R such that |pi - pj| = dij for all i # J,

i,j€{1,2,3,4},

Problem 2.7: Let P, P,+ Py q,. 9y 95 be six distinct points

in Ra. We regard these as the six points of a not necessarily

convex, possibly self-intersecting octahedron. Suppose opposite

edges are of egual length. I.e.,

|p; - Py

gh=lag - qgl. 1 ¢ 3, 4, 3¢ {1, 2, 3)

and

sl = lag - eyl i# 3 4, 3e L2280

Show that the octahedron is symmetric about a point, line or

plane, and find non-trivial examples of each.

-15-



6. Congruent Motions

Proposition 2.3 classified the congruences of R”. We now
wish to classify the derivatives of "congruent motions”. These
derivatives, thought of as vector fields defined on all of Rn, are
infinitesimal motions that every body has, and we need to know
what they are in order to make a proper definition of

infinitesimal rigidity later.

d d

For every t € [0,1] suppose ht: R =R is a congruence,

and (p,t) » ht(p) is continuously differentiable (abbreviated as
Cl) simultaneously in p and t. Also for all p € Rd, ho(p) =
p. We call such an ht a congruent motion.
=9 <
Let Vp = ETht(p)|t=0 , the derivative with respect to t of
ht(p), evaluated when t = 0. We call such a function p w~ Vp a

trivial vector field or an infinitesimal congruence.

Example 2.8: For d = 2, define

x.cos t + x,sin t ]

[ 1 2
-xlsin t + xzcos t

cos t sin t][xl]

[-sin t cos t

X2
Then
AR By I N
L)
We can view this "infinitesimal rotation” in the plane as in
Figure 2.3.

-16-
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N

) Figure 2.3

Proposition 2.9: Let Vp be an infinitesimal congruence. Let

d
Pl. p2 € R, Then

(p, = P, (V -V_ ) =0.
1 2 p1 p2

Proof: Let ht be the congruent motion defining fvp. Then

b (py) - ht(p2)| = |py - p2|, and we differentiate the following

inner product with respect to t.
(h,(p;) - ht(pz)]'[ht(p1) - h (p,)] = constant.
We get
d d

-17-



Evaluating this when t = 0 gives the result.

7. Explicit Form of Infinitesimal Congruences
Recall that for a congruent motion ht(p) = Atp + ht(O).
whére At is an orthogonal matrix, and ht(O) is a C1

function. Thus each coordinate of At is a C1 function. We
can then differentiate the relation ALA = I with respect to t.

We get

_da T _ .7,d a .7
0 = a¥(AtAt) - At(aTAt) + (ETAt)At'
Since hy(p) = p = Agp + hy(0) for all p e r%, 0 = h (0) and
hence p = AP for all p. Thus A, = I. Let S = g?At|t=o .

Evaluating our formula above at t = 0, we get
0=IS+SI=5+S§s

In other words S is skew symmetric, s' = -s.

d

Proposition 2.10: A vector field Vp (Vp € R is a vector for

each p € Rd) is an infinitesimal congruence if and only if

Vp = Sp + pb '

where S'r = -S is a skew symmetric matrix and pb € Rd.
Proof: We have already seen that any such infinitesimal

congruence has the above form.

-18-



Let S = -s' be any skew symmetric matrix, and let Py € nd.

pefine an orthogonal matrix At by
t2 ts

n
2 t n
At=1+ts+'2_!s +o..'.’-ﬁ-!-s +.!.Ee .

It is easy to check that the above infinite series of
matrices converges for all t € R It is also easy to check that
(using the above notation) if X and Y are two d by d matrices

exeY X+Y

that commute, i.e., XY = ¥X, then = e . Thus since

T T
etsetS = eSS . e® = 1. Thus A ~ is

T o2 T T _
SS = -8 = 8§ 8, AtAt = t

orthogonal for all t. Clearly

a
Tt Pele=0 = St

s
l
Thus we define
Then
2 h, (p) = sp +
at Pe(P)lg=p = SP * Po-
as desired.
Note that the collection of all infinitesimal congruences is

a vector space. We compute its dimension.

Corollary 2.11: The dimension of the space of infinitesimal
congruences of Rd is 919%31 .

Proof: There is a vector space isomorphism between

{ (s,py) | Sgq Skevw symmetric matrices, P, € k% ), ana
infinitesimal congruences. The dimension of the skew symmetric
matrices is d(d-1)/2, and the dimension of RS is d. So the

total dimension is d(d-1)/2 + d = d(d+1)/2.

-19~-



xample 2.12: Let d = 3, and write a skew symmetric matrix
as
0 85, 8,5
S = -512 0 s23 .
~S13 "Sp3 O
Let
~S23
r = 513 .
~S12

Then for p € Ra, Sp = r x p. the usual cross product. Thus

Vp =T x P+ P,

is a general infinitesimal congruence in Rs.

Example 2.13: Let d4d = 2.

Define

which corresponds to rotation by 90° counterclockwise. Thus

Vp = slzJp + pb.

S

Suppose we translate our coordinate system so that the origin

is at p, = -Ei; J-lpb , where we assume s,, # 0. Note
1

=1 = 3. We calculate the vector field at P,

J

-20-



p

4 -d
J(~—— J p') + p' = 0.
" 1 512 O O

= %12
Thus in our new coordinate system the new pb is 0. Thus the
vector field is the "infinitesimal rotation" as in Figure 2.3.

If = 0, then V_ = pb an infinitesimal translation.

S12 P
This gives a geometric picture of any infinitesimal congruence for
dimension two.

In dimension three we cannot always completely eliminate pb,
but we can translate the origin so that Py and r (as in the
example above) are parallel. This is sometimes called a '"screw
motion". Trajectories of the vector field (curves whose tangent
at each point;is the evaluation of the vector field) are helices

aboﬁt a central line, as in Figure 2.4. Of course, infinitesimal

translations are also possible.

A

Figure 2.4
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Problems:
Problem 2.8: (a) 1If sdxd is a skew symmetric matrix and Adxd

1SA is skew symmetric.

is an orthogonal matrix, show that A~
(b) Let V be a finite dimensional inner product space.
(I.e., for p, g€V, p, q is defined and obeys the usual
properfies for the inner product. See Halmos ( xXx ) for complete
definitions.) Show that the notion of a liner function L: Va2V

being skew symmetric is independent at the orthonormal basis of V

used to define the skew symmetry.

Problem 2.9: Another approach to infinitesimal congruences is to
simply define them as vector fields that satisfy the equation of,
Pfoposition 2.9.

(a) Show that the set of vector fields that satisfy the
equation of Proposition 2.9 is a vector space, where vector
addition is given by (V + W)p = Vp + Wp. where Vp' Wp are two
vector fields.

(b) If Vp is a C1 vector field, show that we can
&integrate" Vp to find ht(p) such that g? ht(p) = vht(p)'
ho(p) = p. If Vp satisfies the formula of Proposition 2.6 show
that ht(p) is a congruence.

(c) 1If Vp is any vector field satisfying the formula of

Proposition 2.6, show that there 1is a skew symmetric matrix S

and Pé € Rd such that
Vp = Sp + pb, for p = 0, LPREREY €5’

where ei

elsewhere.

is the vector with 1 in the i-th coordinate and O

-22-



(d) 1If Vp satisfies the formula of Proposition 2.9 and

vp =0 for p-0, LIRERR FY then show that Vp = 0 for all

P € Rd.

(e) Show that any Vp that satisfies the formula of
Proposition 2.9 is of the form Vp = Sp + P, for all p € Rd,

where S is a skew symmetric matrix.

Problem 2.10: For J defined as in the exmaple above for d = 2,

show that
tJ [ cos t sin t]
e = |- .
-sin t cos t
Problem 2.11: For J as above, and Vp = Jp, show (directly)

that the integral of this vector field is ht(p) = eth.

8. Frameworks and Configurations
We shall often consider a finite sequence of v points
a . .
Pl,--..P\,ER- We call p = (Pys-+:+Py) a configuration of v
points in Rd. We regard p as being in RVd, the configuration
space. We say two configurations p, q € RVd are congruent and

write p ~ g if there is a congruence h: Rd - Rd such that

(h(p,),..-0 B(By)) = (h(gy),ens Bl

Note that congruence is an equivalence relation.

Let G = (V,E) be a finite undirected graph without loops or

multiple edges. V 4is the set of yertices, V = (2,..., v), and E

is the set of edges, which are regarded as a subset of the set of

-23-



all unordered pairs of distinct vertices. We will denote an edge
by (i,j). by 1,j, or simply by ij, where i,j € V. We will let
e denote the number of edges. An edge is sometimes called a

member. If p = (Pl""'pv) is a configuration of v points in

Rd. the pair G, p, written G(p), is called a bar framework, a
rod framework, a bar and joint framework, or simply a framework

in Rd. Thus G(p) is an assignment of a pojint 1 € Rd for

each vertex i =1,..., v € V. We also call pi a joint of
G(p), and we say G(p) is a realization of the configuration p.
Suppose G(p) and G(g) are two realizations of G. We say

G(p) is eguivalent to G(q). and write G(p) ~ G(q), if for all
{i,j) bars of G, |p; - pj| = |q; - qj|.

