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Chapter 3: The Basic Concepts of Static Rigidity

May 1987

Robert Connelly

1. Introduction

Yet another form of rigidity is the notion of static
rigidity, a concept fimiliar to structural enQineers. If vectors
are assigned to the joints of a framework in such a way that their
sum is zero and such that there is no net angular velocity, then
we say that this set of vectors, now thought of as forces, is in
equilibrium. Such a set of equilibrium forces is said to be
resolved if there are scalars that can be assigned to each bar
such that at each joint the vector sum of the scalars
times the bars is egual to the given force at that joint, The
framewofk is called staticly rigid if every set of equilibrium
forces can be resolved. The fundamental result of this chapter is
that static and infinitesimal rigidity are duéls, and thus they
are equivalent.

We also invest;gate'which transformations of the ambient
space Rd preserve static rigidity. It turns out that projective

transformations are thé natural objects for this property.



2. Equilibrium Forces

Dual to the notion of infinitesimal rigidity is static
rigidity. But as with infinitesimal rigidity we must take into
account the motions of the ambient space Rd.

Recall that the trivial infinitesimal flexes p*' for a

configuration p are n (J
- [ vd L = T = - v/
Tp = { p' €R | pi Spi + po, i 1,.., v, § = =S, po € ﬁ::D)-
We define the equilibrium forces at p as OVWB
vd 1 L_,i/( ’
E ={F €R F-p' =0, p' €T =T . =
p = ¢ | F-p P p ) D v

To understand these better we consider some alternate

descriptions of Ep. Note that Tp is the internal direct sum

R__® D_, where
P p
R
p

D - ' € IF\

Rp is the set of infinitesimal rotations of p, and Dp is the

d
( pr €« RV" | py = sp

d d

| ' = (Pgr-++r PY)s By € R}
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set of infinitesimal translatijons of p. Thus E_ = R'L n Dl.

p p b
L
Suppose F = (Fl""' g% € Dp' Then
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(3.1) } F.-pt. = 0, for all p} € m%ﬁ/
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Thinking of F as velocities as in physics, we see that Dp is

the set of those velocities that preserve the center of aravitv/
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Suppose F € R_. Then S 3 4
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One way to interpret this f?rmula is with exterior calculus.
o

Regard S as an exterior .n - 2 form so that Spi E S - Py is
an n -1 form, So Fi~Spi = Fi ~ S a p; = - Fi ~ Py ~ S. Thus
F e R; if and only if
(3.2) E F, ~ p; = O.

i=1
For (ﬂ = 3 this is the same thing as

v
} F, x p; = 0,
i=1

where x 1is the usual cross product.
We also give an explicit description of equation (3.2)

without the use of wedge or cross products, but using the

coordinates of p instead. 'For i =1,..., v, let
- ) T
P; = (xli’ XZi”""Xdi)
and
F = T
i = (Yli' Yzir-.-: Ydi)
For j;k=1,..., d let Sjk be the skew symmetric matrix with

entry Jj,k equal to 1, entry k,j equal to -1, and all the
other entries equal to O0. Then

Fi'SypPi = Y5i%ps = Yri¥js-
Since skew symmetric matrices Sjk generate all skew symmetric
matrices, we see that the following relations are eguivalent to

the equations (3.2);

v
E Fi SykPs
) 1=1
= v
(3.3) = z Yyi¥eq ~ Yei¥yq = 00 for all .k =1,..., 4.
i=1



Thus these equations (3.3) and the following (3.4) are equivalent

to F being an equilibrium force at p.
v
(3.4) ‘ 2 Fi = 0.
' i=1

We now can see that the following Proposition is an immediate

consequence of equations (3.3) and (3.4). This was the result
]
that was delayed from the second proof of Proposition 2.47 that

16
was used for the second proof of Theorem 2.54.

Proposition 3.1: The following set

d RVd

{ (p, q) € RVE x | @ is an equilibrium force at p }

is a closed subset of RVd X RVd.

Remark 3.2: Note that the pair of conditions (3.3) and (3.4) are

independant of the coordinate system used, since the notion of
trivial infinitesimal flex is independant. Also it is easy to
check that (3.4) alone does not depend on the qoqrdinate system
either. However, condition (3.3) alone, if coﬁéition (3.4) does ~
not hold, does depend on the coordinate system.

In physics if a system of particles moves in R in such a

way that (3.4) holds, then it is said that linear momentum is

preserved. This is the same as saying that the center of gravity
P is preserved, as mentioned before. If in addition (3.3) holds
as well, then it is said that angular momentum is pfeserved. In
this case th2£§ﬁs no quantity which is a function of the

coordinates of the configuration space alone, which is preserved.

