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4.1. Introduction.

In this chapter, we deal almost exclusively with frameworks which are given, in one
way or another, by the surfaces of convex polyhedra in IR®. In Section 4.2, we examine
the simplest and perhaps most natural case — namely, that in which the vertices and edges
of the framework coincide precisely with the vertices and edges of a convex polyhedron
in IR3. Then, in Section 4.3 and 4.4, we complicate matters by allowing other points
and line segments on the surface of the convex polyhedron to serve as vertices and edges

of the framework.

Understanding the role that convexity plays is the major theme of the chapter. Two
other themes are central to Section 4.3 and at least peripheral to most of the remainder of
the chapter. One deals with the connections between self-stresses of the whole framework
and self-stresses of its “facial” frameworks (which consist of the vertices and edges that
lie in a single face of the convex polyhedron). Incidentally, a “self-stress” will usually
be referred to simply as a “stress” in this chapter. The other major theme explores the
relationships between the spatial rigidity of a framework and the planar rigidity of its

facial frameworks. Three separate kinds of conditions are pertinent to the development

of these themes:

1. the location of the vertices of the framework (are there vertices of the framework



in the interior of edges or even faces of the convex polyhedron?);

2. the nature and location of any crossings of edges of the framework (are there
edges of the framework that intersect in a point that is not an endpoint of both

edges and, if so, where do these crossings occur?);

3. the presence of each edge of the convex polyhedron in the framework (are there
edges or portions of edges of the convex polyhedron that are absent from the

framework?).

The results in this chapter are often of a delicately balanced and somewhat technical na-
ture, perhaps primarily because of the subtle interplay between these three independent
conditions. However, with some experience and a small number of examples in mind,

one rather quickly is led to the appropriate conditions for the kind of result one seeks.

Of all the topics in this book, the rigidity of convex surfaces surely has the richest
historical tradition. Euclid’s definition of “equal and similar solid figures” (Definition 10,
Book XI, of the Elements) has met with much criticism, precisely because of a question
regarding the rigidity of surfaces that the definition raises. For a complete discussion of
both the definition and the issues it raises, see Heath (1956). However, it is illuminating
for our purposes in this chapter to discuss the problem in at least an informal way.
Roughly speaking, Euclid’s deﬁnition says that equal and similar solid figures are those
with corresponding faces congruent and arranged in the same way. And the question
is: does this definition really guarantee that the solid figures are congruent in the sense
that one of the solid figures can be made to coincide with the other by applying a
congruence of IR*? (This is surely the notion that Euclid was attempting to capture by
his definition.) We can frame the question in the following very concrete, down-to-earth
way. Suppose one cuts out pieces of cardboard and tapes them together in such a way as
to form the surface of a solid figure. Might someone else, taping the same faces together
in the same arrangement, arrive at a solid figure which is not congruent to the first?

The example shown in Figure 4.1 (which goes back at least to Legendre (1794)) shows
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that this can actually occur if the solid figures are not required to be convex! Or worse
still, might the surface one obtains be “flexible”? This would provide an infinite family
of noncongruent solid figures with corresponding faces congruent and arranged in the

same way.

Figure 4.1

The question raised by Euclid’s definition was resolved early in the nineteenth cen-
tury by Cauchy (1813) who (almost) proved that two convex polyhedra with correspond-
ing faces congruent and arranged in the same way are themselves congruent. However,
like Euclid’s definition, Cauchy’s proof was eventually to become the subject of a good
deal of criticism. The proof consists basically of two parts, one topological and the
other geometric in nature. Imperfections in the topological part of the argument were
detected by Hadamard (1907) and corrected by Lebesgue (1909). However, Steinitz later
found defects in the geometric part of Cauchy’s argument as well, and the first. complete
proof of Cauchy’s theorem appears finally in Steinitz & Rademacher (1934). Basically,
this is the proo-f presented in Lyusternik (1963). Stoker (1968) both proves and extends
Cauchy’s theorem. In any case, history supports the contention that Definition 10 of
Book XI of Euclid’s Elements is not properly a definition at all - it is, in fact, a rather
substantial theorem, involving ideas that are somewhat subtle and technically difficult.

Understanding the part played by convexity when Cauchy’s theorem is interpreted

as a result about the rigidity of convex polyhedral surfaces is a great deal more difficult.
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Perhaps all closed polyhedral surfaces, even nonconvex ones, are rigid. The conjecture,
a version of which Euler proposed in 1766, that all embedded polyhedral surfaces are
rigid has recently been settled by an ingenious counterexample of Connelly (1978). His
flexible polyhedral surface is a collection of triangles joined together along common edges
in such a way as to form a closed (but not convex) polyhedron without self-intersections
in IR®. Connelly (1979) describes several such flexible polyhedral surfaces, including the
one shown in Figure 4.2 due to Klaus Steffen. Note that this figure is symmetric about
a vertical line. Each unlabeled edge has the same length as its corresponding edge under
the symmetry. Building this surface by cutting out pieces of cardboard and taping them

together as shown by the arrows in Figure 4.2 is well worth the effort.

——————— Valley Folds
— . — Mountain Folds

Figure 4.2

Although it is not difficult to formulate the appropriate notions of rigidity and
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flexibility for polyhedral surfaces, we instead focus once again on frameworks and relate
Cauchy’s theorem to the rigidity of frameworks. Since as a framework any triangle is
rigid, it is not difficult to convince oneself that for a convex polyhedron with all triangular
faces, Cauchy’s theorem implies that the framework consisting of the vertices and edges
(the “one-skeleton”) of such a polyhedron is rigid in IR®, However, rather than relying
on Cauchy’s theorem for convex polyhedra in our work, we will instead formulate and
prove a version of Cauchy’s theorem directly for frameworks. Section 4.2 does precisely
this. -

Finally, what can be said about the rigidity of smooth surfaces? Results analo-
gous to Cauchy’s can be found in Liebmann (1900) for analytic surfaces and in Cohn-
Vossen (1936) for smooth surfaces. More recent work includes that of Efimov (1957),
Pogorelov (1973), and others. Chapter 12 of Volume V of Spivak (1979) is perhaps the
most accessible reference. In general, one finds that although important ideas seem to
transfer between the smooth category and the piecewise-linear category with considerable
success, specific techniques may not and it has not yet been possible to establish results
in one category by simply appealing to analogous results in the other. Nonetheless, the

importance of each as a source of inspiration for the other is substantial.



4.2. Frameworks Given by Convex Polyhedra in R3.

Let C be a convex polyhedron in IR3, i.e., the convex hull of a finite set of noncopla-
nar points in IR3. A vertez of C is a point which is the intersection of C' with a support
plane of C, while an edge of C is a closed line segment which is the intersection of C with
a support plane of C. Suppose C has v vertices located at the points p1,-++,Pv € R3.
Let V ={1,---,v} and

E = {{i,7} : [p:,p;] is an edge of C} .

Definition 4.1. The framework G(p) where G = (V,E) and p = (p1,-**,Pyv) is the
framework in IR® given by the convex polyhedron C.

Our goal in this section is to characterize the frameworks given by convex polyhedra
in IR® that are rigid in IR3.

Suppose G(p) is the framework given by a convex polyhedron C' in IR®. We will show
that G(p) admits only the trivial self-stress. That is, we show that rank dfp = e where
f: R® — IR® is the rigidity map of G and e is the number of edges of G. This implies
that max{rank dfx : X € IR®'} = e and thus p is a regular point of f. Consequently, the
Implicit Function Theorem implies that f~(f(p)) is a (3v — e)-dimensional manifold
near p. By Proposition 2.32, G(p) is rigid in IR® if and only if f~!(f(p)) and the six-
dimensional manifold Hp of points congruent to p coincide near p. But this is merely a
matter of dimension since both are manifolds. Therefore one can determine the rigidity
or flexibility of G(p) by the simplest imaginable procedure — just count the number
e of edges of C and compare the result to 3v — 6. Furthermore, the results can even
be interpreted “infinitesimally” if desired, since rigidity (flexibility) and infinitesimal
rigidity (infinitesimal flexibility) amount to the same thing at regular points.

Before proving that frameworks given by convex polyhedra in IR? are stress free, it
seems useful to provide an example of a nonconvex polyhedron which admits a nontrivial

stress.
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Example 4.1. Consider the nonconvex octahedron G (p) shown in Figure 4.3 with ver-
tices located at the points p; = (0,1,0), p2 = (~2,3,0), pa = (0,—3,0), P4 = (2,3,0),
ps = (0,0,3), ps = (0,0,—3). Using the definition of a self-stress (see Equation (4.1)),
it is easy to verify that {w;;} is a self-stress when w1z = w14 = 3, w2z = waq = 1,

wis = Wie = 6, Wop = Wae = W3p = Was = Wep = Wee = —2.
()

Op
. A
Figure 4.3

The proof that rank dfp = e has two parts, both of which originate in the proof by
Cauchy (1813) of the fact that two convex polyhedra in IR® with corresponding faces
congruent and “arranged in the same way” are themselves congruent. "(More formally,
the hypothesis of Cauchy’s theofem says that there exists a one-to-one correspondence
1 between the sets of vertices of the two polyhedra such that S is the set of vertices of
a face of one polyhedron if and only if $(S) is the set of vertices of a face of the other
and, furthermore, the map 3 preserves distances between vertices on corresponding
faces. Thus in Cauchy’s theorem one considers the faces of the convex polyhedra to
be rigid in JR®) One part is of a global topological nature and deals with graphs
on a polyhedron, while the other is of a local geometrical nature and relies on the
convexity of the polyhedron. The particular arrangement of ideas used here is due to
Alexandrov (1958) and Gluck (1975), and related results appear in Dehn (1916) and
Weyl (1917).

