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Second-Order Rigidity and Pre-Stress Stability for

Tensegrity Frameworks

R. Connellyt, AND Walter Whiteley}

Abstract, This paper defines two concepts of rigidity for tensegrity frameworks
(frameworks with cables, bars and struts): pre-stress stability and second-order
rigidity. We demonstrate a hierarchy of rigidity — first-order rigidity implies pre-
stress stability implies second-order rigidity implies rigidity — for any framework.
Examples show that none of these implications are reversable, even for bar frame-
works. Other examples illustrate how these results can be used to create rigid
tensegrity frameworks.

This paper develops a duality for second-order rigidity, leading to a test which
combines information on the self stresses and the first-order flexes of a framework
to detect second-order rigidity, Using this test, a conjecture of Ben Roth is proven.
The conjecture states that frameworks in a certain class of plane tensegrity frame-
works are rigid if and only if they are first-order rigid.

§1. Introduction.

A fundamental problem in geometry is to determine when selected distance con-
straints, on a finite number of points, fix these points up to congruence, at least for
small perturbations. We rephrase this as a problem in the rigidity of frameworks. From
this point of view, we do the following: ‘

(i) Provide methods for recognizing when a given framework is rigid;
(ii) Find ways of generating rigid frameworks;
(iii) Explore the relationship among these methods;
(iv) Solve a conjecture of B. Roth, in Roth and Whiteley (1981), concerning the rigidity
of a specific class of frameworks in the plane.

AMany of the concepts here are inspired by techniques used in structural engineering
such as the principle of least work and energy, but our treatment is independent of
any such concepts. Broadly speaking our objective in this paper is to investigate the
geometric properties of configurations of points in Euclidean space. However, our results
clarify and justify mathematically some of the techniques used by structural engineers
to analyze certain tensegrity structures. (See Pellegrino and Calladine (1986), Calladine
and Pellegrino (1991), Kuznetsov (1991d), for example.) Our techniques extend those
of Kotter (1912) and are related to the questions posed in Tarnai (1980).

1 Partially supported by N.S.F. Grant Number MCS-790251, U.S.A., Distinguished
Visitorship, Centre de recherches mathematiques, Universite de Montreal, and the Hum-
boldt research award programme. '

} Partially supported by grants from FCAR (Québec) and NSERC (Canada).
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Connelly and Whiteley

§1.1.  Terminology.

A tensegrity framework is an ordered finite collection of points in Euclidean space,
called a configuration, with certain pairs of these points, called cables, constrained not to
get further apart, certain parts, called struts, constrained not to get closed together, and
certain pairs, called bars, constrained to stay the same distance apart. If each continuous
motion of the points satisfying all the constraints is the restriction of a rigid motion of
the ambient Euclidean space, then we say the tensegrity framework is rigid. See Connelly
(1988a) and Roth and Whiteley (1981).

For the recognition problem (i) there has been much work done using the concept
of first-order rigidity. A tensegrity framework is first-order rigid (or infinitesimally
rigid) if the only smooth motion of the vertices, such that the first derivative of each
member length is consistent with the constraints, has its derivative at time zero equal
to that of the restriction of a congruent motion of Euclidean space. ‘See Section 2.2.
An equivalent dual concept says that a tensegrity framework is statically rigid if every
equilibrium load can be resolved. See Connelly (1988b) or Roth and Whiteley (1981) for
more details and a precise definition, Our working definition will be that of first-order
rigidity as above.

A stress in a tensegrity framework is an assignment of a scalar to each member. It
is called a self stress if the vector sum of the scalar times the corresponding member
vector is zero at each vertex. It is called proper if the cable stresses are non-negative and
the strut stresses are non-positive (with no condition on the bars). It is called strict if
each cable and strut stress is non-zero.

§1.2.  First-order duality.

The interplay between first-order motions and self stresses yields a test for first-
order rigidity. Every first-order rigid tensegrity framework has a strict proper self stress,
by a result of Roth and Whiteley (1981). In fact, what we call the First-Order Stress
Test states:

There is a first-order flex of a framework which strictly changes the length of a
strut or cable if and only if every proper self stress is zero on the given member.

In addition, if a first-order rigid bar framework has any non-zero self stress at all, one
can change these members to cables or struts following the sign of the self stress to get
another statically rigid tensegrity framework. This is a first-order method for generating
examples of statically rigid tensegrity frameworks. See Roth and Whiteley (1981) and
Whiteley (1988a) for examples. Note that any first-order rigid tensegrity framework
can have its cables and struts reversed, and it will remain first-order rigid. Figure 1.2.1
shows sample frameworks which are infinitesimally rigid in the plane.

§1.3. Pre-stress stability and second-order rigidity.

In this paper, we define two other classes of frameworks, those that are pre-stress
stable and those that are second-order rigid. We call a tensegrity framework pre-siress
stable if it has a proper strict self stress such that a certain energy function, defined in
terms of the stress and defined for all configurations, has a local minimum at the given
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Figure 1.2.1

configuration, and this minimum is a strict local minimum up to congruence of the whole
framework. (See Section 3.3 for the precise formula for this energy function.)

Pre-stress stability is a concept we have borrowed from structural engineering. The
“principle of least work” is the motivation behind the definition of our energy functions.
If a certain configuration of a framework corresponds to a local minimum (modulo rigid
motions) of an energy function, which is the sum of the energies of all the members, then
it is clear that the framework is rigid. This corrésponds to pre-stress stability. Pellegrino
and Calladine (1986) describe certain matrix rank conditions that are necessary but not
sufficient for pre-stress stability. However, their condition essentially ignores the basic
positive definite conditions. See Calladine and Pellegrino (1991) for an improved version,
though. For engineering calculations, the stress-strain relation in each member is given,
and this information determines the corresponding energy function. On the other hand,
for the simpler mathematical recognition problem, one is free to choose the member .
energy functions at will.

A tensegrity framework is second-order rigid if every smooth motion of the vertices,
which does not violate any member constraint in the first and second derivative, has its
first derivative trivial, i.e., its first derivative is the derivative of a congruent motion.

A series of basic results show that for any tensegrity framework, first-order rigid-
ity (i.e., infinitesimal rigidity) implies pre-stress stability, which implies second-order
rigidity, which . ‘

implies rigidity, and none of these implications can be reversed. See Figure 1.3.1,
where the figure numbers refer to examples later in this paper that lie only in that region
of the diagram. This extends the second-order rigidity results of Connelly (1982) for bar
frameworks and places pre-stress stability between first-order and second-order rigidity.
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§1.4. The second-order stress test.

Information about a framework, or a class of frameworks, may come in various
forms, and it can be useful to relate these different forms for the situation at hand. For
example, to test the first-order rigidity of a tensegrity framework we may use both the
self stresses and the first-order flexes, as in the first-order stress test.

We present an extension of this first-order duality to the second-order situation.
Regard any stress as the constant coefficients of a quadratic form on the space of all
configurations as well as the space of first-order flexes. This is a “homogeneous” energy
function. Suppose we have a fixed first-order flex of a given framework, and we wish to
know when that first-order flex extends to some second-order flex. Our Second-Order
Stress Test states:

A second-order flex exists if, and only if, for every proper self stress of the
framework, the quadratic form it defines is non-positive when evaluated at the
given first-order flex.

Thus information about proper self stresses of a framework, as well as first-order flexes,
can provide information about second-order rigidity. The proof amounts to observing
that the (inequality and equality) constraints of second-order rigidity and our dual stress
condition is a special case of the “Farkas alternative” (as used in linear programming
duality).

It is also possible to sharpen the second-order stress test to provide necessary and
sufficient conditions for when the second-order inequalities are strict. This sharpening
is a generalization of the First-Order Stress Test. The sharpened Second-Order Stress
Test can be helpful not only in detecting second-order rigidity, but it also can quite often
detect when there is an actual continuous flex that has the cable and strut conditions
slacken at the second-order.

§1.4. Roth’s conjecture.

As an application of these methods we verify a conjecture of Ben Roth about poly-
gons in the plane in Roth and Whiteley (1981). In their “Lectures on Lost Mathematics”,
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Second-Order Rigidity

Griibaum and Shephard (1975) conjectured that if one has a framework G(p) in the plane
with the points as the vertices of a convex polygon, bars on the edges, and cables inside
connecting certain pairs of the vertices in such a way that the framework is rigid in the
plane (see Figure 1.4.1), then reversing the cables and bars to get G(p) (Figure 1.4.1b)
preserves rigidity. (They also observed that starting with cables on the outside and bars
inside does not necessarily preserve rigidity.)