-
There is no "center of angular momentum".



Problems:

Problem 3.1: Show that if the configurations p and q are
d d

congruent by a congruence h: R -~ R, and ,MEN(Fl,..., Fv)' is
an equilibrium force at p, then (hF = (hFi,..., hFV) is an éif“ y
equilibrium force at g = h(p) = (hpl,..., hpv). If F only

satisfies (3.4), show that hF satisfies (83.4) at h(p) = q.
Problem 3.2: Show that if only (3.3) hqlds, then by changing the
coordinate system, (3.3) may not hold. ‘

Problem 3.3: Find a motion for a configuration p(t) of

particles in Rd, 0 ¢ t <1, such that linear and angular momentum

is preserved, p(0) is congruent to p(l), but p(0) # p(1). For
p(0) fixed, for any e > 0, show that it can be arranged that
Ip(t) - p(0)] < ¢. Use this to show that there is no smooth
function f: RVd'q ml such that for all motions p(t) 1l1inear and
angular momentum is preserved if and ond only if f(p(t)) is

constant,

3. Examples and Calculations of Equilibrium Forces
We present some methods which can be helpful for determining
"when a given force F is in eguilibrium at p.

We observe that p; - F. = (pi + tFi) A~ Fi when P is

i
replaced by P + tFi, where t 1is any scalar since Fi ~ Fi = 0.
Geometrically this means that the angular momentum (3.2) remains
the same if the point P “at whiéh the force Fi is applied is
moved along the line in the direction of the force. The same

force is applied at the new position. See Figure 3.1.



Figure 3.1
In the plane this observation can help calculate when F is
in equilibrium.
. 2 _ _
Recall that in R (xl, x2) ~ (Yl’ y2) = x,Y, XV,

Example 3.2: Suppose that v =3 and d = 2. 1In other words, we

have three points in the plane p = (pl, P, p3), p; € Rz.
Suppose also that the points are not colinear. Consider F = (Fl'
F2, FS)’ Fi € m2 as three forces at the three points. Suppose
that F1 + F2 + F3 = 0.

Case 1: The lines through P; in the direction of Fi meet at

the point O.

We take O as the origin and observe that Fi ~ P; = 0 for
each i. Thus F 1is clearly an equilibrium force at p.

A\ F
|
\
\

\

\

e -e—op

/
/ fz

1
d//?zs Figure 3.2

P -6-



Note that‘the same conclusion holds if Fl' F2, and F3 are
parallel.
Case 2: The lines through the P do not meet at a point and are
“not parallel,
We take the intersection of one pair of lines which are not

parallel as the origin. Say the lines through P, and P,

intersect at O, the origin. Then F1 ~ Py = F2 ~ Py, = 0, but

F3 " pa.t 0. So F is never in equilibrium in this case.
AR
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3 Figure 3.3
Example 3.3: Suppose we have four non-colinear points p = (Pl'

2), and four forces F =

pé. Py p4) in the plane (so v = 4, d

(Fl’ F F F4) such that F, + F2 + F3 + F4 = 0. Then we can

2' 73’ 1

move F1 and Fz, say, to the intersection of the lines through

P, and P, We can then do the same thing for F3 and F4.
Then we see that F is in equilibrium at p if and only if

F, + F is parallel to the line through the two

1t ¥y s
points of intersection. See Figure 3.4.

= -(Fy +F
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A similar analysis can be done with any configuration and

force in the plane.

Example 3.4 Let p = (pl,..., pv) be any configuration in Rd,
and 12t 1 # j. Then define a force F = F(i,j) at p by
pi-pj k=1
Fk= pj—pi k=3
0 otherwise
Thus
F=(0,...,0, pi - pj, 0,...,0, pj - pi, 0,..., 0).

It is easy to see that F is an equilibrium force, which we call

the elementary equilibrium force between p; and pj. See Figure

3.5

Figure 3.5
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Note that any other linear combination of such elementary

equilibrium forces is an equilibrium force. We will see later

d

that if the affine span of p is all of R, then any equilibrium

force is such a linear combination of elementary forces.

Note that F(i, j) is the ({i,j}-th row of the rigidity

-

matrix R(p) defined in section 15 of Chapter 2,
4, Stresses

Let G(p) be any tensegrity framework in Rd with e

e

members. A stress w = (..., W, .+) € R is an assignment of a

ij’”’

scalar = for each member of {i,j} of G. We say that

- W, .
ij ji

> 0 for (i,j} a cable of G, and

. < 0
ij * <

w is proper if w i3
for (i,j} a strut of G. If ({i,j} 4is a bar of G, then wij
can have any value.