Consider a framework G(p) in JR® given by a convex polyhedron C and suppose



there exists a nontrivial stress {w;;} of G(p). This means that for 1 <:<wv

Y wij(pi—p;) =0 (4.1)

j€a(i)

where a(z) = {J : [Pi, P;] is an edge of G(p)}, the set of vertices adjacent to vertex <.

The signs of the coefficients w;; are now used to attach the symbols + and — to some
of the edges of C. If w;; > 0, then the {7, 5} edge of C is marked + while if wi; < 0, then
the {7,5} edge of C is marked —. The edge {7,7} is left unmarked if w;; = 0. Consider
the graph G’ on the surface 8C of C induced by the marked eages of C , which means
that the edges of G’ are the edges of C marked + or — and the vertices of G' are the
vertices of C incident with at least one edge marked + or —. For each vertex p; of G" ,
the edges of G’ incident with p; can by cyclically ordered according to their occurrence
on the surface of C as the vertex p; is circled once. The tndez of p; is the number of
changes of sign encountered in this cycle of edges around the vertex p; and the indez I is
the sum of the iﬁdices of the Yertices of G'. Actually these notions of index make sense
even for nonconvex polyhedra. For instance, in Example 4.1 the index of p; is zero, the
index of ps and pe is two, and the index of pz, ps, and p4 is four. Thus I = 16 for
this nonconvex octahedron. The topological part of the proof deals with graphs induced
by some subset of the edges of a polﬁrhedron where each edge in the subset is marked +
or —. Convexity is irrelevant for this lemma; what is crucial is that the polyhedron is

topologically a sphere so one can use Euler’s formula.

Lemma 4.1. The index saﬁisﬁes

I<4v' —38
where v’ is the number of vertices of G'.

Proof. Let ¢’ be the number of edges of G’ and f’ the number of regions (or topological
components) of 8C — G’. Each such region has a boundary consisting of edges of G'. Let

f! be the number of regions with exactly n boundary edges where an edge is counted
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twice for a region if the region lies on both sides of the edge. Clearly fi = 0 and f3 is
nonzero only when G’ has just one edge. Since I = 0 = 4v' — 8 in this case, we assume

f4 =0, Then

2¢/ = nf, and f'=)f,.

n>3 n>3
We now compute the index I by circling regions rather than vertices. Since the number
of sign-changes as one traverses the boundary of a region with n edges is an even number

less than or equal to n, we have

I<2fL+ 4, + 475+ 675 +6f4+--< > (2n—4)f}
n>3

=2 nfl,—4) fr=4¢—4f".

n>3 n>3

By Euler’s formula, v/ — ¢/ + f' = 1+ N > 2 where N is the number of components of
the graph G'. Therefore

I<4e —4f' <4'-8. o

Next, we present the geometrical part of the argument which relies on the con{rexity
of C together with Equation {4.1). Note that the nonconvex octahedron in Example 4.1

has vertices of index zero and two..
Lemma 4.2. The index of every vertex of G' is greater than or equal to four.

Proof. Consider any vertex p; of G’ and let o’(¢) = {j : [P+, P;] is an edge of G'}. By

Equation (4.1), we have

Y wij(pi—p;) =0 (4.2)

j€a’ (i)
since the coefficients w;; of edges of G but not G' are zero. First, the index of p; cannot
be zero since the scalars w; for § € a/ (i) are either all positive or all negative in this case.
By the convexity of C, there exists a plane in IR® which intersects C only at p;; say an

equation of the plane is n - (p; — x) = 0, wheren € IR® is a normal to the plane. Since
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all vertices of G except p; lie on one side of the plane, n- (p; — p;) is either positive for
all § € a/(z) or negative for all j € a/(7). Therefore,
Y wijn-(pi—p;)] #0,
jea’ (i)
which is impossible since Equation (4.2) gives
3 win-(pi—py)l=n-| Y wii(Pi—ps)| =0.
j€a’(4) j€a’(3)
Moreover, a similar argument shows that the index of p; cannot be two, since in this
case there is a set of edges of G’ marked + followed by a set of edges marked — in the
cycle of edges around p;. By the convexity of C, there exists a plane through p; with
the edges of G’ incident with p; marked + on one side of the plane and those marked —
on the other side of the plane. If an equation of this plane is n - (p; — x) = 0, we have
n - (p; — p;) of one sign for all the edges marked + and of the opposite sign for those
marked —. Thus by Equation (4.2)
O=n-| > wy(pi—p;)| = D wijln-(Pi—p;)]#0.

j€a'(3) J€a'(3)
This contradiction completes the proof of Lemma 4.2. o
Theorem 4.3. Let G(p), p € R®, be the framework in IR® given by a convex polyhe-

dron C and suppose f is the rigidity map of G. Then
rank dfp = e,

the number of edges of C'.

Proof. We suppose that G(p) admits a nontrivial stress and arrive at a contradiction.
We attach the symbols + and — to some of the edges of C' according to the signs in
a nontrivial stress and let G’ be the graph induced by the marked edges of C. By

Lemmas 4.1 and 4.2 we have

I<4 -8<4/<I
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where I is the index and v’ the number of vertices of G'. This contradiction shows that
G(p) is stress free and thus rank dfp =e. o

Therefore, as was observed in the comment following Definition 4.1, the rigidity
or flexibility of a framework given by a convex polyhedron is determined by a simple
comparison of e and 3v — 6. However, this same comparison arises in another quite
different way. Consider a convex polyhedron C in IR® with v vertices, e edges, and f

faces of which fn have exactly n edges. By Euler’s formula,
3v—6=23v—2)=3(e—f) =e+ (2¢ —3f) .

But

3f=38) fa< ) nfn=2e

n>3 n2>3

with equality if and only if f = fa, i.e., every face of C is a triangle. Therefore e <
3v — 6 with equality if and only if every face of C is a triangle. This leads to the
following corollary, one implication of which was previously observed in Section 4.1 to
be a consequence of Cauchy’s theorem for convex polyhedra. The other implication is

due to Asimow & Roth (1978).-

Corollary 4.4. The framework G (p) given by a convex polyhedron C is rigid in R3 if

and only if every face of C is a triangle.

Proof. By Theorem 4.3, rank dfp, = e where e is the number of edges of C and f is the
rigidity map of G. Thus p = (P1,** ,DPv) is a regular point of f and therefore G (p) is
rigid in JR® if and only if e = rank dfp = 3v — 6. But, as we just observed, e = 3v — 6 if
and only if eve—;‘y face of C is a triangle. ©

A similar argument using Theorem 4.3 establishes that the removal of any bar from
a framework given by a convex polyhedron in IR® with all triangular faces gives a flexible
framework.

This e = 3v—6 “test for rigidity” arising from Theorem 4.3 has certainly not escaped

the attention of engineers. In fact, the inaccuracies that mar many accounts of rigidity
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stem from attempts to apply this simple formula to all frameworks in R3. Tt is not
difficult to find examples showing this is inappropriate.

For instance, consider the framework G(p) in IR® shown in Figure 4.4, which is
a tetrahedron with a triangle in the plane of its base. A simple geometrical argument
using the very special location of the three vertices in the interior of the base of the
tetrahedron shows that G(p) is rigid in IR® even though e < 3v — 6. (Note Theorem 4.3
is not applicable since G(p) is not the framework given by a convex polyhedron in R
in the sense of Definition 4.1.) However, Proposition 2.36 says that the framework G
(in fact, any framework with e < 3v — 6) is always infinitesimally flexible in IR® which is

equivalent to saying that G is generically flexible in R3.

&

Figure 4.4 Figure 4.5

On the other hand, there exist frameworks with e = 3v — 6 which are not only
flexible but even generically flexible in IR®. For example, the framework G(p) shown in
Figure 4.5 is flexible in IR® since one half of the framework rotates relative to the other
arou;ld the dotted line shown, and this is clearly the typical behavior of G in IR

Theorem 4.3 is also the key to Gluck’s elegant proof that triangulated spheres are
generically rigid in IR®. The main result of Gluck (1975) is that “almost all” frameworks
given by any triangulation of the two-sphere are rigid in IR3®. To see this, suppose G
is the graph corresponding to a triangulation of the two-sphere. By Steinitz’ theorem

(see Lyusternik (1963)), there exists p € IR3’ such that G(p) is the framework given
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by a convex polyhedron in JR® with all triangular faces. Hence G(p) is rigid (even
infinitesimally rigid) in IR® by Corollary 4.4. Moreover, since each G(q) for q sufficiently
close to p is also a framework given by a convex polyhedron with all triangular faces,
each such G(q) is infinitesimally rigid in IR®. Since G(q) is infinitesimally rigid for all q

in a neighborhood of p, G is generically rigid in R? (see Chapter 3).