If Gritbaum's polygonal frameworks are rigid because they are infinitesimally rigid,
then it follows that the reversed framework is also infinitesimally rigid and therefore rigid.
Ben Roth’s conjecture was that all rigid convex polygons with cables on the inside were
indeed infinitesimally rigid. For example, Figure 1.4.1c shows a regular octagon with bars
on the edges and fourteen cables on the inside, It is easy to check that this framework
is not infinitesimally rigid. Thus Roth’s conjecture implies that this framework is not
rigid, since if it were rigid, it would be infinitesimally rigid. The reader is invited to find
the motion of the vertices in the plane directly. (See Remark 6.2.3.)

Figure 1.4.1

Meanwhile Connelly (1982) showed that any proper self stress coming from one
of Griinbaum and Shephard’s polygonal frameworks G(p) had an associated negative
semi-definite quadratic form with nullity three. Equivalently the reversed framework
G(p) had a positive semi-definite quadratic form with nullity three. Then it is easy

to show that G(p) is rigid, by showing that (globally) there is no other non-congruent
configuration satisfying the bar and cable constraints. This global type of rigidity is
somewhat different from infinitesimal rigidity. Neither infinitesimal rigidity nor global
rigidity imply the other. However the energy functions used to prove the global rigidity
also imply prestress stability, Thus Griinbaum’s conjecture was proved and generalized
in one direction, but Roth’s conjecture, a generalization in another direction, was not
proved.

§1.5. The proof of Roth’s Conjecture.

The idea behind our proof of Roth’s conjecture is the following. We observe that
the conditions for a strict second-order flex, in the second-order stress test, are satisfied
by any one of Grilnbaum and Shephard’s frameworks G(p), since any proper self stress
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defines a negative semi-definite quadratic form which is negative definite on any space
of non-trivial first-order flexes. Thus if there is any non-trivial first-order flex, it will
extend to a strict second-order flex which in turn implies that there will be a non-trivial
continuous flex of the framework. Thus (the contrapositive of) Roth’s conjecture is
verified; if G(p) is not infinitesimally rigid, then G(p) is not rigid. In particular, if
any one of Grinbaum and Shephard’s frameworks G(p) is rigid, the reversed framework

Connelly and Whiteley

G(p) is both infinitesimally rigid and globally rigid.

In an appendix we summarize a series of “replacement principles” which describe
when and how one can switch between bars and cables or struts and preserve the various

levels of rigidity or flexibility.

§1.6.

—
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Second-Order Rigidity

This work was provoked by the stimulating exchanges at the workshops on tensegrity
frameworks and rigidity of triangulated surfaces held at the Université de Montréal
during February 1987. We thank all of the participants, with particular thanks to Tibor
Tarnai, Zsolt Gaspar, Tim Havel, and Ben Roth.

§2. Review of tensegrity frameworks.

Throughout this paper the word tensegrity is used to describe any framework with
cables — each cable determines a maximum distance between two points, struts —
each strut determines a minimum distance between two points, and bars — each bar
determines a fixed distance between two points. Statically, cables can only apply tension
and struts can only apply compression. We partition the edges of our graph into three
disjoint classes — E_ for cables, Eop for bars and E4 for struts, creating a signed graph
G = (V;E-,Ep,E;). In our figures, cables are indicated by dashed lines, struts by
double thin lines, and bars by single thick lines (see Figure 1.2.1). General references
for this chapter are Connelly (1988a) and Whiteley (1988a).

§2.1.  Rigidity.

Definition 2.1.1. A tensegrity framework in d-space G(p) is a signed graph
(V;E_,Eo,Ey), and an assignment p € IR% such that each p; € IR? corresponds
to a vertex of G, where p = (p1,...,Py) is a configuration. The members in E_ are
cables, the members in Ey are bars and the members in E are struts. A bar framework
is a tensegrity framework with no cables or struts, i.e., £ = Ep.

Definition 2.1.2. A tensegrity framework G(p) dominates the tensegrity framework
G(q), written G(p) > G(q), if

lgi — qj| < |pi —pj| when {i,j} € E_
lai — q;| = |pi — p;| when {i,j} € Ep
lai = q;| > |pi — pj| when {i,j} € Ey.

A tensegrity framework G(p) is rigid in IR? if any of the following three equivalent

conditions holds [Connelly (1988a) or Roth and Whiteley (1981)]: :

(a) there is an € > 0 such that if G(p) > G(q) and |p — q| < € then p is congruent to
q, or

(b) for every continuous path, or continuous flez, p(t) € IR*%, p(0) = p, such that
G(p) = G(p(t)) for all 0 < ¢ < 1, then p is congruent to p(¢) forall 0 < ¢ < 1, or

(c) for every analytic path, or analytic flez, p(t) € IR, p(0) = p, such that G(p) >
G(p(t)) for all 0 <t < 1, then p is congruent to p(¢) forall 0 < ¢t < 1.



Connelly and Whiteley
§2.2.  First-order rigidity.
Definition 2.2.1. A first-order flez, or an infinitesimal flez, of a tensegrity framework

G(p) is an assignment p' : V — IR", p'(v;) = p}, such that for each edge {i,j} € E
(Figure 2.2.1)

(pj ~pi)-(Pj—Pi) $0 forcables {i,j} € By

(p; —pi) (Pj—Pi)=0 forbars  {i,j} € Eo

(p; —pi) - (P;—pi) >0 forstruts {i,5} € E-
The dot product of two vectors X, Y is indicated by XY or X - Y.

VoL L

cable bar strut
Figure 2.2.1

Definition 2.2.2. A first-order flex p’ of a tensegrity framework G(p) is trivial if there
is a skew symmetric matrix S, and a vector t such that p; = Sp; + t for all vertices.

Definition 2.2.3. A tensegrity framework G(p) is first-order rigid (or infinitesimally
rigid) if every first-order flex is trivial, and first-order flezible otherwise.

*®

P1
Let p* = | : | be regarded as a column vector in IR, where each p! € RY,
Py
i=1,...,v. Then R(p) is the e by dv matrix defined by

R(p)p* = | (Pj — Pi) : (P} — pi)

.

See Connelly (1988a) or Roth and Whiteley (1981). R(p) is called the rigidity matriz
for the framework G(p). Notice that a first-order flex of a bar framework is a solution
to the linear equations:

‘ R(p)p* =0.

Remark 2.2.4. A basic theorem of the subject says that (Roth and Whiteley (1981),
Connelly (1987)):
First-order rigidity for a tensegrity framework implies rigidity for the frame-
work.



Second-Order Rigidity

Definition 2.2.5. A first-order flex p’ is an equilibrium flez if p’ - q' = 0 for all trivial
first-order flexes q'.

Physically, a first-order flex is a velocity vector field associated to the configuration,
and it turns out that an equilibrium flex is a vector field such that the linear and angular
momentum is preserved.

§2.3.  Stresses.

" Definition 2.3.1. A stress w on a tensegrity framework G(p) is an assignment of

scalars wi; = wj; to the edges of G, where w = (,..,w;j,...) € IR, and e is the number
of edges of G.

A stress w on a tensegrity framework is a self stress if the followmg equilibrium
condition holds at each vertex:

> wij(pj = pi) =0,
i

where the sum is taken over all j with {7,5} € E.
A self stress w is called a proper self stress if
{a) wij > 0 for cables {7,7} € E_, and
(b) w; i < 0 for structs {i,j} € E.
There is no condition for a bar.
A proper self stress w is strict if the inequalities in (a) and (b) are strict.

With this notation a self stress w is a solution to the linear equations wR(p) = 0,
and w is a proper self stress if each of the wi; corresponding to cables and struts have
the proper sign.

First-Order Stress Test 2.3.2. (Whiteley (1988&)) Let G(p) be a tensemty
framework, where {i,j} is a fixed cable or strut. There is a first-order flex p' for G(p)
such that (p, p;) - (P} — P;) # 0, which means that a cable is shortened or a strut

is lengthened, to first-order, if and only if for every proper self stress w for G(p) has
= 0.
wij

It is helpful to change the presentation of a stress. Namely let
w = (...,wij,...) € IR®, be a stress for G(p). Define a v by v symmetric matrix,
the reduced stress matriz §2, by setting the (¢,7) entry to be

ﬁ —w,_, Jf i#j
Soewik i i=j.