Let F be any equilibrium force at p. We say that a stress
w for G(p) resolves F 1if for each (variable) vertex 1 of
G,
(3.5) S } wyy(Py = Py) = O,

J

where the sum is taken over all j such that (i,j} is a member
of G. In case G has fixed vertices, there is no condition as
in (8.5).

The language here is taken from structurial engineering,

where F as above is called an equilibrium load on G(p). For

example, imagiﬁ?a truck in the middle of a bridge as in Figure
3.6. ‘The weight of the truck acts a "load" on the bridge, which
ig regarded as a bar framework. Of course, the points where the
bridge is attched to the ground have a corresponding force vector
as well, and these forces must be such that together they form an

equilibrium load.



\V
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Figure 3.6

Naturally one would hope that the bridge will resolve all
such "reasonable" loads. The sign of the stress wij on the
member {i,j} indicates whether the member is in tension or
compression, so we would hope that the resolving stress would be
proper as well.

We must be careful, however, since the definition of a stress
here and the way we use the concept are different from what the
word means in the engineering literature. The engineering
definition of stress in a member is the magnitude of the force per
unit area of a cross section of the member. Thus if tij
represents the "engineering stress" in member ({i,j}, and Aij

represents the cross sectional area of member (i,j}, then
®13Ps 7 Py) = Fiyhay To T
Note #hat the "engineering stress" tij is in units of

force/area, Newtons per square meter, say. Our stress wij is in

units of force/length, Newtons per meter, say.

-10-



Of course tij is more useful for deciding, say, the

appropriate materials and member size for resolving any given set
of loads, but such a definition is inconvenient mathematically
since it does not have agreeable linear properties for our

analysis.

Remark 3.5: Note that in our definition of when a stress for
a framework G(p) resolves a load F, it must turn out that F

is in equilibrium. To see this observe that if we define

Fi =§‘*’ij(PJ - Pl): i=1,2,..., v,

J
then

(Fll"'l FV) =—§ wijF(ilJ)'
i,]
Thus any stress w for G(p) defines a force in equilibrium.

i 2
It

Hence in the definition we need only consider equilibrium forées,
since if a force F is resolved by ®w, then F = § as above, and
thus F is an equilibrium force.

On the other hand, if there are pinned joints whose affine
span is all of Rd, then we do not include the equilibrium
equation at those points, and we do not require that the force on o
the other (variable) points be in equilibrium. We can always

apply forces to the pinned points in such a way that the whole

force is put in equilibrium.

5. Static Rigidity

Our basic definition is the following. A tensegrity
fgémework G(p) in Rd is called staticly rigid if every
equilibrium force F at p can be resolved by a proper stress

(.)-



L . ras
Regard @ as a row vector in R, Recalling the rigidity

matrix R(p) of section 15, chapter 2, we see that

T T
W R(P) = ( oy Qijl'--) e 0y (pl —pj) r ey (Pj -pi) [
_ _ vd -
= (vuu, } wij(pi pj),...) € R .
J
Thus regarding a force F = (Fl""' Fv) as a row vector, w

resolves F if and only if

F + w R(p) = 0.
By taking the transpose of this eguation and regarding the
equilibrium forces as column vectors now, we can rephrase the
defintion of static rigidity. Recall that Ep is the set of
equilibrium forces at p.
Provosition 3.6: A bar framework G(p) is staticly rigid if and
only if

Image R(p)T = E_.
p

We now have the following basic equivalence.

Theorem 3.7: A bar framework G(p) in md is infinitesimally

rigid if and only if G(p) is staticly rigid in RY,

Proof: From Proposition 3.6 G(p) is staticly rigid if and only

if

Ker R(p) = [Image R(p) 1% = E; =T,

where Tp is the set of trivial infinitesimal flexes at p, and
( )‘L denotes the orthogonal conplement. By Proposition 2.33 of
Chapter 2, this is precisely the condition for infinitesimal

rigidity.