While Corollary 4.4 tells us that the framework given by a cube is flexible in IR®,
it gives no information about the “braced” cube obtained by adding new diagonal edges
across some (or perhaps all) of the six faces of the cube. Since such frameworks are
surely of interest, much of the remainder of this chapter deals with frameworks which
arise in various more general ways from convex polyhedra in IR®. Incidentally, this is not
meant to imply that frameworks arising in one way or another from convex polyhedra
are the only interesting or important ones from either a mathematical or a strucfural
point of view — these just form one of the broad classes of frameworks about which a
great deal is known. However, our understé.nding' of nonconvex frameworks is growing.
For example, the fact that infinitesimal rigidity is projectively invariant (see Chapter 5)
enables one to create nonconvex infinitesimally rigid frameworks from convex ones. The

generic rigidity of triangulated tori is also of current interest.

For a framework G(p) obtained from a convex polyhedron C by first adding new
vertices in the interior of edges of C (so each edge of C' is now subdivided by edges of
G(p)) and then adding new noncrossing diagonal edges across each face of C, Alexan-
drov (1958) shows that G(p) is stress free, i.e., rank dfp equals the number of edges of
G. Therefore, for such frameworks, G (p) is rigid (or,mequivalently, infinitesimally rigid)
in IR® if and only if G(p) forms a triangulation of the surface of C'. If new vertices
are also allowed in the interior of faces of C before the addition of the new noncrossing
edges in the faces of C, then the resulting framework may admit nontrivial stresses. A
stress {w;; : {¢,/} an edge of G} of a framework G(p) is called a facial stress if there

exists a face of C such that w;; = 0 for all edges [pi, P;] which do not lie in the face.
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Whiteley (1984) proves a significant generalization of Alexandrov’s result which states
that, for appropriate frameworks, every stress is a sum of facial stresses. Related results
based on the study of infinitesimal flexes rather than stresses appear in Connelly (1980).
In the next section of this chapter, a version of Whiteley’s theorem is proved.

Finally, what happens if new vertices are present in the interior of faces of C' before
the faces of C are triangulated by noncrossing edges? In this case, the framework G(p)
is not infinitesimally rigid in R®. (To the vertices in the interior of a face, one can assign
vectors which are perpendicular to the face and a.ssign zero vectors to the remaining
vertices in order to obtain a nontrivial infinitesimal flex of G(p).) Moreover, p is not
a regular point of the rigidity map and G(p) admits nontrivial stresses. Nevertheless,
Connelly (1980) shows that G(p) is rigid in IR® by examining the second derivative of
the preservation of edge length conditions. In other words, every triangulation of the
surface of a convex polyhedron in IR® gives a rigid framework in IR3. Connelly’s theorem

is proved in the last section of this chapter.
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4,3, Whiteley’s Rigidity Theorem.

Theorem 4.3, the version of Cauchy’s rigidity theorem for frameworks which we
proved in Section 4.2, applies only to frameworks given by the edges and vertices of a
convex polyhedron C in JR® in the sense of Definition 4.1, As mentioned at the end of
the previous section, we now consider frameworks arising from the surfaces of convex
polyhedra in IR® in other ways. Recall that Lemma 4.2, the geometric part of the proof
of Theorem 4.3, consisted of showing that every vertex of G' has index at least four
(where G’ is the graph induced by the marked or nonzero edges of a framework G(p)).
In particular, we showed that no vertex of @' has index two by using a plane through
the vertex which separates the positive edges from the negative ones. Once we allow
edges in the interior of faces of C, this separating plane may no longer exist and vertices

of index two must be dealt with in another way.

One can further complicate matters by allowing new vertices, either edge vertices
(which lie in the interior of edges of the polyhedron C) or face vertices (which lie in the
interior of faces of the polyhedron C), before introducing the new diagonal edges in the
faces of the polyhedron. Once these new vertices appear, the possibility of vertices of
index zero also arises since there may no longer exist a plane through each vertex with

the remaining vertices in one open half-space.

Alexandrov (1958) proves that if G(p) is a framework obtained from a convex poly-
hedron C in IR® by first adding new edge vertices (no face vertices are allowed) and then
triangulating each face of C by adding noncrossing diagonal edges across the face, then
ranlz dfp = e, the ;mmber of edges of G(p). Note that, in contrast to Cauchy’s result
which requires the faces of the polyhedron to be rigid in IR®, Alexandrov is only requir-
ing the faces to be planarly rigid. Alexandrov’s proof, a version of which appears in
Asimow & Roth (1979), involves a very detajled analysis of the occurrence of vertices of
index two. Whiteley (1984) introduces some important new ideas in his proof of a more

general and more illuminating theorem. Whiteley’s result concerns frameworks G(p)
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arising from a convex polyhedron by allowing new edge vertices and new face vertices
before the addition of new noncrossing edges to the natural faces of the polyhedron;
roughly speaking, it states that if the set of edges of G(p) in each face admits only the
trivial stress, then the entire framework G(p) admits only the trivial stress. However,
it is important to note that this and many related results require that every edge of the
convex polyhedron be an edge (or a union of edges) of G(p). The following example,
which will be pertinent to many results in this section, establishes the necessity of the
- condition that the edges of the convex polyhedron be present in the framework.

Example 4.2. Consider a tetrahedron with one face vertex in each of two faces. After
triangulating these two faces, delete the common edge of the two faces (as shown by the
dotted line in Figure 4.6). The resulting framework G(p) has stress free faces but the;'e
exists a nontrivial stress of G(p) involving the edges in the two faces which share the

deleted edge.

Figure 4.6

Until now, we hav; “built up” tile frameworks under discussion by adding new
vertices and edges to convex polyhedra. There is a convenient alternative description of
the frameworks in question.

Definition 4.2. Consider a framework G(p) in IR® and let C be the convex hull of its
vertices p1,-*+,Pv. G(P) is a convez framework in R? if

(i) every edge [pi, P;] of G(p) is contained in acC,
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(ii) ps # py for i # j, and

(iii) the affine span of p1,+, Py is IR3,

Condition (i), which says that the edges lie on the boundary of the convex hull of
the vertices, is the essential one. Condition (ii) says that distinct vertices don’t have the
same location while condition (iii) merely says the framework really is three-dimensional.

We say the edges of a framework are noncrossing if the intersection of any two edges
of the framework is either empty or an endpoint of both edges. Incidentally, later in this
section we will allow edges to cross in restricted (and occasionally unrestricted) ways.
The following simple fact about convex polygons in the plane will be needed on several
occasions.

Exercise 4.1. Consider a finite set {p1,+-,pv} of points in IR? whose affine span is IR?
such that each p; belongs to the boundary of the convex hull C' of {P1,***,Pv}. A frame-
work G(p), P = (P1,* ", Dv), consisting of the boundary edges [P1,P2], [P2:P3)s" 5 [Po,
p1] of C and any collection of noncrossing edges in the interior of C admits only the
trivial stress. Furthermore, if C is triangulated by these noncrossing edges, then G (p)

is also infinitesimally rigid in IR?. Figure 4.7 shows such a triangulated framework.

A\ -/

Figure 4.7

Finally, it is useful to make an observation about vertices of index zero or two in a

convex framework.
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Remark 4.1. Suppose G(p) is a convex framework in IR® with convex hull C which
has a nontrivial stress {w;i;}. For each ¢, let a’(s) = {J : wi; # 0}, the set of vertices
adjacent to vertex ¢ in the graph G’ induced by the nonzero edges of G(p). If a vertex
p; of G’ has index zero, then
Y wij(pi—p;) =0
J€a'(4)
where every w;; for j € a/(¢) has the same sign. Choose a plane through p; supporting
C, say an equation of the plane is n - (p; —x) = 0. Then _
O=n- Y wy(Pi—p;)= D wijn-(Pi—p;) (4.3)
j€a’ (i) j€a' (1)

and hence every p; for j € a/(z) lies in the supporting plane. Thus vertices of index zero
have all incident nonzero edges in a single face of C. We now observe that the same
conclusion holds for vertices of index two. If the index of a vertex p; of G’ is two, then
there is a set of positive edges followed by a set of negative edges in the cycle of edges
around p;. There cannot exist a plane strictly separating the positive and negative edges
(as is seen by looking at the proof of the index two case in Lemma 4.2). Hence the two
sign changes must occur between eglges in a single face of C. If n- (p; —x) =0 is an
equation of the plane containing this face, then Equation (4.3) shows that all nonzero
edges incident with p; lie in the face.

We are now in a position to prove Whiteley’s theorem for convex frameworks G(p).
Tt has three hypotheses; the first requires that the faces of the convex hull C be stress
free, the second that the edges of G(p) be noncrossing, and the third that each edge of
C be present in the framework G(p). If there are no vertices of G(p) in the interior of
faces of C, then the second and third hypotheses together with Exercise 4.1 guarantee

that the faces of C are stress free. Later we will find that the requirement that the edges

be noncrossing can be relaxed.

Theorem 4.5. (Whiteley) Consider a convex framework G(p) in IR® and let C be the

convex hull of its vertices P1,*+*,Pv. If
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(a) the set of edges of G(p) in each face of C forms a stress free framework,

(b) the edges of G(p) are noncrossing, and
(c) each edge of C is a union of edges of G(p),

then G(p) admits only the trivial stress.

Proof. Suppose there exists a convex framework in IR® satisfying properties (a), (b),
and (c) with a nontrivial stress. Then there exists such a convex framework G(p) in
R® with a nontrivial stress such that the set of edges of this framework with nonzero
coefficients induces a subgraph G’ with a minimum number of vertices. It cannot be the

case that every vertex of G’ has index at least four since we then have
I<4v—8<4/<1I

where v’ is the number of vertices of G’ and I is the index. (Note that I < 40’ —8 follows
from Lemma 4.1.) Therefore, G’ has a vertex of index zero or two and, by Remark 4.1,
all edges of G' incident with this vertex lie in a single face F of C.