" ‘We say G(p) is globally rigid, or uniquely realized, if
when G(p) ~ G(g), then p ~ g. 1In other words when G(p) and
G(q) have corresponding bars of the same length, then p is

congruent to q.

Example 2.14: If the configuration p = (pl,..., pv) is affinely
. ] - ¢ - N -
independent (i.e P, P,: Py_4 P, P, P, is linearly

independent) and G has all v(v + 1)/2 rods, then G(p) is

called a (v-1)-dimensional bar simplex. (Note v < d+1.) By
Proposition 2.7 every simplex is globally rigid. In fact every

realization of G is globally rigid, not just the ones that have

p as affinely independent. However, the notion of a simplex will

be important later.

In order to graphically describe rod frameworks we will use

the following notation.
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R oP; represents a joint.

l?_——% represents a bar (or rod) between P and pj.
i J

Figure 2.5 shows 0, 1, 2, and 3 dimensional bar simplices in Ra.

o o———ﬁ
O-simplex '1-simplex 2-simplex 3-simplex
Figure 2.5

Figure 2.6 shows other bar frameworks that happen to be .

globally rigid in RZ? (as well as in k3).

Figure 2.6



See Connelly (19xx) for a proof that these frameworks are
globally rigid (even in Rs).

Note that bars may cross (i.e., intersect) as in the first
two examples in Figure 2.6, but this is ignored for our

definitions.

Figure 2.7 shows some examples of bar frameworks that are not

globally rigid in Rz.

Figure 2.7

Note that the first two frameworks are equivalent to each other,
but they are the onlv two equivalence classes modulo congruence of
the configurations. The last framework has the "dangling" bar
move continuously through infinitely many equivalence classes.
Figure 2.8 shows a bar framework that is globally rigid in

R1, but not in R2 (when regarded as a subset Rz instead).
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Figure 2.8

9. "Tensegrity Frameworks
It is very helpful to expand our notion of a framework. . In
particular, for a graph G = (V,E), we partition the set of edges

E called members into three disjoint sets E_, Eo, E+ called

cables, bars (or rods), and struts respectively. We call G =

(V;E_,EO,E+) a signed graph, and if V= (1,...,V), (pl,...,pv) =
p € RVd, we call the pair G, p, dentoed as é(p), a tensegrity

framework in Rd, or simply a framework in 9, Note that if E

= EO' then we have our previous notion of a bar framework.
We can now define a partial ordering on the set of
configurations Pp € RVd. For two configurations p, q € Rd, we

say G(p) dominates G(Q) or G(p) is a dominant of G(q), and

write G(p) 2 G(g) if

Ipi - p3| 2 Iq.‘l = Qj‘ for (1, J) € E_,
‘pi - pjl = ‘qi = qj‘ for (i, J) € Eoo and
Ip; = byl ¢ lag - @yl for (i, 3} < E,.



Thus cables are permitted to shorten or stay the same length,
struts permitted to lengthen or stay the same length, and bars are
only permitted to stay the same length. Note that if G(p) 2 G(q)
and G(g) 2 G(p). then G(p) ~ G(q), where all members are
regarded as bars.

Note also that cables (as well as struts) are regarded as
stretched "taut" (or compressed in the case of struts) and not
"gslack". This is because we are considering here only the local
behavior of the framework. Distance constraints which are not
sharp might as well not be part of the definition.

We say G(p) 4is globally rigid if for every configuration
q € RVd, G(p) 2 G(g) 4implies p~ qg. In other words G(p) 1is.

globally rigid if every other non-congruent realization of G has

a longer cable or bar, or a shorter strut or bar.

Example 2.15: We extend the notation for bar frameworks as

follows:
0 represents a point (or joint) as before
6——————© represents a bar (or rod) as before
O rocosorcseme O represents a cable

C—» represents a strut

Figure 2.9 shows some examples of tensegrity frameworks that are

2

globally rigid in R (in increasing order of difficulty of

showing they are indeed globally rigid).
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Figure 2.9

The second triangle must have the lines through the three
See later

cables, between the two triéng]es, go through a point.

chapters on energy methods for proofs that these frameworks are

globally rigid.
Figure 2.10 shows examples of globally rigid tensegrity

3

frameworks in R which will be discussed in later chapters.
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Figure 2.10

Note that for all of the tensegrity frameworks of Figure 2.9
and Figure 2.10, if cables are changed to struts and struts

changed to cables, then they are pot globally rigid.

Problems:

Problem 2.12: Let G be any bar graph such that G remains
connected upon removing O or 1 vertices. Show that there is a

realization of G, G(p). in R1 with each P; distinct, such

that G(p) is globally rigid in R'.

Problem 2.13: Find an example of a bar framework in Rl that is

globally rigid in Rl and R2, but not in Ra.
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"' 40. Rigidity

Let G(p) be any tensegrity or bar framework in Rd. We now

face the question of what it means for a framework to be rigid.
One natural idea is to Say that there is no continuous motioﬁ of
the joints — keeping all the cable, bar, and strut constraints —
except for the trivial motions coming from congruences of all of
88, This is Definition 2 below. In Definition 1 we do not even
assume that there is a motion, but only that there are
realizations of G arbitrarily close to G(p) — keeping all the
cable bar and strut constraints. The following are adapted from
Gluck (1974). ‘

d

pefinition 1 (Topologicall): G(p) 4is rigid in R if there is an

¢ > 0 such that if G(p) : G(g) and |p - g| <€, then p~ q.

tio (Continuous): G(p) 4is rigid in &°

d

if for every
continuous path p(t) € R'C, p(0) = p, such that G(p) 2 G(p(t))

for all O ¢ t < 1, then p(t) ~ p, for all 0 ¢t < 1. We call

p(t) a continuous flex of G(p).

Definition 3 (Analvtic): G(p) is rigid in Rd if for every
analytic path p(t) € RVd, p(0) = p, such that G(p) 2 G(p(t))
for all O ¢ t ¢ 1, then p(t) ~ P, for all 0 ¢ t ¢ 1. We call
p(t) an analvtic flex of G(p).

If G(p) 4s rigid by Definition 1, and if p(t) 1is any
continuous flex of G(p), then there is an & > 0 such that if
0 <t <5, then |p(t) - p(0)| < e, and thus~ p(t) is congruent

to p(0). Applying this argument to any interval and using a
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standard argument with the connectedness or compactness of the
interval [0,1], one can show that G(p) is rigid by Definition 2.
Clearly if G(p) is rigid by Definition 2, then G(p) is rigid
by Definition 3.

Definition 1 is the easiest to verify, and Definition 3 is
often convenient to use. The analytic flex is useful for finding
many derivatives, and later it will be convenient to know that
knowledge of all the derivatives determines the flex. Thus the
folowing Proposition can be very useful, and shows that we do not

have be concerned about which definition to use.

Proposition 2.16: All three definitions of rigidity are
eguivalent. -

Proof: By the comment above, we need only show that if G(p) is
rigid by Definition 3, then G(p) 1is rigid by Definition 1.

Suppose G(p) dis not rigid by Definition 1. Define

My = (a<r™ | 6p) 2 6la) )

It is easy to see that Mp is a semi-algebraic set in the sense
of algebraic geometry. See Milnor ( XX ), page XX for a
definition. When the above conditions are written explicitly in,
terms of coordinates, we see that Mp is defined by a system of
polynomial inequalities.

Define the orbit of p as

np=(qlq~p}-
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' ‘Thus Hp c Mp is another semi-algebraic set. Since G(p) is not
rigid by Definition 1, by the Curve Selection Theorem, cf. Milnor
( xx ), page xx, there is an analytic path p(t), p(0) = P,

0 ¢t ¢ 1, such that for 0 < t ¢ 1, pl(t) € Mp \ Hp. This

contradicts the assumption that G(p) is rigid by Definition 3.

Example 2.17: Figure 2.11 shows some examples of rigid but not

globally rigid frameworks in R2.

Figure 2.11

Figure 2.12 shows some examples of rigid but not globally

rigid frameworks in Ra
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Figure 2.12

If G(p) 4is not rigid, we say G(p) is flexible, a

mechanism, or a linkage, and as in Definition 2 or Definition 3,

p(t) is a flex or finite motion of . G(p).

Figure 2.13 shows some examples of (non-trivial) flexible

frameworks in Rz.

@
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Figure 2.13

See Grunbaum and Shephard ( xXx ) fér examples such as the one
on the left.

In the middle example two sets of three points are colineér
on perpendicular lines. The example on the right is due to
Bottema ( xx ) (called Bottema's 16 bar linkage. See Wunderlich (
xx ), as well, for other interesting properties of this mechanism.