-12-



Remark 3.8: The same result is true for tensegrity frameworks and
will be shown later in Chapter xx. The proof is very similar to
the proof above, except that the notion of dual cones replaces the

notion of perpendicular subspaces,

Note also that we needed the configuration space RVd to be

finite dimensional only in the proof that infinitesimal rigidffxgvé quép
. s “ 8 1 (ST

implies static rigidity. If G(p) is staticly rigid and p' is g -

\' [
DAY ’l’k
an infinitesimal flex of G(p), then by subtracting a trivial flex <.
> . \’\'\( (\(Iz l
we may assume that p’ satisfies the equilibrium conditions i

(3.3), (3.4). Then there is a stress w such that w R(p) = p',

and

n

p'-p' =w R(p)p' =w O 0.

Thus p' is trivial and G(p) 1is infinitesimally rigid.

6. Other Formulations of Static‘Rigidity

Instead of considering every possible equilibrium force in
the definition of static rigidity, under most circumstances, it is
enough to consider.only the elementary equilibrium forces. The
following follows from Theorem 3.7. |
| Corollary 3.9: Let p be any configuration of v points in md
whose affine span is Rd or which are affine independent. Then

{ F(i, J) | 1 ¢ 1 < j < v}

generates Ep.
Proof: Let G be the bar graph with bars between all pairs of
distinct vertices. Then by Corollary 2.24 and Proposition 2.20
G(p) 4is infinitesimally rigid in Rd, and thus G(p) is staticly -
rigid. The span of the F(i, j) 1is clearly the image of R(p)T

and by Proposition 3.6, this image is all of Ep

-13-



We now wish to get even more precise information about the

relation between infinitesimal flexes and equilibrium forces.

Proposition 3.10: Let G(p) be any bar framework in Rd, and let

i,j Dbe any pair of vertices of G. Then F(i, j) cannot be

resolved if and only if there is an infinitesimal flex p' of

G(p) such that (pi - pj)-(pi - p&) # 0.
Proof: Suppose that p' is any infinitesimal flex of G(p) such
that (pi - pj)-(pi - pa) # 0. Recall that R(p)p' = 0. Let w €

R® be any stress. Then

[» R(p) + F(i, j)] p' =« R(p)p' + F(i, J)p’

= F(i, j)p’
- pi
= [" (pi_pj)rrnscl (pj —pi)T ] ?;i-
Pj

= (py - py)-(Py - Pj)

# 0.
Thus ® R(p) + F(i, j) # 0, and no w can resolve F(i, j).

Conversly suppose that F(i, j) cannot be resolved. The
image of R(p)T and the kernel of R(p) are complementary
orthogonal subspaces in RVd, and F(i, j) is not in the image.
Thus there is a vector p! in the kernel of R(p), hence an
infinitesimal flex of ' G(p)., such that
F(i, j)-p' = (p; - pj)-(p3 - Pa) # 0.

Remark 3.11: Note that Proposition 3.10 implies Theorem 3.7 in
the case when the affine span of p is all of Rd, which of
csurse includes all the cases of infinitesimally rigid frameworks
except bar simplices. The equivalence of infinitesimal and static
rigidity is so fundamental that we have included both points of

view.

-14-



It will be shown later in Chapter xx that the equivalence
also holds for tensegrity frameworks as well. Orthogonal

complements are replaced by dual cones.

7. Self Stresses
We can use our new notion of static rigidity to provide other
hethods of calculating infinitesimal rigidity. Dual to the notion
of an infinitesimal flex is the notion of a self stress. Let
d

G(p) be any framework, and let w € R~., We say that ®w is a

self stress for G(p) if w R(p) = O, where R(p) 1is the

rigidity matrix for G(p). In other words  resolves the O
load. At the level of vectors we have

Yw0y5(p5 = By) = O,

J
for vertices i of G, and the sum is taken over all vertices j
such that (i,j} is a member of G.

Note that the set of all self stresses for a fixed framework

G(p) in Rd is a linear subspace of R®. 1In fact this set of
self stresses can be regarded as the orthogonal complement.of the
column space of R(p). Thus the dimension of the space of self
stresses can be used to determine the static (or infinitesimal)
rigidity of G(p) as follows.

Proposition 3.12: Let G(p) be a bar framework in .Rd with v

vertices and e bars such that the affine span of p is all of

Rd. Let s be the dimension of self stresses of G(p). Then
’ s> e - [vd - ELE—%—ll],

and equality holds if and only if G(p) is staticly rigid (or

equivalently infinitesimally rigid).

-15-



Proof: Since the dimension of the column space of R(p) is the
rank of R(p)., the discussion before the Proposition implies that
s + rank(R(p)) = e.