Define the stress matriz  as that dv by dv (symmetric) matrix such that the following
holds:

, P1 d Dik
(SRS I o ST . R
Pv k:l. Duk



LI

Connelly and Whiteley

Figure 2.3.1

where pix is the k-th coordinate of p; € R%, k = 1,...,d, and ( )7 represents the
transpose operation. In other words, up to permutation of the coordinates of p, § is
just k “copies” of Q. It is easy to check that if p,q € IR*®, w € IR®, then

wR(p)q = PTQQ = Zwij(Pi - p;) - (i — q;). 2.3.2
iJ

Thus Q is just the matrix of a bilinear form in the coordinates of p and q and it turns
out that w is a self stress if p7Q = 0.

§3. Pre-stress Stability.

§3.1. The energy principle.

If a cable is stretched, the energy in the cable increases. Similarly, if a strut is
shortened, or a bar is changed in length, the energy increases. We put these together in
the following energy function:

CH*(Q) =) fij (laj — ail?) , 3.1.1
G

where
for each cable {i,j}, fi; is strictly monotone increasing ;

for each strut {i,5}, fi; is strictly monotone decreasing ; 3.1.2

for each bar {7,7}, fi; has a strict minimum at |p; — p;|*.

See Figure 3.1.1.
We have the following:
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Figure 3.1.1

Theorem 3.1.1.  Energy Principle: If such an H* has a local . minimum at p
which is strict up to congruence in some neighborhood of p in IR%’, then the framework
G(p) is rigid.

Proof: Any nearby q with G(q) < G(p) will have fi; (|a; — qi|?) < fij (|p; — pi|?) for
all members. Since this makes H*(q) £ H*(p), we conclude that q is congruent to p.
This makes G(p) rigid, by Definition 2.1.2(a) of rigidity. |

Remark 3.1.2. It turns out that any rigid tensegrity framework G(p) will have “some”
energy functions that make H* a minimum at p, but they would only satisfy certain
“relaxed” conditions (3.1.2). Later it will be necessary to use the conditions (3.1.2) as
they stand.

§3.2.  Stiffness matrix, stress matrix decomposition.

We apply the energy principle for functions H*(p) which have their minimum
by the second derivative test. Let equation (3.1.1) define an energy function, where
each f;; is twice continuously differentiable and chosen so that the first derivative
fij (lpj — pil’) = wij for each member, w;; # 0 are scalars for all cables and struts, and
the second derivative f" (|p; — pi|?) = ci; > 0 for all members. Note that (3.1.2) insures
that w is a strict and proper stress. We suppose that p is a fixed particular point.

To find a local minimum, the first step is to find a critical point. Note that p is a
critical point for H*, if and only if, the directional derivative at p is zero for all directions
p". Hence, we compute the directional derivative of this energy function in the direction
p" starting from p.

Let p(t) = p + tp*. So Di(p(t)) = p*, where D; represents differentiation with
respect to t. We compute the derivative of H*(p(t)) with respect to t,

. Dy(H*(p(1))) = z Fii(Ips()P) [2(ps(t) — pi()) - (P} — P*i)].

The directional derivative is then the above function evaluated at ¢ = 0.

D.(H*(p(1))) L=0 =>_ fi(ps = pil*) [2(p; - i) - (P} — pxi).-
i

11



Connelly and Whiteley

Since f{;(Ip; — pil®) = wij, using (2.3.2) we have
Dy(H*(p(t)| _, =23 wis(ps — pi)+ (9} - B}) = 20R(p)p"
i

By the above calculation p is a critical point for H* if and only if
2wR(p)p* = 0 for all p* if and only if wR(p) = 0 if and only if w is a self stress
for G(p).

If w is a self stress on G(p), we use the second derivative test to check whether H*
has a strict minimum at p, up to congruences. For each direction p* we calculate the
second derivative along the path p(t), and then evaluate when ¢ = 0 and p(0) =

-

HEACION = 3 fies = pif)2(py —po) - (5 i ok
+ > fi(Ips — pil*)2Ip} — pi
ij
= Z 4eij{(ps — pi) - (0] — PY)

+ > 2wii(pj - pi) - (P — PY)-
i

The constant c;; is often called the stiffness coefficient for the member {i,5} and in
physics it is normally a function of the Young modulus of the material forming the
member, the rest length of the member, and the cross-sectional area of the member.

The rigid congruences of p form a submanifold in the space of all configurations,
and it is clear that H* is constant on this set. Thus when p* is a trivial infinitesimal
flex of G(p) it is easy to see that both the first and second derivative of H* along a
path in the direction of p* are zero. (This can also be seen by a direct calculation.) We
conclude:

Proposition 3.2.1. The energy function H* has a strict local minimum, up to
congruence, if the following quadratic form, regarded as a function of the coordinates of

P",
H(p*) =) 2wij(p} — pi) - (Pf — P) + D 4cijl(pj — pi) - (P} — PI))

satisfies H > 0 for all p*, and H = 0 if and only if p* is a trivial infinitesimal flex of
G(p). In other words H is positive definite on any complement of the trivial infinitesimal
flexes.

Note that each fi; for each cable and strut is a monotone function with non-zero
derivative. For that reason we know that the self stress is strict and proper. In other
words the self stress w is non-zero with the correct sign on each cable and strut.

12



Second-Order Rigidity

What we have done is calculate the Hessian H as a quadratic form for the function

H*. Note, however, that H itself is not the sum of energy functionals of the members

of G. Thus the energy principle does not apply directly to H, but applies only because
H* is in the correct form.

We now rewrite the formula for H in terms of the rigidity matrix. Let C denote the

dv by dv diagonal matrix with entries ¢;;, where its rows and columns correspond to the

members of G. So if {1,7} is a member of G, then the corresponding diagonal entry is

Cij. :

H = 20R(p")p" +4(p*)" R(p)” CR(p)p"

= 2(p*)7Qp" + 4(p*)" R(p)" CR(p)p"

= (p")7[2Q + 4R(p” CR(p)p*.
In structural engineering, the matrix R(p)TCR(p) is called the stiffness matriz of
the framework, Q is the geometric stiffness matriz or the stress matriz, and 2[Q2 +
2R(p)TCR(p)] is the tangential stiffness matriz. The matrix R(p)TCR(p) is clearly
positive semi-definite with the first-order flexes in its kernel. If the framework is in-
finitesimally rigid, then 2 = 0 can be used in the above. The interesting cases for us
occur when there are some non-trivial infinitesimal flexes and some non-zero self stresses.

Remark 3.2.2. This stability corresponds to the engineer’s concept of first-order
stiffness (Szabo and Kolldr (1984)). If we take gradients of this energy function, we find
that if the force at the i-th joint is F;, then this set of forces is resolved, at first-order,
by a displacement p* of the joints, where

Fi=AH=2) wij(p} —pi)+4 Y cij[(pj — pi) - (P} — P)](Pj = Pi).
J J

Regarding the forces as one column vector F = (F:IF, oo s FT)T | we get
F = [20 + 4R(p)"CR(p)]p".

All equilibrium loads are resolved if and only if the matrix [2Q + 4R(p)TCR(p)] is
invertible when restricted to the orthogonal complement of the trivial motions. In this
case, the deformation p* resolves the load [2Q + 4R(p)TCR(p)]p*. This is a feasible
physical response of the structure, corresponding to positive work by the force, if and
only if p* is in the same direction as F or p* - F > 0, with equality only if F = 0. This
is a restatement of the fact that H is positive definite on a complement of the trivial
motions.

If H is only positive semi-definite on a complement of the trivial infinitesimal mo-
tions, then there is a direction p* for which there is no change in the energy up to the
second derivative. It may turn out that there will still be third, or higher order effects
of a real energy which produce rigidity. However, if H is indefinite there is a direction
p" in which the energy strictly decreases.
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Remark 3.2.3. Looking at this discussion in terms of the physics we can also under-
stand the rule of the energy functions. If H strictly decreases in the direction p*, then
any smooth energy function H* with the equilibrium stresses wj; as the first derivatives,
and the ci;j as the second derivatives for each member will have a local maximum at p
along the line p + tp*. If released with this energy in the direction of p*, the frame-
work will continue to move while seeking a smaller overall energy. It is also possible to
interpret the behavior of the framework in terms of Lagrange multipliers.