Figure 2.14 shows an example of a flexible framework in Rs.,‘
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Figure 2.14

This example is due to Bricard (1898). See Connelly (1979)
as well. The whole framework is symmetric about a line.
Eemark 2.18: One can formally "reduce" tensegrity frameworks to

the special case of bar frameworks. Namely replace every

P P g new vertex

Cable ol;.ooo.-oj With g———o———op
i J

and replace every

new vertex

v -4 .
strut pi pj with o::;—-gi pj
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The rigidity of this altered framework is eQuivalent to the
rigidity of the original framework, but (because of the added
joints) we shall see later that other properties of interest, such
as infinitesimal rigidity defined shortly, will not be preserved
by such alterations. Cables and struts are important objects to

keep in mind when they arise.

11. Infinitesimal Rigidity

Although some special technigues can be used to prove certain
frameworks are rigid, we need a method that is widely applicable.
Thus we linearize the notions of rigidity. This kind of rigidity
can be checked by or related to standard techniques from linear
algebra.

The idea behind the following definition is to differentiate
the cable, bar, and strut conditions on the lengths of the
members. For example, for ({i,j) a bar, during any flex p(t),
the square of .the bar length, is |pi(t) - pj(t)|2, which must
remain constant. The derivative of this at t =0 must be zero,
but also can be calculated as 2(pi - pj)'(pi - pB) = 0, where pi
and pB are the derivatives of pi(t) and ﬁj(t), respectively,
at t = 0. Thus we are led to the following definition.

Let G(p) be any tensegrity or bar framework in Rd. Let

(pi,...,p%) = p' € RVd. We say p' 1is an infinitesimal flex of

G(p) 4if for all members ({i,j} of E=E_U Eo U E,

A

0 for ({i,J) € E_
0O for (i,j) € Eo
o for (i,j) € E_.

(p; = Py)- (P} = Py)
(2.1) (py - Pyl (P} = PY)

w
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We say p’ dis a trival infinitesimal flex if there is an

d

infinitesimal congruence Vp in R such that pi = Vp for all
i
i=1,...,v. We say G(p) is infinitesimally rigid in R® if

every infinitesimal flei of G(p) 4is trivial.

It is not immediately obvious that an infinitesimally rigid
framework is rigid. Nevertheless, it is still true, and this will
be the object of the next several sections.

Meanwhile, we need to build a collection of frameworks that
we know are infinitesimally rigid as well as some basic extension
lemmas.

We observe that there is an analogue of Proposition 2.7 fo;
1nfinitesima; flexes of bar simplices. Recall that a bar simplex

is a bar framework G(p), where E = Eo consists of all possible

bars, and p = (pl,...(pv) is an affine independent set.

Lemma 2.19: Let G(p) be a bar simplex in Rd. Let
(pi....,pk), l1 ¢k ¢ v, be an infinitesimal flex of the face
(pl,...,pk), i.e., (pi,...,pi) is an infinitesimal flex of the
suﬁ-framework on the joints (pl,...,pk). Then (pi,...,p&)
ex;ends to p' = (pi,...,pi,...,p;), which is an infinitesimal
flex of G(p). Furthermore if k = d+1 or k = d, the extension

is unique. \
Proof: We show how to define pk+1. Then we can inductively

define p&+2,...,pé. We need

(pl'<+1 = p'i).(pk.’.l - pi) = ol fDr i = 1,.--.ko
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But this is the same as

Piys’ (Peyy = Pi) = PilPpyy — Pyl for 4% 1oeee ke

This is a system of k linear equations in d unknowns, the
coordinates at P 4 since P, ~ Ppuqr Py ~ pk+1""'pk - Pr+1
is a set of linearly independent vectors, the system always has a
solution and is unigue for k = d. (There is nothing to define

for k = d+l.)

proposition 2,20: Let G(p) be a bar simplex in S, Then G(p)
is infinitesimally rigid.

Ezggii First éonsider the case when Vv = d+1, where v - is the
number of vertices of G, as usual. Let p' = (pi,..., pé+1) be
an infinitesimal flex of G(p). (pé+1, Pa+1'°""" pé+1) is a
trivial infinitesimal flex, an jnfinitesimal translation,, of
G(p), and thus ‘(Pi - Pé+1' Pé = Pi4r' "’ Pé - Pé+1' 0) 1is a
trivial infinitesimal flex if and only if P’ is a trivial
infinitesimal flex. (Recall that the trivial infinitesimal flexes

form a vector space.) So without loss of generality, we assume

Pa+s1 = O

By replacing each P; with P; = Pgys we may also assume
that Py,.; = 0. (p' 4is still an infinitesimal flex of
(Py = Pa4ar-+*+ Pa = Pasa’ 0) and it is easy to check that P’

is trivial for this translated configuration if and only if p'
is trivial for the original configuration.) Thus Pyreces Pq’ is

a basis for Rd.
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Now define a matrix S by Sp1 = pi, sz = p'2,...,Spd = Pé-

Using (2.1) when one vertex is d+1, we observe that
(Py = Pgyq) (P} = Pi4y) = Py"P} = Py-Spy, =0 for 1 =1,....d.
Using (2.1) again for i # j, i,j € {(1,...,d}) we get

(pi = pJ).(p.:L - pa) = 0,

P; " Pj Pj'PB - Pj‘Pi - P1°P3 =0,
Pi‘Ps = - Pj‘Pi.
P; SPj == Pj‘SPi-
Thus pi-Sp:j = - pj-Spi for all i,j € {1,2,...,d). Thus § Iis
skgw symmetric, and p' 1is a trivial infinitesimal flex. (The

bilinear form defined by vSw, v,w € Rd, satisfies vTSw = —wTSv

if this equation holds for all v, w in a basis for Rd.)

If v ¢ d extend P,s Pyrecer By to an affine basis

3 d .
Pyreos+Pyr Pyyqrecer Pgyq of R, If p is an infinitesimal
flex of G(p), we can extend p' to (pi,..., pb,..., pé+1) an
infinitesimal flex of the simplex defined by Pyrecor Pgyq” by

Lemma 2.19. By the case when v = d+1, (pi,..., pa+1) is a
trivial infinitesimal flex at (pl,..., pd+1). Thus (pi...., p;)

is a trivial infinitesimal flex at (pl...., pv).

We can now apply Lemma 2.19 and Proposition 2.20 to build

many examples of infinitesimally rigid bar frameworks.
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P
a7

os n ¢ Let Go(pl rooe ,pv_1) PE ail 4iisddidtEOiRasd

rigid framework in Rd. Suppose for some

{d,p0000d3Y € {2,...,V=1}, Ps +ecer P are affine independent in
1 a il id

Rd. Define a new graph G by adding one new vertex Vv, and d
bars, {11.v), (iz.v},..,, {id,v). Let p, € Rd be any point not
in the affine span of P; roo-r Py« Then G(pl..... Py_1’ pv)

1 d

is infinitesimally rigid in Rd.

Proof: Let p' = (pi,..., pé) be any infinitesimal flex of G(p).
Since Go(pl,..., Pv—l) is infinitesimally rigid in Rd.
(pi,.... pb_l) is a trivial'infinitesimal flex at (pl,.... pv).
By Lemma 2.19 there is a unique PQ extending to (pi,..., p&).

Clearly the trivial extension is one possible extension. Thus

(pi,..., pb) is a trivial infinitesimal flex at (pl,..., Pv)'

Figure 2.15 shows some applications of Proposition 2.21.‘
starting with a simplex. The numbering of the joints indicates
the order in which the joints have been introduced by Proposition
2.21, The first d are the joints of the starting simplex. Such
a framework is called a simple framework, and we call the sequence

a simple ordering.
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Example 2.22:

(4 1)
8/ )
130 )
1¥ 14
v L o [~
? d l \ 1 F
3 3

Figure 2.15
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pottom right framework is a triangulation of the surface of a
cube.

Note that for the above method to work, there must be a
d-simplex in G somewhere for the starting point. Figure 2.16
shows an example in R2 where G(p) 1is jnfinitesimally rigid,

but G has no triangles.

Figure 2.16

G is the graph K3,3' the complete bipartite graph, and we
must insist tﬁat the joints do not lie on any conic in Rz. See
Chapter xx for a discussion of this kind of example.

Remark 2.23: Note that if p(t) is a analytic flex of a bar
framework G(p) in Rd, then ST pl(t) = p'(t) is an
jnfinitesimal flex of G(p(t)). This follows from differentiating
the relation |pi(t) - pj(t)]2 = constant, for {i,j) a bar of
G. However, even if p(tl) is not congruent to p(tz) for O ¢
t1 < t2 ¢ 1, it may turn out that p'(0) 1is trivial. For
instance, we can replace any flex pl(t) with p(tz) for t > 0.

However, fof some O ¢ t ¢ 1, p'(t) must be a non-trivial

infinitesimal flex of G(p(t)), since otherwise the derivative of
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all the lengths between pairs of points would be O, and p(t)
would be a congruence. This can provide us with many examples of
non-trivial infinitesimal flexes.

On the other hand, Figure‘2.17 shows an example of framework
that is rigid, yet it still has a non-trivial infinitesimal flex

and hence is not infinitesimally rigid.

2
L

Figure 2.17

We indicate an infinitesimal flex p' by representing pi
as an arrow at P;- If there is no arrow at Py then it is
understood that p& = 0. In the example above, the point with the
arrow must lie on the line through the two points it has a common
edge with. This example also shows that the condition, that P;

not be in the-affine span of Py Py is necessary in

1. a
Proposition 2.21.