But Remark 2.34 of Chapter 2 implies that
d(da + 1)

’

2
with equality if and only if G(p) is infinitesimaliy rigid.

rank(R(p)) ¢ vd -

Thus

d(d + 1)]
— i

with equality if and only if G(p) is infinitesimally rigid.

s = e - rank(R(p)) > e - [vd -

Remark 3.13: A very useful consequence of the above Proposition

d(d + 1)
2 ’

rigid if and only if G(p) has only the 0 self stress (assuming

is that if G has e = vd - then G(p) is staticly
the affine span of p is Rd of course).
It is also useful to observe that if we have the equilibrium

equation for a self stress for a vertex i

2 ¥13Py " Py = O

J
then it follows that for any vector v,

Ewij(pi - Pj)'v = 0.

J
Often this can be used to show certain (and then all) of the

wij‘s are O. We illustrate this with an example below.

-16-



xample 3.14: Consider the framework K3 3(p) as in Figure 3.7.
’

R; ﬁf

Figure 3.7

We make sure that P, Py, Pg are on the (open) line
segments < P, Py >, < P, Pg >, < Py/ Py > respectively.

Note that e =9, v=6 so e = 2v -3. So K3 3(p) is

’

staticly rigid if and only if it has no self stress.

Suppose that K3 3(p) has a self stress w. At p, we take
the inner product of both sides of the equilibrium equation with a
vector Vv perpendicular to < P, P, >. Then

®34(P3 = p4)'V = 0,

and thus = 0. Similarly Wig = = 0. Next we apply the

¥4 Yoe

same idea to p,, P, and p to get all the other w,.'s equal
1 2 3 ij

to 0. Thus O is the only self stress, and K3 a(p) is
14
staticly rigid and hence infinitesimally rigid as well.
Note also by section 19 of Chapter 2, the above shows that

K is generically 2-rigid.

Problens:

Problem 3.4: For a triangulated two dimensional sphere in Rs,

show that it is statically rigid if and only if it has no self

ress, o L L £ “

-17~-



Problem 3.5: Let G(p) be a bar framework in Rd with v

vertices and e bars such that the affine span of p is all of
Rd as in the Proposition. Let s be the dimension of the space
of self stresses of G(p), and let m be the dimension of the
infinitesimal flexes of G(p). Show that

s - m=e - vd.

Problem 3.6: Let G be a bar graph, and let H be any subgraph

of G. Suppose that ®w 1is a self stress for a realization G(p)
of G. Define a (force) vector Fi for each vertex i of H as

follows.

F, = 2 vi3(Py = Py
{i,J}<G\H

where the sum for each fixed i is taken over those bars in G
but not H which have i as a vertex. If all the members of G
having i as a vertex are members of H, then define Fi = 0.
Show that this defines an equilibrium force at the realization of
the vertices of H.

Problem 3.7: Consider any realization G(p) in Rz of the
"Desargues configuration" as in Figure 3.8, such that no three of

the joints lie on a line.

not s"'q‘!‘icl rica:,io’ 5']'a+4'c ,y rf; a'ol

Figure 3.8
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Show that G(p) is not staticly rigid if and only if the
Sd (’f(ﬁ:{/’/‘: xA('_') \
! —K’ﬁ( /"6 ‘/(ﬁ / ot I: ’ v/>

through Py: Pg are either parallel or intersect in a point. To., %ng/

line through Pys Py the line through P,/ Pgs and the line (f

do this use Problem 3.6, where H 1is the triangle determined by
the vertices 1, 2, 3.

Problem:

Problem 3.8: By only using the notion of self stresses and not
infinitesimal rigidity, show that any bar simplex is staticly

rigid in any Rd.

8. A Matrix Reformulation

We present a compact alternate description of the equilibrium
equations used for self stresses. |

First we change the notation for the configuration p € RVd
itself. Recall that p was regarged as a column vector grouped
into v sets of d coordinates, where each set of d

d

coordinates is regarded as a column vector p; € R, i=1,..., V.

We now instead define

P = [P1'°--l PV]:
which is a d by v matrix, where the i-th column represents the
i-th point in Rd.
Next we represent a stress differently as well. Let G(p)
be any framework with v vertices and e members in Rd. Recall
that a stress w € RS is simply an assignment of a scalar wij
for each member of G, where ® is regarded as a row vector.