We now create a new convex framework with a nonzero stress in which the nonzero

edges induce a graph with a smaller number of vertices than G'. This involves the

removal of a vertex of index zero or two from the face F. The notions of equilibrium and
resolvable forces (Chapter 2.77) play a crucial role in the creation of this new framework.
Among other things, it is useful to observe that if a system of forces can be resolved,
then the system of forces is an equilibrium one.

Our assumption that G(p) has a nontrivial stress means that there exists a set
{ws; ¢ {i,7} an edge of G}, the nonzero elements of -which induce the graph G’, such

that for 1 <z <w

Y wij (Pi—Ppj) =0

j€a(s)
where, as usual, a(f) = {7 : {t,s} an edge of G}. Suppose the vertices of G(p) which

belong to the face F are pi,'-*,Pm Where the first n of these, namely p1,:**,Pn, are

the vertices of G(p) on F which are incident with an edge of G’ off the face F. Note

-/
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that the set {p1,-+,Pn} is nonempty by hypothesis (a), contains no vertices of index
zero or two by Remark 4.1, and contains no face vertices. Also n < m since F' contains
a vertex of index zero or two. Note that {p1,---,Pn} is a subset of the boundary of the

convex polygon F. For 1 < ¢ < m, let b(z) = {7 : the edge {7,7} of G lies on F} and let

F; = Z Wij (pi — pj) . (4.4)

j€b(3)
Note that the vectors F;, 1 < ¢ < m, all lie in the plane of F. Then, by definition,
(Fy,--+,Fp) is a resolvable force for the set of edges of G(p) on the face F and hence
an equilibrium force for (p1,-*-,Pm). However, F; = 0 for n < 7+ < m and thus it is
easy to verify that (Fy,---,Fy) is an equilibrium force for (p1,*--,Pn)-

Assume now‘N that the affine span of p;,--+,Pn is two-dimensional. Next delete
everything (all vertices and edges) on face F except for the vertices p1,P2,***,Pn. We
then rebuild an appropriate framework on face F. The appropriate framework on F is
given by any triangulation of the convex hull of {py,--- ,Pr} by noncrossing edges. By
Exercise 4.1, the resulting framework with vertices {p1,--+,Pn} is both infinitesimally
rigid and stress free. Since the forces F;, 1 < ¢ < n, all lie in the plane of F, the
equilibrium force (F1,---,F,) can be resolved by our triangulation of the convex hull
of {p1,--+,Pn}. Thus there exist scalars {wéj}, one for each edge of this triangulation,
such that for 1 <7< n _

F; =) wl;(pi—pj) (4.5)
where for each ¢ the sum is over those j with {7,5} an edge of the triangulation.

At this p;int, the basic idea is to simply combine the tr;angulation of the convex hull
of {p1,---,Pn} and its accompanying scalars {w},;} with the remainder of the original
framework G(p) and its scalars {wi;} in such a way that we obtain a new framework with
a nontrivial stress for which the nonzero edges induce a graph with a smaller number of

vertices than G'. Of course, one needs to be sure that conditions (a), (b), and (c) are

satisfied for the new framework. More formally, the edges of the new framework are:
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(i) the edges of the triangulation of the convex hull of {P1,"**»Pn};
(ii) the edges of the original framework which are both off F and nonzero (that is,
original edges {7,5} not on F for which ws; # 0); and
(iii) whatever additional edges or portions of edges of C, both on and off face F,
that are needed to satisfy condition (c). The dotted lines in Figure 4.8 illustrate
two portions of edges of C on F and an edge of C off F' that have been added

in (iii).

Original Framework New Framework

Figure 4.8

A stress of the new framework is given by assigning scalars to its edges in the
following ways:
(i) the scalars w); given by Equation (4.5) for the edges of the triangulation of the
convex hull of {p1,***,Pn};
(ii) the original scalars w;; for the nonzero edges of the original framework that are
not on F; and
;(iii) the scalar zero for edgeg or portions of edges of C' that have been added to
satisfy condition (c).
Equations (4.4) and (4.5) imply that this is a stress of the new framework. The stress
is nontrivial since in the original framework there is an edge {1,7} not on F for which
wi; # 0 (by hypothesis (a)); this edge and its nonzero scalar are present in the new

framework. Finally, the nonzero edges of this stressed framework induce a graph G”
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with fewer vertices than G’ since every vertex of G is a vertex of G’ and at least one

vertex of G/, namely the vertex of index zero or two on face F, is not a vertex of G".

Earlier in the proof we assumed that the affine span of py, -+, Pn is two-dimensional.
We now consider the zero- and one-dimensional cases. For these cases, it is useful to
recall that in R3, (Fy,+-+,F,) is an equilibrium system of forces for (p1,---, p») if and
only if Y F; =0 and 3 p; X F; = 0. (See Chapter 2.?7.) If n = 1 (the zero-dimensional
case), then F; = O which says that {w;; : the edge {i,j} of G lies on face F} is a
nontrivial stress of the set of edges of G(p) in the face F, contradicting hypothesis (a).
If p1,--+,Pn are collinear (the one-dimensional case), then p1,--+,Pn 2ll lie on a single
edge of C. For those p; in the interior of this edge, F; must be parallel to the edge since
F; lies in the plane of the face F, and —F; which is the sum of the forces on p; from edges
off of F lies in the plane of a face of C adjacent to face F. Since ) F; = Y pixF; =0,
it follows that all the forces F;, 1 < ¢ < n, are parallel to the edge of C containing
P1,-*,Pn. Then it is not difficult to verify that such an equilibrium force (F1,--+,Fp)
can be resolved by assigning appropriate scalars to the n — 1 edges between adjacent
vertices of the set {pP1,--+,Pn}. (Incidentally, this verification is part of the study of
infinitesimal rigidity on a line.) To complete the proof in this case, one simply uses these
n — 1 edges and their accompanying scalars to create the new framework instead of the
triangulation of the convex hull of {p1,-:-,Pn} that was used in the two-dimensional

case. O

We now prove a number of corollaries of Whiteley’s theorem. These corollaries deal
primarily with two themes. One is the relationship between the stresses of a convex
framework in JR3 and the stresses of its faces. Of course, Whiteley’s theorem is one such
result. The other main theme deals with the connections between the spatial infinitesimal
rigidity of a convex framework and the planar infinitesimal rigidity of its faces. We begin

by relating Whiteley’s theorem to Alexandrov’s rigidity theorem.

Consider a convex framework G(p) in IR® with convex hull C. If G(p) has no
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face vertices and its edges are noncrossing, then the set of edges of G(p) in each face
F of C extends to a stress free triangulation of F by Exercise 4.1. By Theorem 4.5,
the entire extended framework is stress free and thus G(p) is as well, i.e., rank dfp =
e. In particular, p is a regular point of f. Our first corollary includes Alexandrov’s
result regarding the infinitesimal rigidity of triangulated convex polyhedra without face

vertices.

Corollary 4.8. (Alexandrov) Consider a convex framework G(p) in IR® with convex
hull C. Sﬁppose every vertex of G(p) belongs to an edge of C and the edges of G(p)
are noncrossing. Then G(p) is rigid (or, equivalently, infinitesimally rigid) in IR® if and

only if every region of 8C — G(p) is a triangle.

Proof. We have rank dfp = e and thus G(p) is rigid (or infinitesimally rigid) in R® if

and only if

e= rank dfp =3v—6.

But the usual Euler"s formula argument applied to the framework G(p) on the boundary
8C of C shows that e = 3v — 6 if and only if every region of 8C — G(p) is a triangle,
i.e., every face of C has been triangulated. o

A stress w = (-++,wjj,++) of a framework G(p) is simply an element of ker dfg
where dfg . R® — IR’ is the transpose of dfp. Thus the vector space S of stresses of
G(p) satisfles dim § = e — rank dfp. We now adopt notation for use in the remainder
of this section. Suppose G(p) is a convex framework in IR® whose convex hull is C, For
each face F of C, let vp and er be the numbers of vertices and edges of G(p) which
belong to the face F, let fr be the rigidity map for the framework consisting of the set of
edges of G(p) which lie on the face F', and let Sp be the subspace of stresses “supported
by” F, i.e., the stresses of G(p) with wy; = 0 for all edges {7,5} of G (p) which do not lie
on F. Finally, let eo be the number of edges of G(p) which are contained in the edges

of C and vy be the number of face vertices of G (p).
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Corollary 4.7. Let G(p) be a convex framework in IR® with convex hull C. If the
edges of G(p) are noncrossing and each edge of C is a union of edges of G(p), then S is

the direct sum of its subspaces {Sr : F a face of C'}.

Proof. For each face F of C, the set of edges of G(p) which forms the boundary of
the convex polygon F is stress free and thus extends to a basis for the rows of dfr (p)
where, for an obvious reason, we now let dfr(p) denote the derivative of fr at p. By
Theorem 4.5, the union of these bases is a basis for the rows of dfp. A simple counting
argument shows that the dimension of S is the sum of the dimensions of the spaces Sp.