The following simple consequence of Proposition 2.21 is very
useful.
Corollary 2.24: Let p = (pl,..., pv) be a configuration of v
points in Rd whose affine span is all of Rd. Then there is a
bar graph H on v vertices such that H(p) 4is infinitesimally
rigid.
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'

Proof: Start with d+1 of the points of p whose affine span is

Rd. Say these points are pl,...,pd+1. Put bars between each

pair of these first d+1 points. For each of the other p; € Rd,
i = d4+2,...,v, P; must not be in the affine span of some subset
of d of the points PyrecerPgyqe Put a bar from Py to each of
the d corresponding points to ;onstruct the bar graph H. Thus

by applying Proposition 2.11, the bar simplex defined on the first
d + 1 points is infinitesimally rigid. By Proposition 2.12, the

framework H(p) is infinitesimally rigid.

Remark 2.25: H has exactly ELE_;_ll

d(d + 1)

+ [v~-(da+1)])d =vd -
bars. This turns out to be the minimum‘needed. Oof '~
course for tﬁe Corollary H could be the‘complete graph
connecting all pairs of the v vertices, but at this point the
extra bars do not help in proving the needed infinifesimal

rigidity.

12. Pinned Vertices ‘

It is sometimes helpful to add more to the definition of a
framework, as when we defined tensegrity frameworks. For a signed
graph G = (V; E_,EO,E+) we designate a subset Vo c V of the
set of vertices. A vertex in Vo is called a pinned vertex.
These vertices are regarded as having their corresponding joints
pinned or fixed to the underlying Rd. In each type of rigidity -
global rigidity, rigidity, and infinitesimal rigidity - we alter
the definition of dominance (or equivalence of frameworks), flex,

and infinitesimal flex in the natural way to take account of the
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pinned vertices. 1In the case of infiniteslimal rigidtlty, aihd

jnfinitesimal flex is defined as a vector p' € RVd
satisfies (2.1) as before, but require that p' =0 for all 1 e

that

v in addition. We discuss here only the case of pinned vertices

o'
for infinitesimal rigidity.

Next, we must decide what the trivial infinitesimal flexes of
pinned framworks are. This is most naturally determined by the

affine span of the pinned joints < Py >iev. = xo.
o

The congruences of Rd fixing Xo are the orthogonal
functions (linear maps corresponding to orthogonal matrices),
regarding O € X,. which fix each point in X . These functionms
in turn are determined by the orthogonal functions of the :
ortﬁogonal complement of Xo in Rd. We define these orthogonal
functions as the congruences modulo xo. and they are clearly a
subgroup of all congruences of Rd.

As in section 5 we define the infinitesimal congruences
modulo X, or the trivial infinitesimal flexes modulo X, as
those infinitesimal congruences coming from congruences modulo

Xo.

Thus, as before, we say a tenseguity framework G(p), with
pinned vertices, is infinitesimally rigid if the only
infinitesimal flexes b', with pa = 0 for all 1 € Vo, of G(p)
are trivial infinitesimal flexes modulo X,.

The basic application of the above ideas is when xo is a
or (d-1)-dimensional. Then the only trivial infinitesimal flex of
G(p) modulo X is the O infinitesimal flex.

(o]
our graphic description of frameworks will be augmented so

that
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® or ng.r represents a pinned Joint.

© . represents an unpinned joint.

The second notation for pinned joints is popular in structural

engineering texts,

Example 2.26: Figure 2.18 represents some infinitesimally rigid

pinned frameworks in R2,

Figure 2.18

Notice that members between pinned vertices are superflous
and pinning only one vertex does not change the infinitesimal
rigidity of G(p).

Figure 2.19 shows some examples of pinned frameworks in R2

that are not infinitesimally rigid. - The (non-trivial)

infinitesimal flex is indicated as before with arrows.
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l1 .. ..
...loo- ..ooo..,‘ " .'J,
s L
. ... XXXk ‘.. r
[ J A ‘. ;

Figure 2.19

We have included this description of pinned vertices mostly
for its convenience. The infinitesimal rigidity of pinned
frameworks can be "reduced" to the usual infinitesimal rigidity of
unpinned frameworks. Connect the pinned vertices by some
infinitesimally rigid framework that contains the pinned vertices.

Figure 2.20 shows an example.

The infinitesimal rigidity of:

is equivalent to the

infinitesimal rigidity of:

Figure 2.20
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d (or are

R I1f the pinned joints have affine span all of R
affine independent), unlike the example in Figure 2.20, then the
added framework can be chosen to consist of only bars added among
the old pinned vertices. By the Remark 2.25 this can be

_d(d + 1)
accomplished by adding vod —_— bars, where Vv, is the

number of the original pinned vertices.

Example 2.27: Figure 2.21 shows how the above can be done.

The infinitesimal

rigidity of

is equivalent to —O
the infinitesimal

rigidity of

Figure 2.21

One advantage of having pinned joints is that it is possible
to "move" a joint along a member to create other pinned frameworks
which have the same set of infinitesimal flexes as the original.

This might create new vertices as in the example in Figure 2.22.
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The infinitesimal

rigidity of

is equal to the
infinitesimal

rigidity of

Figure 2.22

Note that for cables and struts, no fixed joint can be moved
to the other side of the non-fixed joint on that member, but for
bars the fixéd joint can be moved to any point on the line
containing the member except to the non-fixed joint.

We must be careful, however, because two frameworks Gl(p),
Gz(q) with the same set of variable joints and the same set of
infinitesimal flexes are not always both infinitesimally rigid or
both not infinitesimally rigid. For example, 1if Gl(p) has only
one fixed joint and Gz(q) has two distinct fixed joints, then
the notion of what the trivial infinitesimal flexes are, are
different for Gl(p) and Gz(p).

One disadvaptage of trying to create frameworks with fixed
vertices - even for bar frameworks - is that there may be no
(d - 1)-dimensional simplex (for instance) in G(p). (For a bar
framework for d = 2, of course, there always is.) Without such a
simplex it is hard to tell what to pin, a priori, to create a
pinned frameworkvwhoge infinitesimal rigidity is equivalent to the

original unpinned framework. There are many examples of
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.. infinitesimally rigid bar frameworks in R

%  whose underlying

graph is Km n’ the complete bipartite graph of order m, n. Such
’
graphs have no triangles. See Bolker, Roth (198xx ). (Km n is

defined as m vertices joined in all possible ways to n other

~vertices, but in each of the two sets of vertices, no two vertices

are joined.)

On the other hand, for any framework G(p) it is possible to
create a pinned framework Go(q), with additional pinned vertices,
whose infinitesimal rigidity is equivalent to the infinitesimal
rigidity of G(p), and the only trivial infinitesimal flex of Go(q)
is the 0 infinitesimal flex.

Choose ahy points Pyreoss Pg of G(p) whose affine span is
(d - 1)—dimeﬁsional. For Go(q) fix Py and then add fixed
joints and connect them to P, 'in such a way that infinitesimally
P, is constrained to move in a fixed line through P, Simiiarly
connect fixed joints to p; S©° that P is constrained |
infinitesimally to move in a fixed plane through the previous"
line, etc. for all the points Pyreveo Py We see this applied in
Figure 2.23 below. See Whiteley (19xx) for more discussion of |

this idea.
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Figure 2.23 .

13. Reformulation of Infinitesimal Rigidity

When one has an infinitesimal flex p' of a framework
G'(p), it is often easier to test the change in distances, rather
than whether p' is trivial directly. However, we must be

careful when the affine span at p is not all of Rd.

Example 2.28: Let G(p) be any (tensegrity or bar) framework in
Rd with v vertices and such that the dimension of the affine
span of p is n ¢ v-2. Let pl,...,pn+1 be such that

> = < p >, the affine span of p. Define an

< Pyreccr Ppyg
infinitesimal flex for G(p) by first setting pi = pk = ... ph+1
= ... pb_l = 0. Define pb # 0 to be perpendicular to < p >.

We will show p' = (pi,..., pb) is a non-trivial infinitesimal

flex of G(p). Clearly p*' is an infinitesimal flex of G(p).
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Lh]

Suppose, without loss of generality, that Phey = 0. Suppose
a .

s is any skew symmetric matrix, and pb € R, Suppoée
Spi + Py = pi, i‘= i,...,V. We look for a contradiction.
Spi = - pb, for i=1,...,v-1, and Spn+1 = S0 =0+= - pb. Thus
Spi =0, for i=1,...,n+1, and < PyreesPp >=<p> is a
d

linear subspace of R and thus Sq = 0 for all q € <p >.
Thus in particular Spv = 0. But pb #* 0 and so p’ cannot be a
trivial infinitesimal flex of G(p). Figure 2.24 shows this

infinitesimal flex for v =4, d=23, n= 2,

Figure 2.24

Thus when p has "too many" vertices and lies in some

hyperplané of Rd, then G(p) can never be infinitesimally rigid,

no matter what G is.