- §3.3. Definition of pre-stress stability.

Recall that if Q is a quadratic form on a finite dimensional vector space, then
there is a symmetric matrix A such that Q(p) = pT Ap, where p is a vector written as
coordinates with respect to some basis of the vector space. If Q(p) > 0 for all vectors
p, then @ (or A) is called positive semi-definite. The zero set of Q) is the set of vectors
p such that Q(p) = 0. If Q is positive semi-definite and the zero set consists of just the
zero vector, then @ is called positive definite.

Definition 3.3.1. We say a tensegrity framework G(p) is pre-stress stable if there is
a proper self stress w and non-negative scalars ¢;; (where {i,j} is a member of G) such
that the energy function regarded as quadratic form in the coordinates of p*

H=> wij(pf —p})’ + > cij[(pi — p;) - (P} — p))”
ij ij

is positive semi-definite, ¢;; = 0 when w;; = 0 and {1, j} is a cable or strut, and only the
- trivial infinitesimal flexes of p are in the kernel of H. In this case we say w siabilizes
G(p). The c¢;; are called the stiffness coefficients as in Section 3.2. We have dropped the
constants 2 and 4 that appeared in Section 3.2 for simplicity.

Remark 3.3.2. I, for some member {7,7}, H has wij = 0 but ¢;; > 0, then for the
energy principle to apply, the member must be a bar. Imagine a single cable, which has
no non-zero self stress. It is certainly not rigid, but it would be pre-stress stable with the
zero self stress, if we did not insist that ¢;j = 0 when w;; = 0. This is why the definition
insists that each cable or strut which appears with a zero stress does not appear in the
formula at all.

Thus if any G(p) is pre-stress stable, stabilized at w, then we might as well change
G(p) to have struts only for those members where w;; < 0 and cables only for those
members where w;; > 0, deleting any cables or struts with a zero stress.

Note also that if we regard unstressed members as not being in G, then increasing
any ci; keeps H positive definite (if it already was) and so we may assume they are
all equal to each other, assuming that we are only interested in recognizing the rigidity
of the framework. Thus if w stabilizes G(p) with all cables and struts stressed, with
stiffness coefficients ¢;i;, then Fﬁ?ﬂ stabilizes G(p) with all the stiffness coefficients
equal to one.

14
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Proposition 3.3.3. If a tensegrity framework G(p) is pre-stress stable for a self
stress w, then G(p) is rigid.

Proof: The positive definite property of H guarantees a strict local minimum modulo
trivial first-order flexes of p. Since w;; # 0 for all the cables and struts of G' that appear
in H*, we have the strictly monotone property of their energy functions, near p. Thus
the energy principle applies to show G(p) is rigid. |

Remark 3.3.4. We will see, by Theorem 4.5.5, that if G(p) is pre-stress stable, then
G(p) is second-order rigid and by Theorem 4.3.1 G(p) is rigid. However, the present
proof is much simpler since it is a direct application of the energy principle.

Proposition 3.3.5. If a tensegrity framework G(p) is first-order tigid, then it is
pre-stress stable.

Proof: The underlying bar framework G(p) is certainly first-order rigid; thus R( p)TR(p)
has only the trivial infinitesimal flexes in its kernel. In other words R(p)T R(p) is positive
definite on the equilibrium infinitesimal motions perpendicular to the trivial infinitesimal
motions in IR*?. By Roth and Whiteley (1981) there is a proper self stress w which is
non-zero on each cable and strut. By choosing w sufficiently small, then © + R(p)T R(p)
will be also positive definite on the (compact unit sphere) of equilibrium infinitesimal
flexes. Thus G(p) is pre-stable stable. |

Often it is convenient to assume that a proper stress w for G(p) is strict, i.e., wij %0
for every cable or strut. If we are willing to consider sub-frameworks of G(p), we need
only consider strict self stresses for pre-stress stability.

Remark 3.3.6. Pellegrino and Calladine (1986) use a different analysis of the rigidify-
ing effect of a pre-stress. (See also Calladine (1978).) Given a framework G(p) with a self
stress w and a set of generators pj,...,p} for a complementary space of non-trivial first-
order flexes, they add k new rows to the rigidity matrix, wR(p}),wR(pP}),...,wR(pPk). -
If this extended matrix R*(p,w) has rank vd — d(d + 1)/2, they say that the pre-stress
w “stiffens” the framework, modulo the positive definiteness of an unspecified matrix. .

If R*(p,w) does not have rank vd — d(d + 1)/2 (assuming the vertices span IR?),
then there is a non-trivial first-order flex p' = 3 aip; satisfying wR(p})p’ = 0, for all
i=1,...,k. Thus wR(p')p' = 0 and G(p) is certainly not pre-stress stable for this self
stress w. In fact, it is easy to see that their condition is equivalent to requiring that
the rank of a?Q + R(p)T R(p) be vd — d(d + 1)/2 for all sufficiently small e, (assuming
that the affine span of p is at least (d — 1)-dimensional). The matrix that they have in
mind, which must be positive definite, must be equivalent to Q + R(p)T R(p) restricted
to some space complementary to the space of trivial first-order flexes. If no positive

definiteness is required, many mechanisms, such as collinear parallelograms, would be
declared “stiff”.
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On the other hand, if there is a one-dimensional space of equilibrium first-order
flexes, then we will see that pre-stress stability, the rank of R*(p) = dv — 4d+1)  and

2

second-order rigidity will all coincide. It is interesting that in their paper Pellegrino and
Calladine (1986), most examples have a one-dimensional space of equilibrium flexes. See
Calladine and Pellegrino (1991) for corrections, as well as Kuznetsov (1989), Kuznetsov
(1991a), Kuznetsov (1991b), Kuznetsov (1991c) for a discussion of the problem of how
to do the second-order analysis.

{3.4, Interpretation in terms of the stress matrix and quadratic forms.

We now present some simple facts about quadratic forms that we will find useful
later. ,

Lemma 3.4.1. Let Q; and Q; be two quadratic forms on a finite dimensional real
(inner product) vector space. Suppose that Q. is positive semi-definite with zero set
K, and Q; is positive definite on K. Then there is a positive real number a such that
Q1 + aQ: is positive definite.

Proof: Let X denote the compact set (a sphere) of unit vectors in the inner product

space.
X ={plp-p=1}
Recall that the zero set of Q)2 is

K = {p|Q:(p) = 0}.
Let KN X C N C X be an open neighborhood of K in X such that
Q:(p) >0 forall peN.
Such an open set N exists since K N X is compact, Q1 is positive on X'\ {0} D K NX '

and thus Q; restricted to X U X must have a positive minimum m. Then take N =
- {p € X|Q.1(p) > Z}. For similar reasons there are real constants ¢, ¢ such that

Qi(p)>c forall peX,
Q2(p)>c2 >0 forall peX\N.

Then we define a = J%;-l We calculate for p € NN X,

Q1(p) + aQ:2(p) = Q1(p) > 0.
Forpe X\ N,

le |
c2

Q1(p) + aQ2(p) = Q1(p) + —Q2(pP) > c1 + |1 2 0.
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Thus Q1 + aQ2 is positive on all of X, and hence it is positive definite, |

Remark 3.4.2. For any quadratic form given by a symmetric matrix A4, where Q(p) =
pTAp, certainly the kernel of A is contained in the zero set of Q. If Ap = O, then
Q(p) = pT Ap = 0. However, the converse is not true unless A is positive semi-definite.
In particular the converse is true when A = R(p)TCR(p), the stiffness matrix. Then

* 2o
(") R(p)TCR(p)P* = Y cij[(p} — P}) - (P —Pi)] 20,
i
and the kernel of A, assuming all the ¢;; > 0, is the same as the zero set of its quadratic |
form. It is also clear from the above that the kernel of A is precisely the space of all
first-order flexes of the corresponding bar framework. '
For any tensegrity framework G(p) we recall that G(p) is the corresponding bar

framework with all members converted to bars. We denote

I= I(_é(P)) = {P' € ]RvdKPi - p;) - (pi— p;) =0, {ij} amember of G’}.