Note first that
rank dfp = Z rank dfr(p) — eo -

Since ) er = e + eg, we have dim § = e — rank dfp = e+ €0 — 3" rank dfr(p) =
S (er — rank dfp(p)) = . dim Sr. To complete the proof, it suffices to show that
the spaces Sp don’t “overlap”. That is, we show that Y wp = 0 where each wr € Sp
implies each wr = 0. Consider any face Fy of C. For all edges [p:, p;] of G(p) which lie
or‘1 Fo but are not part of the boundary of Fy, the i coordinate of wr is zero for all F
except Fo and hence for Fy as well since Y wr = 0. But the set of edges of G(p) which
makes up the boundary of Fj is stress free. Thus the remaining coordinates of wr, are
also zero and hence wg, =0. O

It is of some interest to observe that the requirement that the edges of G(p) are
noncrossing is not essential as long as one restricts the crossings to the interior of faces
of C.
Definition 4.3. A convex framework with convex hull C has crossing interior edges if
the intersection of any pair of edges is empty or consists of a single point which is either
an endpoint of both edges or lies in the interior of a face of C.

This definition allows two types of actual crossings — ones in which the point of
intersection is an endpoint of neither edge and ones in which the point of intersection

is an endpoint of one edge but not the other. Note that according to our definitions,
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noncrossing edges are crossing interior edges. Example 4.3 shows the need for prohibiting
crossings on edges of C.

Example 4.3. Consider the tetrahedron shown in Figure 4.9 in which the “front”
vertical edge is the single unbroken segment [p1,p2]). In the two faces adjacent to this
edge, place the stressed portion of the framework found in Example 4.2. Then the
crossings of the resulting framework occur at the points ps and p4 (for instance, [p1, p2]N
[Pa, 5] = {Pa}), neither of which is in the interior of a face of the tetrahedron. Then
the portion of the framework from Example 4.2 supports a stress, but each face of this

framework is stress free.

Figure 4.9

Corollary 4.8. Suppose G(p) is a convex framework in IR® with crossing interior edges
and C is its convex hull. If every edge of C is a union of edges of G(p), then the stress

space S of G(p) is the direct sum of its subspaces {Sr : F a face of C}.

Proof. The idea is to sirﬁply “break” edges at crossings, forming a new framework G'(p/)
to which the previous corollary applies. More precisely, if po is a point of intersection of
edges of G(p) which is not a vertex of G(p), let po be a vertex of G (p’) and break each
edge [pi, p;] of G(p) through po into the two edges [Po, p:] and [po,p;]. If po is a point
of intersection of edges of G(p) which is a vertex of G(p), then break each edge [pi, P;]
of G(p) with po in its interior into the two edges [Po, pi) and [po, P;]. Then G’ (p'), the
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resulting framework, is a convex framework in IR® with noncrossing edges.
Suppose w = (+++,w;j,--*) is a stress of G(p). The stress w leads in a natural way

to a stress w’ of the framework G'(p’) with the property that for each “broken” edge

[p:i, pj] of G(p), we have
“’iJ’(pi - PJ‘) = w(,)i(pt' - Po) = wé,-(po - p,') .

In physical terms, [po,p:] and [po,P;] exert opposite forces at po which are equal in
magnitude to the forcé exerted by [p:, p;] on its endpoints p; and p;. By Corollary 4.7,
w' is a sum of stresses w} of the faces F of G'(p’). Since the crossings only occur in the
interior of faces, each wh leads naturally (by removing the breaks) to a stress wr of the
face- F of G(p). (In general, one cannot simply remove breaks and create a new stress.
However, one can in this case because w’ arose by breaking edges.) Clearly we have that
w = Y wp. The argument at the end of the proof of Corollary 4.7 gives the uniqueness
of the representation of w as a sum of facial stresses. o

One final comment about the relationship between the stresses of a convex frame-
work and the planar stresses of its faces seems appropriate. Since a “stress free” theorem
is ea.silyv seen to be equivalent to a “direct sum” theorem, it is clear that Corollary 4.8
implies a version of Theorem 4.5 in which crossing interior edges are allowed (but, of
course, conditions (a) and (c) of Theorem 4.5 remain unchanged).

Even to a casual observer, it appears likely that there is some connection between
the spatial rigidity of a convex framework and the planar rigidity of its faces. Perhaps
the most natural question is: for a convex framework in ]Rs, does the planar rigidity (or
infinitesimal rigidity) of each face guarantee the spatial rigidity (or infinitesimal rigidity)
of the entire convex framework? Supporting evidence is provided by Corollary 4.6 which
implies that for a convex framework in IR® with no face vertices and noncrossing edges,
the framework is rigid in JR® if and only if every face is rigid in IR?, and the same result

holds for infinitesimal rigidity.
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A set of unpublished but widely circulated notes, entitled “Lectures on Lost Mathe-
matics”, by Branko Griinbaum and G.C. Shephard had a significant impact on develop-

ments in the study of rigidity during the late 1970’s. Their observations and conjectures

inspired much of the work for convex frameworks during that time. Although many

of their conjectures turned out to be correct (and, in some cases, quite difficult to es-
tablish), their record with two conjectures about the planar rigidity of faces implying

the spatial rigidity of the convex framework was not so good. Their first conjecture of

~ this kind (Conjecture 4, Griinbaum & Shephard (1975)) states that a convex framework

is rigid in IR® whenever each face is rigid in R, (Actually both their conjectures are
formulated for cabled frameworks; we here state the versions for bar frameworks.) Their
later conjecture (Sample Conjecture, Griimbaum & Shephard (1978)) simply adds the
requirement that all the edges of the convex hull be bars of the framework. A coun-
terexample to both conjectures is given by attaching a vertex of degree two (a‘ ‘;ﬁoppy
triangle”) to one face of a framework given by a tetrahedron. However, the fact that
this example is not three-connected seems to violate at least the spirit of both con-
jectures. We will soon find three;connected counterexamples to both conjectures (see
Corollary 4.12 and Example 4.5.) Despite the existence of these counterexamples, there
is a good deal that can be said about the connections between the spatial rigidity of a
framework and the planar rigidity of its faces. However, the precise conditions under

which these connections are valid are of a somewhat delicate nature.

If G(p) is a convex framework in JR® which has a face vertex, then it is easy to
describe a nontrivial infinitesimal flex of G(p) - simply “push” (or assign a nonzero
vector to) the face vertex in a direction orthogonal to the face. The following result says
that all the nontrivial infinitesimal flexes of G(p) arise in this way provided that each
face of G(p) is infinitesimally rigid in JR®. Connelly (1980) introduces the techniques
and proves a version of this useful and important result. Incidentally, it is worthwhile

to note that the theorem does not require that the edges of the convex hull be present
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in the framework and there is no restriction whatsoever on the nature of the crossings

of edges.

Theorem 4.9. Suppose that G(p) is a convex framework in IR3, C is the convex hull
of {p1,-**,Pv}, and vo is the number of face vertices of G(p). If the set of vertices and

edges of G(p) in each face F of C forms an infinitesimally rigid framework in IR?, then
ker df, = Tp ® Np

where Ny, is the vo-dimensional space of infinitesimal flexes orthogonal to faces.

Proof. Let A= {i : p; lieson an edge of C}and B=V -4 = {7 : pi is a face vertex of
G(p)}. We show that ker dfp, the space of infinitesimal flexes of G(p), is the direct sum
of the six-dimensional space Tp of trivial infinitesimal flexes and the vo-dimensional
space Np = {u = (ug,---,uy) € R® :{ € A implies u; = 0 and ¢ € B implies u; is
orthogonal to the face of C containing p;}. Clearly Tp + Np C ker dfp since both are
subspaces of ker dfp. Using the description of elements of Tp as r X p; + t, for r,t € R®
(see Chapter 2.7), it is easy to show that Tp N Np = {0} so Tp + Np = Tp & Np.
Thus it suffices to show that ker dfy, C Tp + Np. For this purpose, we consider a new
convex framework G'(p’) in IR® whose vertices are {p; : £ € A} and whose edges are
obtained by any triangulation (by noncrossing edges) of the faces of C (using only the
vertices in A). For each face F of C, let Pr be the orthogonal projection of IR® onto the
(two-dimensional subspace parallel to the) face F.

Suppose u € ker df,. We now construct w € Tp so that u —w € Np. For
each face F of C, since u € ker dfy, we have (pi — pj) « (i — ﬁj) = 0 and hence
(pi — pj) - (Pru; — Pru;) = 0 for all edges {1,7} of G(p) on F. Since the set of vertices
and edges of G(p) on F is infinitesimally rigid in the plane by hypothesis, we then have
(p: — p;) * (Pru; — Pru;) = 0 for all p; and p; on F, even those p; and p; not joined by
an edge, by Proposition 2.30. Therefore we have (p; — p;) - (u; —u;) = O for all edges

{,7} of the new framework G'(p’). Since the new framework is infinitesimally rigid in
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- IR® by Alexandrov’s theorem (Corollary 4.6), the infinitesimal flex {u; : ¢ € A} of G'(p’) .

is trivial. Thus there exist vectors t and r in IR® such that u; = t + r x p; for every

i € A. Now we simply apply this infinitesimal motion to all the vertices of G(p) to get

w. That is, let w = (t+r X py,++,t+rXpy) € Tp C ker dfp. Clearlly u—w € ker dfp

and u; — w; = 0 for all ¢ € A. Consider any face vertex p; of G(p), say p; belongs to

the face F of C. Then the previous projection argument applied to u —w gives
(pj — pi) * (Pr(uy — wj) — Pr(us —wy)) =0

for all ¢ such that p; lies on F, even if p; and p; are not joined by an edge. Bﬁt for
all i € A, u; —w; = 0 and thus (p; — ps) - Pr(u; —w;) = 0 for all ¢ € A for which p;
lies on F. Therefore Pp(u; — w;) = 0 which says u; — w; is orthogonal to F. Thus
u—weNp. o

Note that Theorem 4.9 says that dim ker dfp, — dim T}, which we call the number of
infinitesimal degrees of freedom of G(p), equals vo. In particular, for triangulated convex
frameworks, the number of infinitesimal degrees of freedom is given by the number of
face vertices (although such frameworks are always rigid by the rigidity theorem of
Connelly (1980)).