The next example shows what can happen even when the joints
of p are affine independent. 'G(p) may still not be

infinitesimally rigid.
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Example 2.29: Let P = (Py....,P,) be affine independent in R"

(so v < d+1). Let G(p) be any tensegrity framework except a
bar simplex. Then G(p) is not infinitesimally rigid in Rd.

For some (i,j} < (1,2,..., v}, i # j, {1,J) 4is not a bar of
G. In other words (i,j} 4is either a cable, strut or not a
member of G. Say ({i,j) = {(1,2}). Define pi = ... = p; = 0.
Define pi # 0 to be perpendicular to the affine hyperplane

< pl,ps,..., pv >, but chosen so that

A

0 if {(1,2) 1is a cable
0o if (1,2) 1is a strut
# 0 (either sign) if {(1,2) is not a member of G

v

P,' (P, - B,)

Clearly p' = (P} Pys---+ Py) is an infinitesimal flex of G(p)
and p' is non-trivial since (pi - p‘z)-(p1 - p2) # 0. See

Figure 2.25.

3  Figure 2.25
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(4

’ With these examples in mind we‘state the following.

Proposition 2.30: Any tensegrity framework G(p) in Rd is

infinitesimally rigid if and only if (1) or (ii) (or both) holad:
(i) G(p) 1is a bar simplex.
(1i) The affine span of p is Rd, and for all

{(i,3) < {(1,..., v}, i # J, (not just members of G), and for all

infinitesimal flexes p' of G(p)
(2.2) (py - P5)- (P} - Py) = O.

Proof: If (i) holds then G(p) 4is infinitesimally rigid by

Proposition 2.20.

Suppose.(ii) holds. By Corollary 2.24 there is a bar
framework H(p) which is infinitesimally rigid in Rd. The
Formula (2.2) implies that p' is an infinitesimal flex of H(p),
and thus p' 4is a trivial infinitesimal flex.

Conversely suppose neither (i) nor (ii) hold. 1If the affine
span of p dis not all of Rd. then - using the assumption that
G(p) 4is not a bar simplex - either Example 2.28 or Example 2.29
imply that G(p) is not infinitesimally rigid. If for some
i3, {i,j) ¢ {1,...,v), Formula (2.2) does not hold, then by
Proposition 2.9 p' is a non-trivial infinitesimal flex of G(p)

and thus G(p) 4is not infinitesimally rigid in both cases.
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14. The Rigidity Map

Recall from Section 8 that the set of all

p = (pll"'l pv) € RVd' pi e Rd’ 1 = 1,..-,V, 15 Called the
configuration space.
Let H denote the (Lie) group of congruences of Rd. H can

be regarded concretely as

H = { (A,po) | A is an orthogonal d x d matrix, € Rd Y,

and the group operation is defined as
(A, Py) (B, q@y) = (AB, Ag, + Pg).

where (A, po), (B, qo) € H. Note that (A, po)pi = Api + po, for

P; € Rd. Recall from Section 8 also that two configurationms

d

P, Q € RY are congruent if there is an h € H, h regarded as a

function, such that

h(p,) q,
[hu‘:o)] [éo]
and from Section 10 the orbit of p is

H = ~ .

b {gla~p)}

Remark 2.31: It turns out that H is a smooth manifold of
dimension d(d + 1)/2, and if the affine span of p is d
dimensional Hp is a smooth manifold of dimension d(d + 1)/2 as

well.
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Now suppose G is a fixed bar graph. We define a canonical
differentiable map which will capture the rigidity information
associated to any framework.

Let e be the number of edges of G = (V;E). Similar to the
configuration space, we define R®, called the space of metrics
for G. Each coordinate of R® will correspond to some member

{i,J) € E.

vd

For any configuration p = (p;,...,pL)T € R , we define a

point in the space of metrics by

£5(p) = £(p) = [(pypp |

where ({i,j) 4is a typical member of G. We call

fG = £ RVd - Re the rigidity map associated to G.

We will reinterpret the rigidity properties of G in terms

of its rigidity map fG'

For any subset X of a Euclidean space and € > O define
N (X) = (V¥ | |x - y| < e, x € X},

called the e-neighborhood of X,
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Proposition 2.32: Consider a configuration p € RVd. A bar '

framework G(p) in Rd is rigid if and only if there is an

e > 0 such that

-1
fG fG(p) n Ne(Hp) = Hp.

Note Hp c f;lfG(p) n Ne(Hp) always is true.
roof: We use Definition 1 of rigidity, the topological

definition. Suppose G(p) is rigid by this definition. Let

€ > 0 be such that if G(p) ~ G(q), then p ~ q, for

[P - @] < e. But then clearly G(p) ~ G(g) if and only if

q e fc_;lfG(p). If qe N (H), then |h(q) - p| <¢ for some

conéruence h. Since G(p) is rigid q ~ h(q) ~ p. Thus

€ H_.
T° %
-1
Suppose fG fG(p) n Ne(Hp) c Hp for some ¢ > 0. Suppose
G(p) ~ G(q) and |p - q] < e for some q € RVd. Then

-1
q € fG fG(p) n Ne(Hp) c Hp. So there is an h € H such that
gc h(p) and thus q ~ p. Thus G(p) 1is rigid.

For any signed graph G and a configuration p € Rvd with

da

corresponding joints, consider any open set Up c rY such that

P € Up. If it is true that for all q € Up such that G(p) 2
G(g) then p -~ q, then we say Up is a rigidity neighborhood of
p__with respect to G. G(p) 1is rigid if and only if p has some
rigidity neighborhood Up.

However, we must be careful to observe that if Up is a
rigidity neighborhood for p, it may not be a rigidity

neighborhood for other configurations q € Up. For example,
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'Figure 2.17 shows a bar framework G(P) where there are nearby
configurations G(q), G(g) such that G(q) ~ G(q), but q * &.
Thus no rigidity neighborhood of p will be a rigidity

neighborhood of q@ or gq. See Figure 2.26.

P

Figure 2.26

15. The Differential of the Rigidity Map

The infinitesimal flexes of a framework G(p) in Rd

naturally lie in the tangent space of the configuration space

RVd; this tangent space (at a point p € RVd) is of course

d

naturally identified as rRY again.

Since the rigidity map f = fG: RVd + R® is differentiable,
vd

we can take the differential at a point p, dfp: R - Re, where
RVd and R® are properly regarded as the tangent spaces at p
and f(p) respectively.

We now wish to reinterpret the notion of infinitesimal

rigidity in terms of dfp. Let p' be an infinitesimal flex of
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G(p). We now calculate the directional derivative of £ in the
direction p' at the point p. Thus we define

p(t) = p + tp*,

for 0 ¢ t ¢ 1. Note p(0) = p, and
dp(t)l = '
—3at lt=0 = P
£(p(t)) = |Ip. - Py + t(p} - P1)12
i 3 i J
= lp. - p)2 + 2t(p, - P.)- (B} - BY) + t2(p; - PY)2
i J i J 1 J 1 J
So

) =8 - - p.)-(p% - P’
af (p') = gef(P(t)) | g 2(p; - py)- (P} = Pj)

The following is an immediate conseqguence of the above

calculation.

d is an infinitesimal flex

Proposition 2.33: A vector p' in rRY
of the bar framework G(p) if and only if p' |is in the kernel

of df_.
P
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Thus the bar framework G(p) is infinitesimally rigid if and
only if the kernel of dfp is contained in the trivial
infinitesimal flexes of p.

We will denote the trivial infinitesimal flexes of G(p) by
Tp. Thus Tp c kern(dfp).

It is interesting to compute dfp as ‘a matrix in terms of
the standard basis of RVd. We see that the columns are grouped
as v sets of d coordinates, and there are e Irows
corresponding to the bars of G. 1If {i,j) 4is a bar of G, then
the row (i,j} has 2(pi - pj)T as the i-th set of d
coordinates and 2(pj - pi)T as the j-th set of d coo:dinates.

A1l the other entries of the row are zero.

i J
df = |0 0. 2(p. - p.)",0 voz( -p.)', 0 0
P- reesor r (?l PJ AN 4 PD pi ’ recoy
We check
r .
') = . = P.)'P: + . - ‘P!
af (p*) 2(p; - Py) Py + 2(Py - Py) Py

t

n

2(pi - Pj)'(P}L = P:.j) ’

|

so the above matrix is indeed the matrix of dfp. Because the
factor 2 plays no essential role we define the rigiditv matrix

R(p) for G(p) as the matrix of %dfp.




use (ii) of Proposition 2.30 to show that if the affine span of p

is Rd, then rank(R(p)) = vda - d(d4 + 1)/2, or

rank(R(p)) 2 vd - d(d+1)/2, or dim kernel(R(p)) ¢ d(d + 1)/2 are

all eguivalent to the infinitesimal rigidity of G(p).

16. The Rank of the Rigidity Matrix.
Needless to say, the rank of the rigidity matrix is closely

related to the rigidity of the bar framework G(p).

d is

Recall from Propcsition 2.20 that any bar simplex in R
infinitesimally rigid, but from Example 2.28 and Example 2.29, if
the dimension of the affine span of p is less than d, and ka)
is pot a bar.simplex, then G(p) 4is never infinitesimally rigid.
With this in mind we state the relation between the rank of the

rigidity matrix R(p) - or eguivalently the dimension of it null

space - and the infinitesimal rigidity of G(p).