In other words I is the space of first-order flexes of G(p), a linear subspace of R,
Recall also that T}, is the space of trivial first-order flexes at p. (So Tp C I .) Note that
if G(p) has a strict proper self-stress, then Roth and Whiteley’s (1981) result implies
that I = 1I.

We now give a way of checking the pre-stress stability of a tensegrity framework
which is useful for calculations later. Recall a stress w is strict if it is non-zero on every
cable and strut.

Proposition 3.4.3. A tensegrity framework G(p) is pre-stress stable for the strict
proper self stress w_if and only if the associated stress matrix Q is positive definite on
any subspace K C I complementary to Tp.

Proof: Assume that [Q + R(p)TCR(p)) is positive semi-definite with only Tp as the

kernel, where C is a diagonal matrix with positive stiffness coefficients. Let p' €I
Then R(p)p' = 0 and so

0 < ()7[Q + R(p)TCR(D))P' = (@)W,

with equality if and only if p' € Tp. Thus on K, § is positive definite.

Before proving the converse we remark that if p' is any trivial first-order flex at
p, then by Definition 2.2.2 there is a d by d (skew symmetric) matrix S and a vector
t € IR? such that p} = Spi+t,:=1,...,v. Thus

Qp' = | ©;wii(ph—pj) | = | Z;wii(Spi—Spj) | = | S X;wii(pi —Pj) | =0.
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Now suppose Q is positive definite on K. Let p' € IR*? be arbifrary. Write p' =
pPr + Pk + PE, where pr € T}, px € K, and p. € E, the (orthogonal) complement of
T in RY?, Since Qpr = 0 = R(p)pr, we have

®")7[Q+ R(p)TCR(p)]p' = (Px + PE)”[2 + R(p)TCR(P)](Px + PE).  3.4.4

By Remark 3.4.2 the kernel of R(p)TCR(p) is I = T, + K. Now apply Lemma 3.4.1 to
the inner product space K + E, where Q1 is the %mdratic form corresponding to 2, and
@2 is the quadratic form corresponding to R(p)” CR(p). The kernel of Q2 is precisely
K, and we have assumed that @Q; is positive definite on K. Thus by possibly multiplying
C by a positive constant we can assume that Q + R(p)TCR(p) is positive definite on
K + E. By (3.4.4), this implies that Q 4+ R(p)TCR(p) is positive semi-definite with
kernel Ty, and G(p) is pre-stress table. T |

§3.5. Examples of pre-streés stable frameworks

The following are examples of tensegrity frameworks that are pre-stress stable, but
not first-order rigid. Thus the converse of Proposition 3.3.4 is false.

)

a b

Figure 3.5.1

In Figure 3.5.1a there is a self stress such that the outside members have a positive
self stress. A non-trivial first-order flex is given so that one can apply Proposition 3.4.3.
Figure (3.5.1b) is stable by a result in Connelly (1982) concerning spider webs. In Figure
3.5.1b it is the inside members we can choose to be positive. In both of these examples
there is a strict proper self stress such that the indicated first-order flex is non-zero only
on vertices of members that have a positive self stress, and the given first-order flex
generates a complementary space to the trivial flexes in the space of all first-order flexes.
Hence the stress matrix on this space is positive definite and the framework is prestress
stable,

Following Remark 3.3.2, we can change appropriate members to cables or struts and
preserve pre-stress stability, as in Figure 3.5.2.

Can a framework be rigid but not pre-stress stable? Consider the next two examples.
Note that any first-order rigid bar framework with no self stress at all must have 0 as
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Figure 3.5.2

its stabilizing self stress. But the example in Figure 3.5.3a has a self stress on part of
the framework, and the bar can have no stress other than 0. It still is pre-stress stable.

However the example of Figure 3.5.3b is not pre-stress stable, because the short’
horizontal cable and strut are unstressed and the framework becomes non-rigid upon
their removal. Nevertheless the framework is clearly still rigid. In fact, built with all
bars, it is prestress stable.

Figure 3.5.3

Suppose we fix (or pin) certain vertices. For our purposes this can be accomplished
by adding some first-order framework that contains these vertices and none of the other
original vertices. If the original framework has only cables with a proper self stress
(where the equilibrium condition only holds at the vertices that are not fixed), then
we say that the framework is a spider web. There is a discussion of this in Connelly
(1988a) and Whiteley (1988b) as well as Connelly (1982). It is clear that spider webs
are pre-stress stable. See Figure 3.5.4. '

In three-space there are many examples of pre-stress stable but not necessarily
infinitesimally rigid tensegrity frameworks, such as in Figure 3.5.5.

Figure 3.5.5a is a regular cube with its main diagonals as struts and its edges as
cables. Examples such as in 3.5.5b can be obtained by taking any convex polyhedron
with a triangular face, choosing a point p; close to that face, and joining p; to all the
other vertices of the polyhedron with struts and making all the edges of the polyhedron
cables except the triangle which is composed of struts. Again it turns out that there is
a strict proper self stress w, and (2 is positive semi-definite with only the affine motions

in the kernel. This example is closely related to three-dimensional spider webs (see
Whiteley (1988b)).
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Figure 3.5.5

Another three-dimensional example can be obtained by taking a tetrahedron and
putting struts on each of the six edges and some pre-stressed spider web on the inside
of each triangular face, as in Figure 3.5.6.

Figure 3.5.6

Each face is pre-stress stable even in IR3, so the sum of the energy functions is
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positive semi-definite with only the first-order flexes that are trivial on each face in the
kernel. But since the tetrahedron itself is first-order rigid, flexes which are trivial on
each face are trivial on the whole framework. The framework is pre-stress stable.

§3.6. Roth’s conjecture.

Suppose G(p) has its points as the vertices of a convex polygon in the plane, If the
enterior edges of G are cables, and all of the other members are struts say, then we call
it a cable-strut polygon or a c-s polygon. For example Figure 3.6.1 is a c-s polygon.

Figure 3.6.1

It follows from Connelly (1982) that any c-s polygon that has a proper self stress
w # 0 has § as positive semi-definite with only the affine motions in the kernel. It turns
out that the affine motions are never a first-order flex of such a framework (Whiteley
1988b). Thus such an w also stabilizes G(p), and thus G(p) is pre-stress rigid. Note
that such a c-s polygon need not be first-order rigid. In the case of Figure 3.6.6, the
six vertices lie on an ellipse, and by a classical result (see Bolker and Roth (1980) and
Whiteley (1984)), the framework has a strict proper self stress and a non-trivial first-
order flex. So this framework is pre-stress stable, but it is not first-order rigid.

On the other hand Roth conjectured that any rigid b-c polygon (bars on the outside,
cables inside) was first-order rigid. In Section 6.2 we show that this is true. In Figure
3.6.2 we show three examples of non-rigid b-c hexagons with first-order flex indicated.

{

b c
Figure 3.6.2

21



Connelly and Whiteley

For the three frameworks in Figure 3.6.2 the six vertices of each configuration form
a regular hexagon. For the first two cases, there are certain other configurations for the
same tensegrity graph (but still a convex b-c polygon) such that the framework is rigid.
This is not true for the last case, though. The reader is invited to find the continuous
non-trivial flex of each of these frameworks. But see Section 6.2 for a proof that the flex
exists.

Following Roth and Whiteley (1982) we see that there are many cabling schemes
that guarantee first-order rigidity, as in Figure 3.6.3

Griinbaum polygon generalized Griinbaum polygon

a b ¢

Cauchy Polygon

Figure 3.6.3

Consider a b-c hexagon with 4 cables. Either it contains one of the examples of
Figure 3.5.8 and thus is always first-order rigid, or it is contained in one of the examples
of Figure 3.5.7 and thus, at least for some convex configurations, it is not rigid.

§4. Second-order rigidity for tensegrity frameworks.

§4.1. The definition of second-order rigidity.

Our definition of second-order rigidity for tensegrity frameworks comes from dif-
ferentiating the equation |p;(t) — pi(t)|* = LI; twice. This generalizes the previous
definition of second-order rigidity for bar frameworks in Connelly (1982).