Define a v by v matrix 2 as follows. Define the i, j-th -

entry Qij of & by

-19-



N

Pl

- W for i # j

ij

Q..
ij ©

z ki for i = j.

k

Thus 2 is a symmetric matrix whose diagonal entries are equal to

the negative of the sum of the off diagonal entries in that row or

column. We call 2 the stress matrix for . -

We compute

pa =1{..., E wkipi - 2 wijpj,...]
k#i j#i
=[..., Ewij(pi - py)...1
J

Thus w is a self stress for G(p) if and only if P2 = 0, the
0 matrix.
Note also that if 2 is any symmetric matrix such that. Pa =

0 and the row and column sums of 2 are zero, then &

corresponds to a self stress w for G(p). In fact we can record
this information as follows. For any vector Py € Rd, regarded as
a column vector of course, define ﬁi € Rd+1 by

B, = | ot
i 1
In other words ﬁi is obtained by adding an extra coordinate 1
to the bottom of P, Similarly we definea d + 1 by v matrix
P by
P ={ Pyreees pv],
obtained by adding an extra row of 1's to the bottom of P.
Since. column sums of R are 0, we see that Pn = 0 if and only
if w is a self stress for G(p). Furthermore, any symmetric
matrix Q corresponds to a self stress for G(p) if and only if

M

P‘z = o.

-20-



This reformulation is helpful for the discussion of the

projective invariance of static rigidity discussed in section 10.

9. The Affine Invariance of Static Rigidity

If a given framework G(p) in Rd is staticly rigid, it is
natural to ask for what other configurations q will G(qg) be
staticly rigid. In particular, what transformations of the
ambient space Rd preserve static rigidity? Obviously if q is
congruent to p, then G(g) will be staticly rigid if and only if
G(p) is staticly rigid. Can we find transformations more general
than congruences of Rd which preserve static rigidity?

From Proposition 3.1? re¢i33~F?§§Vif the dimension of the
space of self stresses ogj;éiqfﬁuig‘éhe‘same as the dimension of
the space of self stresses of G(p), then G(q) is staticly rigid
if and only if G(p) is staticly rigid. With this in mind we
have the following.

Proposition 3.15: Let G(p) be a bar framework in Rd, and let

L: Rd -+ Rd be any affine map. If w € R® is a self stress for

G(p), then @ 1is a self stress for G(Lp). Hence when L is

invertible, G(Lp) is staticly rigid if and only if G(p) is

staticly rigid.

Proof: Let w be any self stress for. G(p). Write Lx = AX 4+ X
d d

for all x € R, where xo € R is a fixed vector and A is a d

by d matrix as in section 2 of Chapter 2. Then the equilibrium

0

equation for ®w being a self stress is
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J

Remark 3.16: It follows that affine maps also preserve

infinitesimal rigidity, but the correspondence between the
corresponding spaces of infinitesimal flexes is not always
obvious. Namely when L 1is an affine map as above it seems

natural to guess that if p' is an infinitesimal flex of G(p).

then Ap' = (Api,..., Apb) is an infinitesimal flex of G(Lp),
where A is the linear part of L. In the Figure 3.9 we see two
realizations of K3 3 on two lines in R2, which differ by an

affine egquivalence. However tlhe infinitesimal flexes do not
correspond in the obvious way as indicated above. 1In both cases

the infinitesimal flex on the non-horizontal line is vertical.

Figure 3.9
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Remark 3.17: For tensegrity frameworks it is also true that
affine equivalences preserve static (and infinitesimal) rigidity.
This will be shown in Chapter xx. |
Notice also that orthogonal projection I: Rd - Rd—l, for
instance, takes a framework G(p) in Rd with self stress w to

a framework G(Zp) in rA-1

with the same self stress w, but
G(Zp) may have more self stresses. So, in particular, 7 may
take a staticly rigid framework in Ra to one that is not

staticly rigid in Rz, as in Figure 3.10.

Figure 3.10
Also I may take a framework which is not staticly rigid in
Rs to one that is staticly rigid in Rz. For instance, any
staticly rigid bar framework in R2 with v > 4 is not staticly

rigid in RS, but its "projection" into m2 is staticly rigid by

construction.

Problem:

Prgblem 3.9: Suppose a Par graph G is genericélly rigid in md.
Sh;w that G is genericllly rigid in r9"1., See section 19 of

Chapter 1 for the definition of generically rigid.
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10. Projective Transformations

There is more to the story of which transformations preserve
static rigidity. In the study of Projective Geometry a natural
function that g@%ises is a projective map. One way to describe

this map is as follows. Let x € Rd, and let X € Rd+1

be as in
section 8. Let A be any invertible d + 1 by d + 1 matrix.