Proposition 2.35: Let G(p) be a bar framework in Rd. Then

G(p) 4is infinitesimally rigid if and only if either (i) or (ii)
(or both) hold.
(i) G(p) 4is a bar simplex.

(ii) The affine space of P is Rd and

dim(kern R(p)) = d(d + 1)/2.
Proof: By Proposition 2.33, to show G(p) is infinitesimally

rigid it is eguivalent to show that the kernel of R(p) 1s Just

the trivial infinitesimal flexes of P, Tp. The dimension of the

-6a-
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'+ "¢ 3inear space - a Lie algebra - of infinitesimal congruences of all
of Rd by Corollary 2.11 is d(d + 1)/2, and we want to know when
this is true for the trivial infinitesimal flexes at just p. So

restriction to the points of p gives a linear map

Infinitesimal

d — T [
congruences of R

P

which is clearly onto. If we regard p' =0 as a trivial
infinitesimal flex of p, Lemma 2.11 shows that the O

infinitesimal flex of Rd is the only infinitesimal flex whose

restriction is 0 on p, in case the affine span of p is Rd.
Thus the lineaf map above has O kernel, and both spaces have :
dimension did 4+ 1)/2. Thus when (ii) holds, G(p) is
infinitesimally rigid. When (i) holds, Proposition 2.19 implies
that G(p) 4is infinitesimally rigid.

Conversely if neither (i) nor (ii) hold, then G(p) is not a
bar simplex, and the affine span of p is not Rd. Thus either

Example 2.28 or Example 2.29 shows G(p) 4is not infinitesimally

rigid, finishing the Proposition.

17. Counting
We make some simple observations about the relation between
the number of vertices and edges of G, when G(p) 1is

infinitesimally rigid.
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Proposition 2.36: If G(p) is an infinitesimally rigid bar

framework with v vertices and e' bars in Rd then
(2.3) vd - d(d + 1)/2 € e.

Proof: Note that if G(p) is a bar simplex of dimension Kk, then

v=k+1, e= 515—;—11 , and for all integers k
_d(d + 1) _ _4a(d + 1) kik + 1) _
vd D = (k + 1)d 2 s 2 €.

(The above inequality holds since it is equality for k =d and

k

d - 1, it clearly holds for k = 0 say, and both sides are .
guadratic functions of k.)

For the case when the affine span of p is all of Rd, we
have at least two ways to finish the proof. The first way is to
use Proposition 2.35. Since the rigidity matrix R(p) has
rank vd - d(d + 1)/2, the number of rows of R(p) must be at
least the rank. Thus wvd - d(d + 1)/2 ¢ e.

The second way is to simply observe that each of the e
equations of (2.1), defining an infinitesimal flex p', is a
linear eqguation in the vd variables of p' € RVd. Since the
trivial infinitesimal flexes define a linear subspace of dimension
d(d + 1)/2 satisfying (2.1), we must have vd - d(d + 1)/2 € e

in order for the dimension of the solution space to be exactly

d(d + 1)/2.
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S Remark 2.37: The ineguality (2.3) comes up so often, it is worth
mentioning two important special cases. For d = 2, (2.3) becomes
2v - 3 ¢ e,

and for d = 3, (2.83) becomes

3v - 6 ¢ e.

For d =1 weget v -1 ¢ e. However, it is easy to check that
if all the bars have non-zero length, a bar framework G(p) in
Rl is infinitesimally rigid if and only if G is connected.
Note that in any dimension, for any tensegrity framework
'G(p), if any member‘has 0 length, then G(p) 1is infinitesimally
rigid if and only if G(p) is infinitesimally rigid with that

member removed.

emark 38: We emphasize that Proposition 2.36 does pot sa?ythat
vd - d(d + 1)/2 ¢ e guarantees that G(p) is infinitesimally
rigid.
There are at least two possible kinds of examples where
vd - d(d + 1)/2 ¢ e and yet G(p) is not infinitesimally rigid.
The first depends on the special position of the_configuration P,

N
as in the examples of Figure 2.27. \ AAJ/

v=3,e=23,4d-=2 v==6,e=9,4d=2 ve==6,e=9 d4d=2
2v - 3 = 3 = e 2v - 3 =9 = ¢ 2v - 3 = 9 = e.

Figure 2.27



The second type of example depends on G 1in that for any

realization of G, G(p) 4s not infinitesimally rigid, as in

Figure 2.28.

-“\C Jo«“r Lananq

v=25,e=17,4d=2 v=2_8, e=18, 4 =3
2v - 3 =7 = e 3v - 6 = 18 = e

Figure 2.28

Remark 2.39: It is easy to see that for the case when the affine
span of p 1is all of Rd, and vd - d(d + 1)/2 < e, then one can
find a bar (in fact at least vd - d(d + 1)/2 - e of them) such
that when it is (or they are) removed the framework remains
infinitesimally rigid.

2 for the framework on the

For example in Figure 2.28 in R
ljeft e = (2v - 3) + 1, any bar can be deleted, and it will remain
infinitesimally rigid. For the framework on the right |
e = (2v - 3) + 1 again but only oﬂe of the three bottom bars can

be deleted to get an 1nfihitesima11y rigid framework.
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Figure 2,28

d x¢a- 2, and

On the other hand, for a k simplex in R
vd - d(d + 1)/2 < e. But by Example 2.8 such a framework with a

bar deleted is never infinitesimally rigid.

Remark 2.30:' For an infinitesimally rigid tensegrity framework

G(p) with at least one strut or cable, an argument similar to the

argument in the second proof of Proposition 2.35 shows that

vd - d(d + 1)/2 +1 ¢ e,
where e is the total number of members of G. This depends on
the fact that if the intersection of k half spaces through the
origin in R® is just the origin, then k ) d+1. Each of the
member ineguality or eguality constrainfs of Formula 2.1 can be
regarded as defining at least a half space in the cordinates of
p', where the coordinates of p are regarded as fixed.

We can also analyze those tensegrity frameworks where each
member is needed for infinitesimal rigidity. Suppose we have Kk
half spaces in Rd whose intersection is exactly the origin, and
the collection of half spaces is pinimal in that the intersection
of any proper subcollection is not the origin. Then k ¢ 24.

58~
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Using this suppose that G(p) 1s an infinitesimally rigid

tensegrity f:amework in Rd, with the affine span of p all of

Rd, with e_ cables, with e struts, and with e

+ bars, such

0
that the removal of any member makes the framework not

infinitesimally rigid. Then

+ - _d(d + 1)

For example, the framework of Figure 2.29 is infinitesimally rigid

3 — = = = =
in R ’ E_ - 12' e+ - O' eo - 12' v 8' d 3.
e, + e
+ - _ _ _d(d + 1)
3 + e, = 18 = vd —_—

Figure 2.29

This is a cube with all edges as bars, and all facial
diagonals as cables. The infinitesimal rigidity of this framework
was proved in Connelly (1981) and Whiteley (19xx). See also
Chapter xx. The removal of any member makes the framework

infinitesimally flexible.
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" % Remark 2.31: One must be careful not to confuse the notion of
what the conditions of infinitesimal rigidity mean. A bar can
vpigidify" only two vertices at a time. If three joints llie on a
l1ine with bars between them, it does not guarantee that any
infinitesimal flex, when restricted to those three joints, is
trivial. For example, in Figure 2.30 the framework on the left is

not infinitesimally rigid.

S — 4 @ .

Figure 2.30

Oon the other hand, the framework on the right is
infinitesimally rigid because of the additional bars. It is easy
to construct any such rigidifying external structure, if that is

what is desired.

Lastly we do our counting fof pinned frameworks.
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siti . Let G(p) be an infinitesimally rigid bar

d with pinned joints whose affine span is

framework in R

d-dimensional or (d-1)-dimensional. Let Vv vbe the number of

unpinned vertices of G, and e the number of bars of G. Then
| vd € e.

If G is a tensegrity framework with at least one cable or strut

bu€ e members in all, then

vd + 1 £ e.

Problems:

Problem 2.14: vSuppose P is a convex polyhedron in Rs. Let
p = (pl,...,pv) be its points. Define a bar graph G on the
vertices v = {(1,...,v} by saying (i,j} is a bar of G if

< Py pj > is an edge of P. This defines a framework G(p), in

%3, If G(p) 4s infinitesimally rigid in R® show that all the

faces of P are triangles.

Problem 2.15: If the dimension of the affine span of

P=(p...., B,) 1is (d-1)-dimensional in r%, show that a bar

framework G(p) is infinitesimally rigid in Ra if and only if

dim kern R(p) = d4(d + 1)/2.

Problem 2.16: Suppose G(p) is a bar framework with v vertices

in ®%, dim kern R(p) = k 2 d(d + 1)/2, and the affine space of p

is all of Rd.> Consider Rd c Rn, d < n, and consider G(p) as a
bar framework in Rn. For this new framework calculate the

dimension of the kernel at R(p).