A useful way to interpret Theorem 4.9 is that if u is an infinitesimal flex of a convex
framework which has faces that.are infinitesimally rigid in the plane, then u must be
a trivial infinitesimal flex on the set of edge vertices of the framework. That is, there
exists an infinitesimal congruence x — Vi of IR® such that u; = Vp, for all © € A. By
subtracting a trivial infinitesimal flex from ﬁ, one obtains an infinitesimal flex that is
zero on the edge vertices of the framework (as in the proof of Theorem 4.15).

The following corollary, which generalizes Corollary 4.6, requires no assumption
about the nature of the crossings of edges and does not require that the edges of the
convex hull be present in the framework. However, it does prohibit the presence of face

vertices.
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Corollary 4.10. Let G(p) be a convex framework in IR? with convex hull C and suppose
every vertex of G(p) belongs to an edge of C. If the set of vertices and edges of G(p)
in each face of C forms an infinitesimally rigid framework in the plane, then G(p) is

infinitesimally rigid in IRS.

Proof. Since vo = 0, we have ker df, = Tp by Theorem 4.9 and thus G(p) is infinitesi-
mally rigid in R: o

Theorem 4.9 and Corollary 4.10 lead to versions of what Whiteley (1984) calls
“substitution principles” for convex frameworks. (Actually one could view the key step
in the proof of Whiteley’s theorem in which a face was rebuilt as a primitive kind of
substitution principle since it involves substituting a retriangulated new face for an
original face.)‘ However, a more substantial substitution principle says that if for the
facial frameworks of an infinitesimally rigid convex framework in IR® one substitutes
planar frameworks (utilizing the same vertices) that are infinitesimally rigid in IR?, then
the resulting framework is still infinitesimally rigid in IR3. In fact, one can even introduce
additional vertices on the edges of the convex hull and then substitute planar frameworks
on this augmented set of vertices. All this is very easy to show since if the original
framework is infinitesimally rigid in IR® it has no face vertices and thus the resulting
framework is infinitesimally rigid in IR® by Corollary 4.10. One immediate consequence
of this substitution princii)le is that the “weak” form of Alexandrov’s theorem (which says
that a triangulated convex framework whose vertices are precisely the extreme points or
“natural” vertices of the convex hull is infinitesimally rigid in Rs) implies the “strong”
form of Alexandrov’s theorem (Whi;h allows the presence of edge vertices). Or, by
appealing to Theorem 4.9 rather than its corollary, one can also introduce face vertices,
substitute for the faces planar infinitesimally rigid frameworks on this augmented set
of vertices, and conclude that the number of infinitesimal degrees of freedom of the
resulting framework is equal to the number of face vertices. Moreover, as Whiteley (1984)

observes, neither the convexity of the polyhedron nor even the convexity of its faces
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is essential here. One can extend these substitution principles to certain nonconvex
“polyhedral frameworks with faces” (see Section 4 of Whiteley (1984) for the definition of
an appropriate class of frameworks) either by Connelly’s infinitesimal motions argument
(as in the proof of Theorem 4.9) or by Whiteley’s statics argument (as in Theorem 4.1 of
Whiteley (1984)). In this setting, the infinitesimal rigidity of the original framework will
play the role that Alexandrov’s theorem does in the proof of Theorem 4.9. Finally, the
reader should note that beginning with Theorem 4.9 we have drifted toward infinitesimal
kinematics and away from statics. This shift in point of view comes from our desire to
prove Connelly’s rigidity theorem which is stated in the language of infinitesimal motions.

Our next example both illustrates the use of Corollary 4.10 and shows that its
converse fails.
Example 4.4. Consider a cube with a diagonal edge added across each of its six
faces. After adding an additional crossing diagonal edge to two adjacent faces, delete
the common edge of these two faces (shown by the dotted line in “front” in Figure 4.10).
By Corollary 4.10, G (p) is infinitesimally rigid in JR® and thus rank dfp = 3v — 6. Since
there exists a stress of G(p) which is nonzero on the edges of the two doubly braced faces
of the cube, we can delete any siﬁgle edge of one of these two faces and the resulting
framework is both stress free and infinitesimally rigid in IR®. Since one face of the
resulting framework is infinitesimally flexible (in fact, flexible) in IR?, the converse of
Corollary 4.10 is false.

Of course, the difficulty is abgain caused by the absence of an edge of C, and once

this is remedied, the converse of Corollary 4.10 is indeed valid.

Corollary 4.11. Let G(p) be a convex framework in IR® with convex hull C. Suppose
G(p) has crossing interior edges and every edge of C is a union of edges of G(p). If G(p)
is infinitesimally rigid in IR®, then the set of vertices and edges of G(p) in each face of

C forms an infinitesimally rigid framework in the plane.

Proof. Clearly the infinitesimal rigidity of G(p) in JR® implies that G(p) has no face
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Figure 4.10

vertices. We apply Euler’s formula to the graph G’ induced by the edges of G(p) which
are contained in the edges of C. Let eo be the number of such eages. Let fo be the
number of regioﬁs of 8C — G', i.e., the number of faces of C, and let v, be the number
of vertices of G(p) which are incident with exactly n edges of G'. For each face F of C,
the set of edges of G(p) which forms the boundary of F is stress free and hence extends
to a basis for the rows of dfr(p). By Corollary 4.8, the union of these bases is a basis
for the rows of dfp. Thus rank dfp = Y rank dfr(p) — eo. Since rank dfr(p) < 2vr —3

for every face F of C, we have
rank dfp = Z rank dfp(p) — eo < Z(va —3)—e =

Zvan—3fo—eo=4eo——3fo——eo=3(eo—f0)=3(‘U—2)=3v—6

with equality if and only if rank dfs(p) = 2vr — 3 for every face F' of C'. Since rank
dfp = 3v—6by Proposition 2.35, we have rank dfr(p) = 2vr — 3 for every F. Therefore
the set of vertices and edges of GZp) in each face of C is infinitesimally rigid in IR?,
again by Proposition 2.35. o

Note that by combining Corollaries 4.10 and 4.11 (so the convex framework must
have no face vertices, crossing interior edges and each edge of the convex hull present),
one obtains a result that says the entire framework is infinitesimally rigid in IR® if and

only if every face is infinitesimally rigid in IR%. Our final corollary deals with frameworks
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for which both conjectures of Griinbaum & Shephard always fail, i.e., the faces are rigid

in the plane and yet the entire framework is flexible in IR3,

Corollary 4.12. Consider a convex framework G(p) in IR® with convex hull C such
that G(p) has crossing interior edges and every edge of C' is a union of edges of G(p). If
the set of vertices and edges of G(p) in each face of C is both infinitesimally rigid in the
plane and stress free, then p is a regular print of the rigidity map f (and hence G(p) is

flexible in IR® whenever vo > 0).

Proof. By Corollary 4.8, G(p) is stress free so rank df, = e and thus p is a regular point
of f. Therefore f~1(f(p)) is a smooth manifold near p of dimension 3v — rank dfp.
And G(p) will be flexible in IR® whenever this manifold has dimension greater than éix,
the dimension of the smooth manifold Hp of points congruent to p. But Theorem 4.9
implies that

3v — rank dfp —6 = dimker dfp —6=1v0. O

Example 4.2 (continued). For the framework G(p) shown in Figure 4.6, we have rank
dfp = 3v — (vo + 6) = 10 by Theorem 4.9, But max {rank dfq : q € R3} = 11 by
Theorem 4.3 since clearly there exists q € IR3 such that G (q) is the framework given
by a convex polyhedron in IR® in the sense of Definition 4.1. Therefore p is not a regular
point of the rigidity map. This shows the necessity of the assumption that every edge of
C is a union of edges of G(p) in the previous corollary.

Our next example illustrates a typical use of Corollary 4.12 and gives a flexible
three-connected framework for which all the faces are rigid in the plane.
Example 115 Consider a cube with diagonal edges added across five of its six faces.
Add a face vertex to the sixth face and join it by edges to three of the four vertices of the
face. The resulting framework G(p) is shown in Figure 4.11. By Corollary 4.12, G(p) is
flexible in IR®,

Consider a convex framework G(p) with convex hull C and crossing interior edges

such that vo # 0, er = 2vp — 3 for every face F' of C (so the “count” is correct on each
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Figure 4.11

face) and every edge of C is a union of edges of G(p). By Corollary 4.12, G(p) is rigid
in IR® only if some face of C is infinitesimally flexible in IR?! The following example
shows how this phenomenon can occur. Incidentally, the role that stresses play in rigid
but not infinitesimally rigid frameworks is becoming clearer (see Chapter 7).