Then

AN

Ax = ’

where A is a d by d matrix and X, € Rd is fixed. Note
that A depends on x. Then the function that takes x to

(Ax + xo)/A is called a projective transformation. It turns out

that this transformation may not be defined on a

(d - 1)-dimensional hyperplane in Rd, those points whose image
under A have last coordinate 0, but it has the pleasant
property‘that it takes any set of points that lie on a line (or
hyperplane) to a set of points that lie on a line (or hyperplane).
In fact, roughly speaking, for Rd this line preserving property
characterizes what we are calling a projective transformation.

See Artin, Geometric Algebra (19xx), for a careful but somewhat
detailed description of this characterization. See Coxeter

(19xx), or Greenberg (19xx), for a discusion of the virtues of

Projective Geometry itself.
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Theorem 3.18: Let G(p) be any bar framework in Rd, and let T

be any projective transformation such that Tpi is defined for
every joint P of G(p). Then G(p) is staticly rigid if and
only if G(Tp) is staticly rigid.

roof: Let A be the d+ 1 by d+ 1 matrix used in the

definition T as above. Then for each vertex 1 of G,

Ap, + x
AA i 0
Bp, = [

A

i
where A, # 0 for i=1,..., V.

Let w be any self stress for G(p), and let a be the
corresponding stress matrix as in section 8. Thus Bn = 0. Let

D be the v by v diagonal matrix, whose i-th diagonal entry

is Ai and whose off diagonal entries are O,

Al 0
D = Ao
0 Av
Then
an =1 (Ap1 + xo)//\1 (Apv + xo)/Av
PD = .o
1 1

We observe also that DD is a symmetric matrix and

AA_ =1 AA A
APD "DaD = APRD = AOD = O.

Thus DD corresponds to a self stress for G(Tp), where the self

stress on member (i,j}) is This is clearly a vector

AA ...
i“j°1J
space isomorphism between the space of self stresses of G(p) and

the space of self stresses of G(Tp). Thus by Proposition(S.lZ} -

when the affine span of p is ail of Rd, then G(p) 1is staticly
rigid if and only if G(Tp) is staticly rigid.
In case the affine span of p is not all of Rd, then G(p)

is staticly rigid if and only if G(p) is a bar simplex. But by
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the hyperplane preserving nature of T, G(p) is a bar simplex if
and only if G(Tp) is a bar simplex. Hence G(p) is staticly
rigid if and only if G(Tp) is staticly rigid in this case as

well., This finishes the Theorem.

Remark 3.19: It is not true for tensegrity frameworks that
projective transformations preserve static rigidity. In Figure
3.11 we have two tensegrity frameworks in R2 with bars and

cables which have the same tensegrity graph.

(J. .ﬁ.?
.... O"
° o
o'.- “I
‘:. ) *
" .'
0 e
e
L. .|
Figure 3.11
2

In R® for any two sets of four points, no three on a line for
each set, there is a projective transformation that takes one set
onto the the other. Thus the two frameworks in Figure 3.11 are
projectively equivalent, but one is staticly rigid while the other
is not.

Despite the counterexample above there is something that can
said about tensegrity frameworks. 1In the description of the
pr;jective transformation T each point P of G(p) is

associated to a non-zero scalar Ai' It turns out that if we

interchange cables and struts on those members (i,j} where
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AiAj < 0 to get a new tensegrity graph G*, then G(p) 1is
staticly rigid if and only if G (Tp) is staticly rigid.

We can even see geometrically which of these members to
change., The projective transformation T is not defined on a
certain hyperspace H. The interchange is pefformed on those
members {i,j} such P and pj are on opposite sides of H,
For instance in Figure 3,12 starting with the same frameworks as
in Figure 3.11, we have indicated the line H and which cable to

*
change to a strut to obtain G (Tp).

Figure 3.12
See Chapter xx for a proof and more discussion.
Problems:
r em : Use the example of Figure 2.27 of Chaptef 2 to show
that if the points of KS,S(p) in Rz lie on any ellipse,
parabola, or hyperbola, then Ks'a(p)‘ is not staticly rigid.

Problem 3.,11: Let F: Rd -+ Rd be any function such that G(p)

-

is staticly rigid if and only if G(Fp) is staticly rigid, when
p is in some open subset of Rd. Show that F 1is a projective

transformation.
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11. Some Combinatorics of Rigidity

Since we now know about the concepts of stresses, self
stresses, infinitesimal flexes etc., we can use them in a
combinatorial way to investigate related properties of frameworks.