“, .*:. Problem 2,17: For any finite graph let vy be the number of
"vertices at degree i. (A vertex has degree 1 if it is Jjoined

to exactly i other vertices.) Define the average degree V as

where we note'that v = § vi is the total number of Vvertices of
G. If G(p) 4is an infinitesimally rigid bar framework with v

d d

vertices, e bars in R , with the affine span of p all of R,

shoﬁ that

d(d + 1) v
v Ry .

24 -

Problem 2’18’, If G(p) 4is an infinitesimally rigid bar framework

in R2 with at least four vertices, show that G(p) must have a

vertex of degree four or more.

Problem 2,19: Suppose G is a tree, i.el a connected graph with

no cycles. Suppose also that the degree of at most one vertex is

two, and G has v vertices. Let p be a configuration in R2

with v vertices such that no three points of p 1lie on an
(affine) line. Show that G(p) with all its endpoints (i.e.,

vertices of degree one) pinned is infinitesimally rigid in Rz.

-
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18. The Averaging Method
There is a special technique that can be used to relate

results about infinitesimal rigidity and rigidity itself. 1In the

following G(p) can be any tensegrity framework in Rd.

Proposition 2.41: Let ©p, q € Rd be two configurations in Rd.

Then
a. G(p) ¢ G(g) if and only if p - q is an infinitesimal

flex for G(E1 9,

2
b. If p-q is a trivial infinitesimal flex at p ; q, then
p 1is congruent to q,
c. If the affine span < P ; 9 5 contains P-4gqg and p

is congruent to q, then p - q is a trivial infinitesimal

flex at P ; q.

Proof: Let i, j € V be any pair of vertices of G, not just those

where (i,j} € E. Then

[(py - @) - (py - ay)]-[(p; +q;)/2 - (py + ay)/2]

i

—] 1 — — . — . — —
= 5[(Pi pj) (qi qj)] [(Pi pj) + (qi qj)]
_ 1 _ 2 _ _ 2
- 5[(Pi pj) (qi qj) ]-
When (i,j} is a member of G, then the above equality implies a.

For part b, when p - g is a trivial infinitesimal fleg at

p+d

5 then both sides of the equality are 0 for all i#j, and

thus by Proposition 2.7 p is congruent to (.
For part c, if p 1is congruent to g, then the defining

relations for an infinitesimal flex (2.1) are all O. Since

< P ; 9 5 contains the infinitesimal flex P - g, Corollary 2.24
implies that p - q is a trivial infinitesimal flex at P ; g,
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WRemark 2.42: Proposition 2.41 can be restated where p 1is a
fixed configuration and p' 1is a candidate for a infinitesimal
. flex. We replace p in the Proposition with p + p' and q
ith p - p'. The corresponding statements become the following:

a'. G(p + p') < G(p - p*') if and only if p' is an

infinitesimal flex at p,

b'. If p’' is a trivial infinitesimal flex at p, then

p + p' is congruent to p + p',

c'. If the affine span < p > contains p', and p + p' is

congruent to p - p', then p' 1is a trivial infinitesimal

flex at .p.

This reformulation implies that every infinitesimally
flexible framework G(p) has a sequence of pairs of arbitrarily
close realizations where G(p - p') ‘"snaps" to G(p + p'), since
we can take p' to be arbitrarily small. This helps explain the
empirical observation that infinitesimally non-rigid frameworks
feel "shakey". In fact Wunderlich (xx) uses the word shakey for
infinitesimally non-rigid frameworks.

Example 2.43: The following is an example of a framework G(p)

in Rz with a nontrivial infinitesimal flex p' where we see the

two equivalant G(p + p') and G(p - p').

Glp-p’) Glp) GCprp’)

Figure 2.32
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Remark 2.44: The spanning condition in part c¢ is necassary.

Consider the following congruent bar triangles G(p) and G(q)

in Rz. We obtain p by reflecting gq about a line as in Figure

2.33 below. {
“line
[

b

6(q) 6(&;?)

Figure 2.33

G(p)

Here p - q is a non-trivial infinitesimal flex of G(p ; q)

since P ; q lies on the line of reflection.

On the other hand it can turn out that even though p - g is

not contained in < Pt+ta, and p is congruent to g, p - g

2
will still be a trivial infinitesimal flex at 22 9. rhe

important point is whether the linear part of the congruence that
takes p to q has any eigen values equal to -1. If not, then
the conclusion of part c¢ follows. This generalization of
Proposition 2.41 is explored in the exercises.

Remark 2.45: For the case of a bar framework, we see that

Proposition 2.41 gives us information about the rigidity map

fG: RVd + RS, 1In particular, at a configuration p € RVd, modulo

congruences, fG is a kind of folding map. For instance, modulo

congruences, fG cannot have an isolated singularity.
d

Similarly if U c RY is an open rigidity neighborhood for

all p € U, then each G(p) for p € U must be infinitesimally
rigid. For example, if G is the triangulation of a sphere, and

—-74-
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" W g(p) is a strictly convex realization, then a classical Theorem
of Cauchy (1813) implies that if G(p) is equivalant to G(q)
and G(q) is strictly convex as well, then p 1is congruent to
g. See Chapter xx. Thus we can take U to be the strictly
convex realizations of G, and Proposition 2.41 implies that each
such G(p) is infinitesimally rigid, which is a Theorem of M.
Dehn (19xx).

One could imagin trying to reverse the above argument as
well. 1In other words suppose we know that all strictly convex
realizations G(p) of triangulations of a sphere are

infinitesimally rigid. Let G(p) be equivalant to G(q). Then

P - g is an infinitesimal flex of G(p + q), but it is difficult

2
to show, a priori, that G(p ; q) is a strictly convex
realization of G.
Remark 2.46: If G has some fixed vertices say Pyrecer Py such
that the affine span < Pyr---r Py > includes p and q, then b

and ¢ in Proposition 2.42 simply translate into the (trivial)
statement that p - g is the O infinitesiﬁal flex if and only
if p =gq.

Problems:

Problem 2.20: If S is any skew symmetric matrix, show that

I - S is non-singular and (I + S)(I - 8)™% = (I - s)" (1 + 8)

is orthogonal.

Problem 2.21: Use Problem 2.20 directly to give another proof of
b in Proposition 2.41.

Problem 2.22: Let A be an orthogonal matrix with no eigenvalues
egqual to -1. Show that I + A 1is non-singular and that

1

(T +8) 3T -B) = (I -B8)(L +A) Y is skew symmetric.
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Problem 2.23: Suppose that p and gq are two congruent
configurations in Rd, where A is an orthogonal d by d
matrix and Py € Rd such that q; = Api + Pq for each i. Use

Problem 2.22 to show that p - q is a trivial infinitesimal flex

at P ; 9 if and only if A can be chosen to have no eigenvalues

of -1. Show that this generalizes part ¢ of Proposition 2.41.

19. Generic Rigidity and the Rigidity Map
We investigate some general facts about the topology of

infinitesimally rigid realizations of tensegrity graphs.

Theorem 2.47: Let G be any tensegrity graph. Then
I ={p| G(p) is infinitesimally rigid in rRY )
is an open subset of RVd.

Proof: For any configuration p € RVd we define

= { p' € de | p* is a trivial infinitesimal flex at p },

T
i d
v 1
E_ = ' € R 'ep' =0 for all p* € T =T
p = (a L q'-p P p ! p
vd-1 v
S ={geR | gq=1}.
Note that the unit sphere SVd"1 is a compact subset of RVd.

Later we will interpret the set Ep as the collection of
"egquilibrium forces" at p, and we will explore its relation to
infinitesimal rigidity. However, for now we only need that the
following set is closed in RVd X RVd. This will be proved in
Section 21 without reference to Proposition 2.47 or its
conseguences.
E={ (p, p) | pr e E,n s

So (p, p') € E if p' is a "normalized equilibrium force" at
p. Using that E 1is closed we will show that the following set

F={(peR'Z| G(p) is infinitesimally flexible }
is closed in RVd. Since I = RVd \ F, we will have that I is

open.
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Let p(l1),...,p(k),... be a sequence of configurations in F

converging to p. Let p'(k) be a non-trivial infinitesimal flex

another infinitesimal flex of G(p(k)) obtained by subtracting
the orthogonal projection of p’(k) in Tp(k) and then dividing

the result by its length. Then (p(k), gq'(k)) € E for all k =

sV9"1 j5 compact and gq' (k) € s¥9"1  there is a

subsequence which converges to a q' € SVd—l. Since E 1is closed

1, 2,... .Since

(p, 9') € E, and ¢’ is a non-trivial infinitesimal flex of
G(p). Thus G(p) is infinitesimally flexible, F is closed, and
I is open.
Remark 2.48: It is not true that the set

{ (p, p') € RVd X de | p' is a trivial infinitesimal flex at p }
is closed. Consider a configuration p of three distinct points
on a line in RS. Then there is an infinitesimal flex p' at p,
shown in Figure 2.34, such that p' is non-trivial but p' is

the limit of /p'(k), and p is the limit of p(k), k=1, 2,... ,

but p'(k) is a trivial infinitesimal flex at p(k).

i //7/’
(20 4
PO) P (3D P(3) P

Figure 2.34
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‘Notice that in the proof of Proposition 2.47 we need that
there are only a finite number of vertices in G, and thus the
unit sphere is compact. This is one of the key differences
between the theory of rigidity developed here for frameworks and
the theory of rigidity for smooth manifolds. 1In the next section
we will see that infinitesimal rigidity implies rigidity, but such
a result is not known even in the category of smooth two-manifolds
in three-space. See Spivak (19xx) volume 5 for a good discussion
of this kind of problenm.