Definition 4.1.1. A second-order flez (p',p") for a tensegrity framework G(})) is a
solution to the following constraints, where p’ and p' are configurations in IR* (each
regarded as an associated pair of vectors p} and p} to each point p;).
. . . 2
(a) For {i,j} a bar, (pi — p;) - (i — Pj) = 0 and |p; — p}|* + (pi — p;) - (P{ — P§) =0.
(b) For {i,;} a cable, either (p; — p;) * (P; — Pj) < 0 or (pi — p;) - (P} — P}) = 0 and
Ipi = pj* + (pi — pj) - (¥ — P§) < 0.
(c) For {i,j} a strut, either (p; — p;) - (P — Pj) > 0 or (pi — p;) - (P} — p}) = 0 and
p; = PjI* + (Pi — ps) - (¥ = P) 2 0.
A tensegrity framework is second-order rigid if all second-order flexes (p’, p'') have p' as
a trivial first-order flex. Otherwise G(p) is second-order flezible.
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Figure 4.1.1 shows second-order flexes of some tensegrity frameworks, (double arrows
for p", single arrow for p'). The flex in Figure 4.1.1a is non-trivial for p’. The flex in
Figure 4.1.1b is trivial for p/, but (p', p") is not the first and second derivative of a rigid
motion of p. The flex in Figure 4.1.1c is the derivative of a rigid motion of p.

y

|

Figure 4.1.1

Since the second-order extension p is the solution of an inhomogeneous system of
equations and inequalities, we can add any solution q' of the corresponding homogeneous
system to p'’.

Proposition 4.1.2.  If (p’,p") is a second-order flex of a tensegrity framework G(p)
and q' is any first-order flex of G(p), then (p',p" + q') is a second-order flex of G(p).

Proof: Assume that for each cable {7,j} (respectively each bar, strut) with
(pi = pj) - (Pi — P}) =0,

(pi = pj) - (Pi = Pj) + (Pi = Pj) - (P = pj) <O (respectively =0, >0)

and
(pi — pj) (qi —qj) <0 ( respectively =0, > 0).

Therefore by adding these inequalities we obtain,
(pi = P§) - (Pi — P;) +(Pi — Pj) - [(P{ — @) — (Pj + ;)] SO ( respectively =0, > 0).

These are the inequdlities required for Definition 4.1.1. |

If we add a multiple of p’ itself to any second-order extension p we can make the
second-order extension also satisfy the second-order mequal1t1es even for those members

with {pi — p;) - (P} — p}) # 0.
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§4.2.  Trivial higher order motions.

In the following p(t) = (plst),...), 0 € t € 1 will be an analytic path in the
configuration space, so pi(t) € IR?, 1 =1,...,v. Following Connelly (1980) we say that
p(t) is a trivia] flex if

p(t) = T(t)p(0) = (T(t)P1(0), T(1)p2(0),- - ., T(£)Pu(0)),

. where T(0) = I, T(t) is a rigid motion of IR?, and T(t) is an analytic function of t. In

particular, this means that we can write T'(t)p; = A(t)p;i +b(t), ¢ = 1,...,v, where A(t)
is an orthogonal matrix, b(t) € R%, and all the coordinates are real analytic functions
of t.

' We next say that p',p",...,p*), each p() € R for j = 1,.. sk, is & k-trivial
flex of p if there is a trivial flex p(t) such that

Dip(t)| _ =pP, for j=1,2,...,k

Recall that D represents the j-th derivative with respect to t.

It is easy to check that if p’,...,p*) is a k-trivial flex of any framework G(p) in
IRY, then the analogue of equations (a) in Definition 4.1.1 hold for j = 1,...,k, since
clearly edge lengths are preserved up to any order k.

In fact we will give a fairly explicit description of k-trivial flexes. Although this
description is long, it seems important to be precise, given the long history of confusion

_ in this area.

We already know that 1-trivial flexes p’ are given by
pi=Spi+b', i=1,...,v,

where § = —S7T is a d by d skew symmetric matrix and b’ € IR?. See Connelly (1980)
or Connelly (1988a). In fact every orthogonal matrix A sufficiently close to the identity
matrix I can be written as
A=cS=148=28+--5+
2 2.3 U
where S is a skew symmetric matrix, and the above infinite series converges, It is well
known that the exponential map
S+ es,

takes the tangent space of the Lie group to orthogonal matrices, which is the Lie algebra
of the Lie group, into the Lie group itself. This exponential map is a local analytic
diffeomorphism near I, the identity. Thus any.analytic path A(t) with A(0) = I pulls
back to a path S(t) in the Lie algebra, which is itself analytic. Thus

A(t) = &5,
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On the other hand since €® = I and thus S(0) = 0 we can write

t? 3
S(t)=t51+'552+§j-3-53+"',

where each Sy, S2,... is skew symmetric. Thus

t? .
2
Rearranging terms, which is possible since we have an absolutely convergent power series,
we get

3 1 12 3 2
A(t)=I+(tS1+ Sz+ﬁ53+-n)+-2*(t51+—2—52+m53+...) +....

t2 t° 3 3 -
A)=T+1tS + -é-(Sz + S%) + 373 (5'3 + 55152 +.§5251 + Sf) S 42.1

Thus each of the matrix coefficients of ;—’, gives a parametric description of the j-th

derivative of A(t), and thus a description of a k-trivial flex of p. In particular p’, p" is a
2-trivial flex of p if and only if there are skew symmetric matrices S1, S2 and b',b" € R?
such that ,

p'=Sip+(b,...,b)

p'=(S+ 5} )p+(d",...,b").

Later it will be convenient to be able to “cancel” initial parts of a k-th order flex,
with a k-trivial flex. Thus we state the following. See Connelly (1980).

Proposition 4.2.1.  Let p(t), p(0) = p, be an analytic path in configuration space
such that

PV =Dilp(T)| _, j=01,....k

is k-trivial. Then there is a rigid motion T(t) of IR?, analytic in t, such that T(0) = I
and

D} [T(t)p(t)]‘tﬂ =0, for j=1,...,k

Proof: We proceed by induction on k. For k = 0, there is nothing to prove. So we

assume f
, i =0
Di[P(t)]|t=o={g i ]]'=1,...,k

and we wish to find T'(t) such that the (k + 1)-st derivative is 0 as well, assuming that
the first k + 1 derivatives are k-trivial, :

We restrict to the space spanned by p1,p2,...,P». By adding a translation we
have, using (4.2.1),

b =0, j=1,....k+1"
S;=0, j=1,...,k.
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Note then that Df’*’lp(t) o = Sk+1p. Define T'(t) by

T(t) = TS — - g
()—‘e ! = _(k+1)! k+1+---'
We then observe, for all j = 1,2,...,
- L (] »
D) = X (}) DT i fp(e)] 423
=0 .
But ' . .
£ — 0 = 13"'a
DtT(t)lt:O - { —Sk41 L=k+1.
Thus
i S -5 =0, for j=k+1
DilTHp®| _, = { - St for S =1,.. k} =0.

Remark 4.2.2. There are several ways of handling the problem of “normalizing” the
first few derivatives. One way is the above technique; another way is to use “tie downs”
as in White and Whiteley (1983) and discussed in Connelly (1988a); a third way is to use
the method described by Kuiper (1979); (see also Connelly (1988a)). This normalizing is
a nuisance but it is convenient to have for the argument used to show that second-order
rigidity implies rigidity.

The following is an immediate consequence of the definition of k-trivial and the
formula (4.2.1).

Lemma 4.2.3. Let p',...,p*¥) be such that p' = p"... = p*~1) = 0. Then pt¥) is
a I-trivial flex at p if and only if p',p",...,p¥) is k-trivial at p.

It is also useful to have the following.
Lemma 4.2.4. Let p(t) be any analytic path in configuration space such that
p' = DtP(t)|t=o,. .,pt® = Dfp(t)|t=o. Let T(t) be any rigid motion of IR?, analytic

int, T(0) = I. Then Di[T(t)P(t)]|,_q» - -» DEIT()P())|,_, is k-trivial at p if and only
ifp',...,p" is k-trivial at p.

Proof: Since T(t) is invertible it is enough to show that if p',...,p(k) _is k-trivial,
then D [T(1)p(4)]],_gs-- > DT (t)p(t)]|,_, is k-trivial. But then pl¥ = D{[T(t)]|,_, for
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£=1,...,k for some rigid motion T(t) of IR?, analytic in ¢, T(0) = I. But then clearly
foré=1,...,k

Di[T()p®)|,_, = DiTOT)p(®)]| _

by expanding both sides by the: product rule (4.2.3). But T(t)T(t) is again a rigid
analytic motion of IR? and we are done, [ |

§4.3. Second order rigidity implies rigidity.