Suppose that G(p) is a bar framework and i, jJ are two of
the vertices of G. Regardless of whether G(p) is staticly
rigid or not, we can ask whether the elementary equilibrium force
F(i, j) can be resolved. If F(i, j) can be resolved by some

stress for G(p), then we say that (i,j} is an implicit bar of

G(p). Note that this is the same thing as saying that F(i, Jj)

is in the linear span of the rows of the rigidity matrix R(p).
Similarly we say that a bar ({i,j} of G(p) is redundant if

{i,j} 4is an implicit bar in the framework obtained by removing

{i,j}. Clearly adding implied bars or removing redundant ones

does not change the static rigidity of a framework G(p).

Example 3.20: In the bar framework of Figure 3.13 in Rz, {1,2}

is an implicit bar.

f P,

Figure 3.13
Furthermore when (1,2} is added as in Figure 3.14, every bar

becomes redundant.
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Figure 3;14

Note that whether ({i,j} is an implicit bar or a redundant
bar may depend on the position of the joints.

Example 3.21: Suppose that G is a bar triangle. If all the
joints of G(p) are distinct, then each bar is redundant if and
only if the joints lie on a line.

Note that a bar ({i,j} of G is redundant if and only if
there is a self stress w for G(p) such that wij # 0. With
this in mind we say that a bar framework is dependent if there are
redundant bars, and G(p) is indegendént otherwise, We see that
this definition coincides with the usual definition of linear
dependence and linear independenqe of the rows of the rigidity
matrix R(p). If G(p) is statically rigid and independent, we
say that G(p) is isostatic. If G(p) is a dependent framework
such that the removal of any bar creates an independent framework,
then we say that G(p) is a circuit. For example the framework
of Figure 3.13 is isostatic and the framework of Figure 3,14 is a
cifcuit. Isostatic frameworks are minimally (in the sense

containing bars) statically rigid frameworks, and circuits are

minimally dependent frameworks.
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Of course we know from Proposition 2.30 of Chapter 2 that if

the affine span of p is all of Rd, and if all possible (i, ]}

are\implied bars, then G(p) is statically rigid.

Lastly we observe that being independent, isostatic, and
statically rigid are all generic properties for bar frameworks.
If G(p) has one of these properties for one configuration p,
then G(qg) has the property for an open dense set of of
configurations in RVd. This is because all of the above
properties are equivalent to certain determinants not vanishing.
The set of configurations where the property does not hold is a
d

closed algebraic set in RV Thus the complement is open and

dense in RVd.

Problems:

Problem 3.12: Let G(p) be a bar framework in Rd with the

affine span of p all of Rd. Define the degree of freedom f

for G(p) as the minimum number of bars needed to add to G(p)

(adding no new vertices) to make G(p) statically rigid. Let e

be the number of bars of G. If G(p)_ is independent, show that
f =vd - d(d + 1)/2 - e.

Problem 3.13: Let G(p) be as in Problem 3.12. Define the

degree of redundancy r of G(p) as the minimum number of bars
one needs to remove to make. G(p) independent.
a. If G(p) 1is statically rigid, show that
r=e -vd + d(d + 1)/2.
b. If G(p) is not statically rigid, show that

f -r=vd - d(d + 1)/2 -e.
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Erobiem 3.14: Consider a configuration p of six distinct points
in R2, where no three are on a line. Consider any bar framework
G(p) which is not statically rigid, but such that every member is
redundant. What is the most number of bars which G can have,
and what configurations p allow this maximum number of bars?

For the next problem, we say a graph G is n_vertex-
connected if G remains connected upon the removal of any n - 1

or fewer vertices, but some n vertices do disconnect G.

Similarly, G is n__edge connected if G remains connected upon
the removal of n - 1 or fewer edges, but some n edges do
disconnect G.
Problem 3.15(G., Kilai): Let G(p)‘ be a bar framework in Rd'
with e bars and v vertices such that v > d and

e >vd - d(d + 1)/2. |

a. Show that there is a subgraph of G with more than d
vertices which is d + 1 edge connected.

b. Show that there is an edge ({i,j} of G such that there
are d + 2 paths from i to j withonly i and j in
common.

Suppose instead that

e =vd - d(d + 1)/2,

c. Show that a. is true with d + 1 edge connected replaced
by d edge connected.

d., Show that b. is true with d + 2 replaced by d + 1.

Problem 3.16: Let p be any configuration of points in Rd such

no d +1 of the points lie ona d - 1 dimensional hyperplane.
Let G(p) ' be obtained from a complete bar graph by successively
deleting bars only if they are part of a remaining complete bar
graph with 4 + 2 vertices. Show that G(p) is statically
rigid.
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