Corollary 2.49: Let G be any bar graph. Then I 1is either an

open dense subset of RV or 1 = $.
Proof: Considering Proposition 2.47 we need only to show that I
is dense in RVd, when I # ¢. Suppose G has all possible
members as bars, and v ¢ d + 1, where v is the number of
vertices of G. Then

I={(Pyr---s pv) | Pys---, P, are affine independant }
is clearly dense. Otherwise by Proposition 2.35

I={pelRVd|dimkerdfp=d(d+1)/2}

and

vd

R\ 1 =(per"?|

rank dfp #vd - d(d + 1)/2 },
which is an algebraic set. That is, RVd \ I is defined by
polynomial equalities with variables the coordinates of p. Thus
by basic results from Algebraic Geometry, see Harthshorn (19xx)
page xx for instance, we see that I is dense in RVd.

With the above Corollary in mind, we call a bar graph G
generically d-rigid or just d-rigid if the set of infinitesimally

rigid realizations of G in Rd are dense. We leave off the d
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- “if the dimension isvunderstood. By the Corollary G is
generically rigid if and only if there is one p where G(p) is
infinitesimally rigid.

We have already seen many examples such as in Figure 2.15 and
in Figure 2.16 when a configuration p corresponds to an
infinitesimal G(p). On the other hand, the graphs of the
frameworks of Figure 2.27 are generically 2-rigid, but in the
given configurations they are not infinitesimally rigid. When G
is generically d-rigid, but G(p) 4is not infinitesimally rigid
in Rd, we say that G(p) 4is in special position. 1In Figure 2.28
the graphs are not even generically 2-rigid or 3-rigid
respectively. '

One point of view of the above is that to test whether G is
generically rigid one simply takes a "generic" point p and asks
whether G(p) is infinitesimally rigid. Here generic means that
theicoordinates of p do not satisfy any non-zero algebraic
‘polynomial equation with rational coeficients. This test for
rigidity is easier said than done.

A similar point of view iz to look at a regular point of fG.
This is a point p, where the rank of dfp is maximal for a fixed
graph G. From the proof of the Corollafy we get the following.
See Asimow and Roth (19xx).

Corollary 2.50: Let G be any bar graph. G is generically rigid
if and only if G(p) is infinitesimally rigid at a regular point

p of fG'
From the point of view of rigidity, a configuration p 1is a

regular point for G if the space of infinitesimal flexes has

minimal dimension for a given graph G. For instance, the
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frameworks of Figure 2.28 correspond to regular points even though
their graphs are not generically rigid. The frameworks of Figure
2.34 are examples of configurations which do not correspond to
regular points and their graphs are not ge;erically rigid. Note

that the framework on the right is rigid.

T

!

Figure 2.34

Remark 2.51: We must keep in mind that for tensegrity frameworks

it may very well turn out that the infinitesimally rigid
realizations are not dense. For example, the frameworks in Figure
2.35, if P, is in the open triangle formed by Pys Pg: Py then
G(p) is infinitesimally rigid. Otherwise G(p) has a non-trivial
infinitesimal flex. Such infinitesimally flexible configurations

have a non-empty interior.

Figure 2.35
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'Remark 2.52: Generic d-rigidity is a combinatorial property of a
graph, and it is of interest to find combinatorial
characterizations of generically d-rigid graphs; For d =2 a
Theorem of Laman (19xx) does just fhat. See Chapter xx for a
proof and more discussion.

Theorem 2.53: Let G be a bar graph with e edges and v
vertices such that e = 2v - 3, and e' ¢ 2v' - 3 for every
subgraph with v' vertices and e' wedges. Then G is
generically 2-rigid.

Using this result Lovas and Yemeni (19xx) describe an
efficient algorithm for combinatorially the 2-rigidity of any
graph.

For dimensions greater than two, no Laman-type chacterization
is known. And certainly there is no known efficient algorithm for
determining even 3-rigidity for all graphs. The irony is that
generic d-rigidity for any graph can be determined by choosing a

d and computing the rank of the rigidity matrix.

"random" p € RY
If the rank is vd -d(d + 1)/2, then we can say with certainty
that G(p) is infinitesimal rigid, and thus G is generically
d-rigid. However, for many graphs G, it is very difficult to
say, a priori, what configurations p correspond to those special
positions where G(p) is not infinitesimally rigid. Thus if

G(p) turns out to be infinitesimally flexible, we cannot tell

with certainty (only with probability 1) that G in not

generically d-rigid.
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20. Rigidity and Infinitesimal Rigidity

We have seen several examples of rigid frameworks that are
not infinitesimally rigid. We will now show the converse.
Because of the central nature of this Theorem we will give three
proofs, each having their advantages and disadvantages.

Theorem 2.54: Let G(p) be any infinitesimally rigid tensegrity
framework in md. Then G(p) 4is rigid in Rd.

Proof 1 (Alexandrov [19xx] and Gluck [19xx]): This proof ohly
seems to work for the case when G(p) is a bar framework but it
has the advantage that some of the ideas apply to the case when
the framework . G(p) is not infinitesimally rigid.

If G(p) is a rod simplex the result follows easily from
Proposition 2.7. Thus by Proposition 2.30 we can assume that the
affine span of p 1is all of Rd. We know that the orbit of p
Hp (Hp is those configurations that are congruent to p.) is
contained in f—lf(p), where f: RV® 4 RY is the rigidity map for
G as in Section 14. By Section 19 we know that p 1is a regular
point of f. In other words (see Proposition 2.35) the dimension
of the kernal of dfp is d(d + 1)/2. We now apply the implicit
function theorem to conclude that f—lf(p) is a manifold of
dimension d(d + 1)/2 in some neighborhood N of Hp. Thus
£ lf(p) n N = H, and by Proposition 2.32 G(p) is rigid.

Note that:the above idea.works even if G(p) isbnot_
infinitesimally rigid. If p is a regular point for £, then the
manifold fnlf(p), near p, has dimension equal to the dimension
of the infinitesimal flexes of G(p). Thus at a regular point p,
G(p) is rigid if and only if G(p) is infinitesimally rigid.

See Asimow and Roth [19xx].
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' proof 2 (W. Whiteley): By Proposition 2.47 I =

{ g | G(g) is infinitesimally rigid } is open in RVd. Let
g € I be close enough to p such that P ; 9e¢ 1. 1f
G(p) < G(q), then p - g is an infinitesimal flex of 2 ; 9 by

Proposition 2.41. Since 2—%_3 €e I, p -q is a trivial
infinitesimal flex at p, and thus p is congruent to gq by
Proposition 2.41 again. Thus G(p) is infinitesimally rigid by
Definition 1 of rigidity.
Proof 3 (R. Connelly [19xx]): We provide a only sketch of this
proof. Suppose that G(p) is not rigid. We will show that G(p)
is not infinitesimally rigid.

By Definition 3 of rigidity there ié an analytic flex p(t),
0 ¢t < 1, such that p(0) = p, and p(t) is not congruent to p

for some O <t ¢ 1 (and thus for but all but a finite number of

such t). As before we can assume that the affine span of p is
all of Rd. Then consider the smallest k =1, 2, 3,... such
that

(F0) (R (6) = Byt [ # O,
for some i # j, {i,j)} not necessarily a member of G. Such a k
exists since, if not, then since p(t) is analytic all distances
would be preserved and p(t) would be a restriction of a
congruence by Proposition 2.7.
It is then possible to find a trivial analytic flex
d d

ht: R 4 R such that

d d

(G5 (8) | g = (590 ™D (8) | pogr fOXr n = 1,..., k - 1.
Then q;(t) = ht—lpi(t) is a new analytic flex, replacing p;(t)
such that

d
(a?)nqi(t)lt=o =0, forn=1,..., k-1,
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and

(G 5ta 8) - ayen? = (G e () - pye)?, for 1 2 3.
Define

p; = (502 5q; (V)| g
Then ‘
2(p; - Py)- (P} - Py = (Fp)S(a;(6) - a () ? |,

and thus p’ is a non-trivial infinitesimal flex of G(p). Thus
G(p) is not infinitesimally rigid as was to be shown. |
Remark 2.55: Proof 2 has the virtue of being very much self
contained and elementary using some special properties of the
rigidity map. Proof 1 uses the implicit function theorem of
courée, but gives a very nice point of view of what rigidity means
even if it only applies to bar frameworks. Proof 3 uses some
non-trivial algebraic geometry, but has the virtue that it extends
to show that second order rigidity implies rigidity. Proof 1 and
Proof 2 do not seem to work in the context of second order flexes.

See Connelly (19xx).
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