We have generalized the notion of second-order flex (see Connelly (1980) for bar
frameworks to general tensegrity frameworks). In the next theorem we will show that
a non-trivial analytic flex of a tensegnty framework gives rise to a second-order flex
(p',p"") whose first-order part p’ is non-trivial, The natural idea is to take the first and
second derivatives of the analytic flex evaluated at the starting point. Unfortunately,
this may not work because the first derivative of the analytic flex may be trivial, and we
may have to wait for some higher derivative to be non-trivial. For cables and struts we
use the principle that the first non-vanishing derivative of the member length squared
has the correct sign.

Theorem 4.3.1. If a tensegrity framework G(p) is second-order rigid, then it is
rigid.

Proof: Assume G(p) is not rigid. Then we will show that G(p) is not second-order rigid
by finding a second-order flex (q',q") such that q' is not 1-trivial at p.

Since G(p) is not rigid we know that G(p) has a non-rigid analytic flex p(t) by
Definition 2.1.2 (c). [See Connelly (1980) or Connelly (1988a).] Define for £ = 1,2,...

Pl = DEp(t)]
!

p'y...,p¥) is k-trivial. Then for any {3,5}, not just
2

Df[lpi(t) — pj(t)l2]|t=0 =0, .

which implies that |pi(t) — p;j(t)|* is constant in ¢, which implies that p(t) is a rigid
analytic flex, contradicting the choice of p(t). Thus for some k > 1, p',...,p¥ is not
k-trivial.

Now let k be the smallest positive integer such that p’,...,p*¥) is not k-trivial,
fixing k. (If k = 1, life is especially easy.) Applying Propos:tlon 4.2.2 we can alter p(t)
so that not only is p/,...,p(*~1) (k— 1)-trivial but p'=...=pk1) =0, (f k=1 we
do nothing.) Note that by Lemma 4.2.6, 0 = p/, ..., p{ b is st:ll not k-trivial.

We observe that for any {i,7}

k .
Df['pi(t) _ pj(t)lzlL=0 — Z ( >(p(f) f)) (p(k -4 _ fik—t))

=0

Suppose for all £ = 1,2,

those members of G, for all 1, yeres

= 2(pi — p;) - (P{" - p{).
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Hence p{*) is a first-order flex for G(p). By Lemma 4.2.5 p{*) is not 1-trivial. Now we
define
q =p*.
We now proceed to find q". We still must pay attention to conditions analogous to

first-order conditions. Recall that Ey is the set of bars of G, E- is the set of cables of
@, and E, is the set of struts of G. For every n = k,k+1,...,2k — 1, define

(pi —pj)- (p{" — p}) =0, for €=1,...,n—1}
(pi —pj)i(pg-") —pM)#0

Note that when m = 1,...,n, and {¢,j} € Ep, or when {7,7} is a bar,

E, = {{2,]} € EUE_UE,

” .
m £ 4 4 m~—£
Dr(pd)-ps O], =3 (7 ) 0 = 2§ 6"~ - 5")
- £=0

= 2(pi - p;) - (P{™ - p§™)

=0 if {i,j} € Eo

=0 if m=1,2,...,n—1 and {i,j} € En

<0 if m=n and {i,j} € E.NE_ ’

>0 if m=n and {i,j} € E.NE4
since either p(e) =0orp™ 9 =0if=1,...,m—1< 2k — 1. (Note that only cables
or struts are in any Ey.) In other words for just those members in Ep, p(™ acts as a

strict first-order flex of G(p).
We will next find a sequence of real numbers £; >> €3 >> €x-1 > 0 and define

where €; >> ;41 means that g;41 is chosen sufficiently small such that later inequalities
will remain satisfied. We see that r' is also a (non-trivial) first-order flex of G(p). In
fact we require that for {i,j} a member of G

<0 if {i,7} € (ExU...UEsy_1)NE_
(pi — pj) - (x; — r}) >0 if {t,j} €(ExVU...UE»_1)NEy . 4.3.2

=0 otherwise .
To see that this is possible we proceed by induction. Define for n = k,k+1,...,2k +1,
r'(n) = p(® +e1p*) 4.+ ek p™,
where r'(k) = p(¥). We require that for {1,j} a member of G,

<0 if {i,7}€(BxU...UE,)NE_
(pi — pj) * (ri(n) — rl(n)) >0 if {i,5} €(ExU...UE,)NE; 3. 4.3.3

=0 otherwise .
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But this is true for n = k, and if €541 > 0 is chosen small enough we can satisfy (4.3.3)
for n + 1, assuming it is true for n.

In other words for every cable and strut of G, either r' is strict or r' and p/,...,
p(#¥~1) act as if {i,j} were a bar, for the first-order conditions.

We now choose a large real number B > 0 and define

2
qu = ___2_k___p(2k) + Br.
()
Recalling that q' = p(¥), we claim that (q',q") is a second-order flex of G(p), for B
large enough. For {i,j} € Ex U...U Eyx—1 we calculate

(pi — p;) - (df — qff) + |} — &}[*

2 k
= (2_kk)(Pi —p;) - (% = P + B(pi — pj) - (xh — ) + la} — qf*

{>o if {z',j}eE_ﬂ(EkU...UEgk_l)}
<0 if {i,j}EE+ﬂ(EkU...UE2k_1)

if B is chosen large enough by (4.3.2).
For {i,7} a member of G but {7,;} ¢ ExU... Ezx—1, then (pi — pj) - (ri = r}) =0

and (pi — p;) - (P(Ie) - p(,-‘)) =0forl=1,...,2k — 1. Then

DE(Ipi(t) ~ (0], = Tiko CH) (7 — P} - ({9 — p{*77)
= 2(pi — p3) - (B = PP + () Ip{F) — p{IP?
= () (pi - ps) - (@i — a7) + la! — ajf?)
<0 if {i,j} € E_\(ExU...UEs,_1)
{=0 if {i,j}EEo\(EkU...UEzk_1)
>0 if {i,j} € Ex \(ExU...UE_1)

Thus in either case the second-order conditions are satisfied, (q',q'") is a second-
order flex of G(p), and ¢’ is not 1-trivial. :

Remark 4.3.2. The general outline for the above proof is the same as in Connelly
(1980), except that the cables and struts can cause complications. Differentiating the
edge length condition allows us to detect any cable or strut, but is occurrence causes an
appropriate sign somewhere from the level k to 2k. The intermediate levels from k + 1
to 2k — 1 must be introduced into the (q', q") carefully.

§4.4. Pre-stress stability and second-order rigidity.

We observe that pre-stress stability is stronger than second-order rigidity.
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Theorem 4.4.1. If a tensegrity framework G(p) is pre-stress stable, then it is
second-order rigid.

Proof: Let w be the pre-stress that stabilizes G(p). Then from the comments following
the definition of pre-stress stability, w also stabilizes that subframework of G(p) consist-
ing of the same bars and all cables and struts with w;; # 0. Thus without any loss of
generality we can assume that w is strict. Le., wij # 0 on all the cables and struts of G.
Suppose (p',p") is a second-order flex of G(p), with p' not a trivial first-order
flex, We wish to find a contradiction. By the First-Order Stress Test we see that
(pi —pj)- (P} — p};) = 0 for all members of G (because w; # 0 on all cables and struts).
Thus by the second-order condition, :

<0 {i,j} = cable
Ipi = piF +(pi—ps) - (P! —Pj){ =0 {i,j}= bar

: >0 {i,j} = strut,

for all members {i,7} of G. In any case since w is proper, for all members {i,j} of G,
wijlp} — Pl +wij(pi — p;) - (pi — p;) £ 0.
But since p' is a non-trivial first-order flex of G(p), and since w is a stabilizing self stress
for G(p),
wR(PP' =Y _wijlpt = pif* = ()72’ >0,
ij

by Proposition 3.4.3. Recalling that wR(p) =0,

0 <wR(p")p' =wR(p")p'+wR(p)p"
= Y ;;wii(pi — Pj)? +wij(pi — p) - (P — PY) <0,

a contradiction. Thus G(p) is second-order rigid. |

Remark 4.4.2. It turns out that there are tensegrity frameworks that are not pre-
stress stable for any pre-stress, yet are still second-order rigid. For instance, the example
of Figure 3.5.4 has this property. However, in Section 5.3 we will see that if the space of
first-order flexes or the space of proper self stresses is one-dimensional, then second-order
rigidity and pre-stress stability are the same. This will also help us to find examples of
bar frameworks which are second-order rigid but not pre-stress stable in Section 5.3.