Example 4.6. Let G(p) be the convex framework in IR® shown in Figure 4.4 which
consists of a tetrahedron with a triangle inside its base. A simple geometrical argument
(using the collinearities introduced by the location of the three vertices of the triangle
in the base) shows that G(p) is rigid in IR3. However, if the face vertices in the base
are located so that the base is infinitesimally rigid in the plane (which almost always

happens), then G(p) is flexible in IR® (with three “degrees of freedom”) by Corollary 4.12.
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4.4. Connelly’s Rigidity Theorem.

Connelly (1980) shows that any framework given by a triangulation of a convex
polyhedron is rigid in IR®. In other words, if G(p) is a convex framework in IR® with
convex hull C such that the edges of G(p) are noncrossing and every region of 8C — G(p)
is a triangle (we refer to such a framework as a triangulated convez framework), then
G(p) is rigid in R®.

For the most part, Sections 4.2 and 4.3 deal with infinitesimal rigidity for convex
frameworks; both the statements of the results and the techniques used in their proofs
involve rank, dimension and other standard notions from linear algebra. By and large,
we establish rigidity by establishing infinitesimal rigidity in these sections. However,
Connelly’s rigidity theorem is not a result about infinitesimal rigidity since a triangulated
convex framework has, by Theorem 4.9, as many infinitesimal degrees of freedom as it has
face vertices. Thus the rigidity of triangulated convex framework is not a conséquence
of standard “first order” techniques. Following Connelly, we incorporate into our attack
on the problem “second order” information which arises from twice differentiating the
equations that express the constancy of edge lengths (just as the first order conditions
(pi — py) * (P} — P}) = O arise from the first derivative of these equations).

Suppose G(p) is a framework in IR? and f is its rigidity map. If x(t) = (x1(¢),"*,
X,(t)) is a smooth path satisfying x(0) = p and x(t) € f~*(f(p)) for all ¢ € [0, 1], then

| x:(t) —%;(t) |* = | pi = pj |*

for all edges {7,5} of G and all t € [0,1]. Differentiating and evaluating at ¢ = 0, one

obtains
(pi — ;) (Pi—Pp;) =0 (4.6)

for all edges {f,5} of G where p} = x}(0). Differentiating again gives

(p} = p}) - (Pt — P}) + (i —p5) - (pY — Py) =0 (4.7)
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for all edges {7,7} of G where p7 = x/(0). With this as motivation, one is in a position
to define second-order rigidity. If p’ = (p},--+,P%) € R*% and p” = (p},---,p!) € R4
(where it should be noted that p’ and p" need not now arise as the derivatives of a
smooth motion x(t)) satisfy Equations (4.6) and (4.7) for all edges of G, then (p’,p")
is said to be a second-order flez of G(p).
Definition 4.4. A bar framework G(p), p € R*?, is second-order rigid in R? if for
every second-order flex (p’, p”) of G(p), the infinitesimal (or first-order) flex p’ is trivial.
Obviously it is straight-forward to define ntB-order flexes and nt®-order rigidity in
an analogous fashion. We next prove that second-order rigidity implies rigidity. Whether
or not ntt-order rigidity implies rigidity for n > 3 is unknown (although it is certainly
suspected that this is the case). See Chapter 7 for examples of second-order rigid frame-

works.

Theorem 4.13. (Connelly) If a bar framework G(p) is second-order rigid in IR%, then
G(p) is rigid in RS

Proof. Suppose G(p) is second-order rigid in R%. We show G(p) is rigid in R? by
using Definition 3 of rigiditjr (Chapter 2.10). Consider any analytic flex x(t) of G(p); this
means that x : [0,1] — IR"? is an analytic path satisfying x(0) = p and x(t) € f~(f(p))
for all t € [0,1]. We verify that x(t) is congruent to p for all t € [0,1] by showing that
the distance between all pairs of vertices remains constant (so x(t) ~ p for all ¢ € [0,1]
by Proposition 2.7). For this, consider m,n € V and let g(t) = | xm(t) — Xn(t) |2 for all
t € [0,1]. Since g is analytic, the fact that it is constant follows from showing that all of
its derivatives vanish at £ = 0.

We first prove that ¢'(0) = 0. Let p’ = x/(0) and p” = x”(0). Since x(t) €
F~1(f(p)) for all ¢, differentiating twice and evaluating at ¢ =0 (as was done to obtain

Equations 4.6 and 4.7) gives

(p: —pj) - (P; —Pj) =0



37
and
(p}—p}) - (ph = P}) + (Pi —p;) - (P —P)) =0
for all edges {7,5} of G. Since G(p) is second-order rigid, p’ is trivial and thus there

exists a congruent motion t — hy from [0,1] — H such that ho = I and p' =% 2 by (p)|t=0-

t=0>

The latter equation is, of course, an abbreviation for

d
(pﬂ,---,p:,) = <dtht(p1)

Now define the smooth path y : [0., 1] — R by

d

oy Dby
t=0 ,dt ( )

y(t) = hx(1)

where h;! is the inverse of h¢ in H, Then y(0) = x(0) = p and y'(0) = j— ( )|t=0 +
x/(0) = p'—p' = O since 4 p=1(p)|tmo = — £ ht(DP)|t=0. Since each h;! is a congruence,
g(t) = | Ym(t) — ¥n(t) |? so the fact that y'(0) = O gives ¢'(0) = 0.

It seems more illuminating to show how one obtains g”(0) = O than to present the
formal induction argument. The idea is to use the path y just obtained to construct
another path z with z(0) = p and z’(0) = z”(0) = O. Let q' = y"(0) and q" =y""(0)/3.
Since y(t) € f~1(f(p)) for all ¢, differentiating | v:(t) —y;(¢) |? four times and evaluating
at t = 0 gives

(pi — pj) - (ai —aq;) =0
and
(df —df) - (o} — d) + (pi —Py) - (a4 —q5) =0

for all edges {i,j} of G. (Note that these two equations arise from the second and
fourth derivatives of |y; — y; |? because y’ (0) = 0.) Thus (q',q") is a second-order
flex of G(p) so ¢ is trivial. This means there exists a (twice continuously differentiable)
congruent motion ¢ — k¢ from [0,1] — H such that ko = I and q' = L ky(p)|t=0. Now
let z: [0,1] — IR’ be the smooth path defined by

2(t) = kpayp¥(t) -
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Then z(0) = y(0) = p, z/(0) = y’(0) = O and the (messy) computation of the second
derivative of z(t) shows z”(0) = y"”(0) — @' = O. Since each k;% is a congruence, we
have g(t) = | Zm(t) — 2x(t) |? and therefore g"(0) = 0 since z’(0) = z"(0) = O.
The completion of the proof via induction is left to the (dedicated) reader. ©
The proof of Theorem 4.13 can be interpreted in the following simple way. Suppose
that G(p) is second-order rigid and x : [0,1] — f~!(f(p)) is an infinitely differentiable
flex of G(p). Then for each n there exists an “equivalent” infinitely differentiable flex

y :[0,1] = f~1(f(p)) such that
y'(©0)=y"(0)=--=y"™(0)=0.
where “equivalent” means that for every pair m,n of vertices and every ¢

|%m(t) =% () | = | ¥m(t) —¥alt)| -

In Theorem 4.13 x(t) was chosen to be analytic and consequently the distance between
each pair of vertices could never change.

The main theorem of Connelly (1980) is that any triangulated convex framework is
second-order rigid (and thus rigid). The following exercise will be used in the proof.
Exercise 4.2. Let p1, p2, p3 be three noncollinear points in IR® and suppose p’ =
(p},Ph, ) and p” = (pY, Py, P5) satisfy Equation (4.7) for 1 < ¢, j < 3. Then p’ and
p" can be extended to the convex hull (indeed, the entire affine span) of p1, P2, Pa in
such a way that Equation (4.7) is satisfied for all pairs of points. To accompli-sh this, if
po = 0, \ipi where S Ai=1,let ph = S Aipland pj = 2 1 A:pY. Then

one can verify that for all po and qo in the plane of pi, p2, Ps,
(ph — ab) - (P6 — 4o) + (Po — o) - (Pg —q0) =0 -

The proof of the second-order rigidity of triangulated convex frameworks involves

examining the behavior of a second-order flex on each face of the underlying convex
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polyhedron. Thus the following lemma focuses on convex polygons (the faces). Consider
coplanar points py,:**,Py in IR® and let C be the convex hull of {p1,-++,Pv}. We say
that a framework G(p), P = (P1,"**,Dv), is a triangulated convez polygon if the edges

of G(p) form a triangulation of this planar convex set C.

Lemma 4.14. Suppose G(p) is a triangulated convex polygon in IR® with convex hull
C and (p/,p") satisfies Equation (4.7) for all edges of G. If p} = O for every vertex p;

which lies on an edge of C, then p} = 0 for all vertices of G(p).

Proof. The proof involves four steps. We first show that (pi — p;) - (p¥ — p}f) = 0 for
any two adjacent vertices p; and p; of the convex hull C. (Of course, by a vertex of C
we mean an extreme point or “natural” vertex of the convex set C.) Next we show that
(P —Po) - (P} —PY) < 0 for any interior point po of C (which need not even be a vertex
of G(p)) and any vertex pg of C. Then we show that, in fact, (px—Po): (PY—P5) =0
for all such po and pk. Finally, we show that ph = 0 for all interior points po of C (so
pi = 0 for all vertices p; of G(p) which lie in the interior of C). Three of these four
steps involve applying Equation (4.7) to a sequence of points along a line segment in the
convex set C.

Step 1. Suppose that [p1,Pn] is an edge of C and pi1,p2,°**,Pn are the coﬁsecutive
vertices of G(p) on this edge of C (as shown in Figure 4.1). Since p; =0for1<i<n
by hypothesis, p// — py, ; is orthogonal to p; — Pi+1 (and hence p; — pn) for 1 < ¢ < n.
Therefore their sum p{ — p/l is orthogonal to p1 — Pn.

Step 2. Consider any interior point po of C (where po need not be a vertex of G (p))
and le‘t pr be any vertex of the convex hull C. If [Po, Pk happens to be an edge of
G(p), then (px — Po) * (P¥ — p/) < 0 by Equation (4.7). We now show this inequality
holds even if [po,Pk| is not an edge of G(p). Let qi,++*,dm be the successive points
of intersec.tion of the open line segment (po,px) with the edges of G (p) (as shown in
Figure 4.1). In case that an edge of G(p) intersects (Po,Px) in a segment (that is, an

edge of the triangulation happens to be part of (Po,Px)), only the endpoints of the



40

Figure 4.12

segment of intersection appear in qi,-+,qm. Letting qo = Po, Am+1 = Pk, and using

Exercise 4.2 to extend p’ and p” to the points qo,** -, Qm, we have
(dig1 — q:) - (Qigr — ai) + (Qiv1 — Qi) - (ai: — q;) =0

for 0 <1 < m. Thus for 0 <7 < m, (qi+1 — ) - (@}, — ) < 0 and hence (Px — Po) -

(af,, — q}) <0 since px — Po is a positive multiple of each q;+1 — ;. Summing gives
(Px —Po) - (Pk —Pg) <O.

Step 3. The fact that each of these inner products equals zero follows in an interesting
way from properties of a stress of a new triangulated convex polygon with underlying
convex set C. Let’s now label the vertices of C by p1,p2,**,Pm and let po be any
interior point of C. As shown in Figure 4.13, let H(po,P1,*"" ,Pm) be the framework
with vertices po,P1,**,Pm and edges [po,px| for 1 < k < m and [Pk, Pk+1] for 1 <
k < m (with Pmt1 = p1). Since this framework has m + 1 vertices_and 2m edges (so

e > 2v — 3 for this framework), it has a nontrivial stress

w = (""WOk,"'awk(k+1)7"') .

At every boundary vertex px, 1 < k < m, we have

W(k—-l)k(Pk — Pir—1) + wok (Px — Po) + wk(k+1)(Pk —Pr41) =0
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Figure 4.13

which implies that w(g—1)x and wi(k+1) have one sign while wor has the opposite sign.
(This simple observation can be considered a two-dimensional version of the index two
separation argument in the proof of Lemma 4.2. It is at this point that the convexity of
C is essential.) Therefore, in the stress w all of the scalars are nonzero, those wg(k+1)
corresponding to boundary edges having one sign and those wox corresponding to interior
edges having the opposite sign. Letting fi be the rigidity map of H and expanding
Py
Wde(pOa"'apm) =0’
pll
m
one finds the scalar equation
m m
> wi(er1)(Pr+1 = Pk) - (P41 — PE) + > wok (P — Po)  (P¥ —Pg) =0
k=1 k=1
By Step 1, each inner product in the first sum vanishes. Since each wox has the same

sign and each (px — Po) - (P} — pg) < 0, we conclude that for 1 < Ek<m

~ (px —Po) - (P —Pg) =0.
Step 4. We consider any interior point po of C and show pj = 0. Let px be any vertex
of C. As in Step 2 of the proof, let qi,++,Qm be the points of intersection of (Po,Pk)
with the edges of G(p) (as shown in Figure 4.12). Letting do = Po and Qm+1 = Pk, We

have

(pk—ai)- (Ph—af)=0 for 0<i<m
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by Step 3 and therefore both p{ — q and pj — qf,; are orthogonal to q;+1 — Qi
for 0 < 7 < m. Thus their difference q,; — q; is also orthogonal to qi41 — q; so
Equation (4.7) gives

(q:-+1 - qi) : (QZ+1 - Q:) =0

for 0 < 1+ < m. Therefore we have

Ozpkzqin_‘_l :q:nzc-_:qé):pg
which completes the proof of Lemma 4.14. © |
The framework H(Po,-*,Pm) shown in Figure 4.13 can be treated as a tensegrity

framework byw replacing each of the interior edges of H by a cable (which provides an
upper bound for the distance between a point of vertices rather than fixing this distance).
From this point of view (which Connelly (1980) uses extensively), our stress argument
in Step 3 establishes the infinitesimal rigidity of the tens-egrity framework. Chapter 7
deals with tensegrity frameworks in great detail.

Lemma 4.14 and Theorem 4.9 lead directly to a proof of Connelly’s rigidity theorem.

Theorem 4.15. (Connelly) Triangulated convex frameworks in IR® are second-order
rigid in IR®.

Proof. Let G(p) be a triangulated convex framework in IR? and suppose that (p’,p”)
is a second-order flex of G(p). Since the set of vertices and edges of G(p) on each
face of the convex hull C forms an infinitesimally rigid framework in IR?, the set dfp of

infinitesimal flexes of G(p) is the direct sum of Tp and Ny by Theorem 4.9. Therefore

there exists u € Tp and w € Np such that
p=u+w.

Since w; = O for all i € A (where A = {j : p; lies on an edge of C}), we have that

p, =u, for alli € A4, i.e., p’ is trivial on the vertices in A. Of course our goal is to show
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that p’ is trivial on all the vertices and this is precisely where Lemma 4.14 enters the
picture.

However, to apply Lemma 4.14, one needs to get from the second-order flex (p',p")
with p’ trivial on the vertices in A to a second-order flex (q’,q") with q’ zero on the
vertices in A. This is straightforward for the first-order part, but the second-order part
is a little tricky, Since p’ is trivial on the vertices in A, there exists a skew-symmetric

3 X 83 matrix S and a vector t € IR® such that
p;=Spi+t

for all ¢ € A. (It seems a little more convenient to use the skew-symmetric rather than
the cross product description of trivial infinitesimal flexes at this point. See Chapter 2.7.)
Letting q} = p} — (Sp: + t) for all vertices ¢, it is very easy to verify that for all edges
{1,7} of G

(Pi —pj) - (ai—qj) =0

n

Letting q; = p:v’ - ZSp:;,—}- S2p;, for all vertices 4, a somewhat longer but still entirely L

elementary calculation shows that for all edges {7,5} of G
(i —qf) - (af — a}) + (pi = p;) - (af — qf) =0.

Thus (q’,q") is a second-order flex of G(p) with q! = O for all € A. By Lemma 4.14,
q, = O for all 7 and thus p’ is trivial on all the vertices of the framework. ©

It seems fitting to end the chapter with a more substantial exercise due to Connelly
and an inte:resting conjecture due to Whiteley. The conjecture is merely the bar frame-
work version of Whiteley’s Conjecture 7.7 for tensegrity frameworks. It is, in fact, yet
another modification of Conjecture 4 of Griinbaum & Shephard (1975).
Conjecture. For a convex framework in IR® with no edge vertices and no face vertices
(so each vertex is a “natural” vertex), if each face is rigid in JR? then the entire framework

is rigid in R®.

W&;,f qbﬂaf 2”‘4@/‘/?/" u:;/?/t“'l 6&04 7/4€P,1>
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‘Of course, when the edges are noncrossing or the faces are infinitesimally rigid in
IR? it is easy to establish the result using Corollary 4.6 or Corollary 4.10.
The following exercise extends Theorem 4.15 to the case in which “holes” are allowed

in the faces of a convex surface in IR®. It represents a slight generalization of results of
Connelly (1980).
Exercise 4.3.

(a) Consider a convex polygon with vertices pi,--*,Py in R?. For1 < i < v, let
. P, be a point in the interior of the triangle formed by pi—1,Pi, Pi+1 and join P; to these
three points by edges (as silown in Figure 4.14). Show that the resulting framework is
infinitesimally rigid in IR? and has a nonzero stress with coefficients of one sign for all
the boundary edges of the polygon and the opposite sign for all the interior edges of the

polygon. (We refer to such a framework as a collar.)

Figure 4.14

(b) Consider a framework G(p) in IR® obtained from a planar convex polygon
by removing the interior of a convex polygon (the “hole”) and then triangulating the
resulting set. Show that if the hole can be enclosed in a collar (Figure 4.14 illustrates an
instance in which the bouﬁdary of the hole intersects the boundary of the polygon, but
it may happen that the boundary of the hole lies entirely in the interior of the polygon),

then Lemma 4.14 holds for the framework G(p).
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(c) Consider a convex framework in IR® with convex hull C' which has holes of the
type considered in (b) in some of its faces. Prove that if the intersection of the boundary
of each hole with the boundary of its face is either empty, a (natural) vertex of C, or a
(natural) edge of C having no vertices of G(p) in its interior, then the convex framework
is second-order rigid in IR®,

(d) Find examples where the boundary of a hole intersects the boundary of its face

in an edge vertex or in an edge of C containing an edge vertex and the framework is

flexible in IR3.
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