§5. The stress test.

§5.1.  Duality from linear algebra.

We now formulate some well-known principles of duality in linear algebra which we
will later interpret as a “stress” test for second-order rigidity. These duality principles
are a special case of the duality principles used in linear programming.
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In the following let A be a d by e real matrix, where we write A in block form

- [4]

where Ao and A4 are some designated subsets of the rows of A. In our applications
A will correspond to the rigidity matrix Ap, the rows corresponding to the bars of G,
and in A4 the rows corresponding to the struts and cables of G, with the strut rows
multiplied by —1. However, for the general statements in this section we will not need
any special properties of A.

We can now restate the First-Order Stress Test in this somewhat more general
context. We use the notation [z1,z2,...] < 0 for vectors to mean z; < 0 for all ¢ =
1,2,.... -

Proposition 5.1.1.  There is a column vector x € IR? such that

on =0
A+X<0

if and only if for all row vectorsy € R®, y = [yo,y+], such that
Yodo +y+A+ =0

y+ =20
then Y+ = 0.

This is a special case of the duality principle for homogeneous linear equalities, for
instance, as found in Tucker (1956), Theorem 6. Note that the “only if” implication is
easy, since if Aox =0, A4x < 0, yoAo+y+A+ =0,y+ > 0,then 0 = yogAox+y+A4+x <
0, with strict inequality if any y4+ # 0. The other implication, implicitly or explicitly
uses the principle of “hyperplane separation”. See for example Griinbaum (1967), page
10.

Here the important point is the strictness of the inequalities. In the following we
instead concentrate on the duality principle itself, putting aside the strictness properties
for the moment,

Let b
b= [bi] € R’

be a column vector.
Proposition 5.1.2.  There is a column vector x € IR? such that

on=bo
A+X < b+ o
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if and only if for all row vectorsy € IR®, y = [yo,Yy+), such that

YoAo +y+As =0
Y+=20

then yobo + y+b4+ = 0.

Note that again, the “only if” implication is easy since if Apx = bg, A+x < by,
Yodo +y+A+ =0, and y4 > 0 then 0 = yoAdox + y+A+x < yobo + y+by, and again
the “if” implication follows from the hyperplane separation principle.

In the terminology of linear programming this propostiion is an asymmetric form
of duality in the special case when the primal problem has the constant 0 objective
function. See Franklin (1980) for instance for a discussion of various such forms, as well
as a proof.

We now sharpen this proposition to obtain an equivalent dual reformulation to
determine when we get strict inequality, We fix A and b.

Proposition 5.1.3.  There is a column vector x € IR? such that

on = bo
A+X < b+

if and only if for all row vectors y € R®, y = [yo,y+], such that

YoAo+y+Ay =0
Y+ 2 0,

then yoyo + Y+ b+ > 0 with equality if and only if y; = 0.

Proof: Again, the only if implication follows easily. Ax = by, A+x < by, yodo +
Y+A+ =0, y4+ > 0imply that 0 = yoAdox + y+A+x < yobo + y+b+ and we have strict
inequality if and only if y4 # 0.

- To show the converse we use the two previous propositions. Assume that the condi-
tion on the y vector holds. By Proposition 5.1.2 we know that there is an x € IR? such
that Aox = bg, A4+x < by. If all of the by inequalities are strict we are done. If not,
throw out those strict inequalities from A to get the condition Aox = bg, A4x = b,.
Similarly, we can throw out the corresponding set of variables in the y vector. Now it
is still true that if yoAo +y4+A4 =0, then yoAdox + y4+ A4x = yobo + y+ by = 0. Thus
Proposition 5.1.1 applies, and there is a (small) x, € IR® such that 4ox. =0, A;x. < 0.
Then Ao(x + x¢) = bo, A4 (x+x¢) < by. If x¢ is small enough then x + x, still satisfies
those inequalities that were thrown out as well. H
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$5.2. Interpretation as the stress test.

We now specialize the results of Section 5.1 to the case of the rigidity matrix. Let
G(p) be a tensegrity framework in IR, and let R(p) be its d by e rigidity matrix. Let
Ro(p) denote those rows (regarded as a smaller matrix) corresponding to the bars of G.
Let R4 (p) denote the matrix obtained from those rows of R(p) corresponding to cables
and struts of G, with the rows corresponding to struts multiplied by —1.

Suppose w is a proper stress for G(p), so wR(p) = 0. We then have a corresponding
[wo,w4], where wo corresponds to the stresses on the bars, and w, to the stresses on
the cables and struts, but with the opposite sign for struts only. Thus w being proper
translates into w4 > 0, and being a self stress means woR(p) + w+ R+ (p) = 0.

In this terminology p' is a first-order flex if

Ro(p)p' =0
Ri(p)p'<0

and p’, p” is a second-order flex if in addition

Ro(p')P' + Ro(p)p" =0

Ri(p")p'+ R+(p)P" L0,
where an inequalify need only hold when the corresponding inequality, in the first-order
system, is equality. Recall that p” (or p’) is strict for {7,j} a cable or strut if the

corresponding inequality is strict.
We now have our strict second-order duality result.

Corollary 5.2.1.  The Second-Order Stress Test: A first-order flex p' of G(p)
extends to a second-order flex (p',p") if and only if for all proper self stresses w for
G(p), with stress matrix (2,

(p")7ap' 0.

Furthermore, p" can be chosen to be strict on each cable and strut {i,j} where p' is
not strict, if and only if for all proper self stresses w, p'Qp' = 0 implies wi; = 0, for each -

such {7,7}.
Proof: We apply Proposition 5.1.3, where
p=x
Ro(p) = 4o, ~Ro(p)p = bo
Ri(p) = Ay, —Ri(p)p' = by

wo =Yo0, Wi =Y4.

We may assume, without loss of generality, that R(p)p’ = 0, since any cable or strut
where p’ is strict can be disregarded as a cable or strut for the second-order conditions.
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The second-order conditions translate into the hypothesis of Proposition 5.1.2, and
the conclusion translates into the condition that w is a proper self stress. Then

0 < yobo + y+bt = —woRo(p')p’ — wi R4 (p')p' = ~wR(p")p' = —(p")7Qp’

is the condition desired. The strictness follows from Proposition 5.1.3. ||

We can simplify matters even further when G consists only of bars. This is our
second-order duality result for bar frameworks.

Corollary 5.2.2. Second-Order Stress Test for Bars: A first-order flex p' of a
bar framework G(p) extends to a second-order flex if and only if for all self stresses w
for G(p), with stress matrix Q,

(p")7p' =0.

Remark 5.2.3. In the appendix, we show that we can always replace a framework
(with a strict proper self stress) by an equivalent bar framework and use this to check
second-order rigidity. However, it seems simpler to use Corollary 5.2.1 directly, rather
than introduce so many extraneous members.

§5.3. Second-order rigidity and pre-stress stability

When does second-order rigidity imply pre-stress stability? We begin with cases
when the set of self stresses or the set of equilibrium first-order flexes is one-dimensional,
the natural first cases to consider.

Note that for a fixed tensegrity framework G(p), the proper self stress and first-order
flexes each form a cone with the origin as the cone point.

Proposition 5.3.1.  If a tensegrity framework G(p) is second-order rigid with either a
one-dimensional cone of equilibrium first-order flexes or a one-dimensional cone of proper
self stresses, then G(p) pre-stress stable.

Proof: Suppose p' is any non-trivial equilibrium first-order flex of G(p) generating the
one-dimensional cone of all equilibrium first-order flexes. If for all proper self stresses w
with stress matrix 2, we have

£#(p")Tap' = (tp')Ttp’ <0,

for all first-order flexes tp’ of G(p), (¢ a real scalar), then by Corollary 5.2.1 p’ extends
to a second-order flex (p', p'') of G(p), which contradicts G(p) being second-order rigid.
Thus for some proper self stress w, (p')72p' > 0, w stabilizes G(p) (by Proposition
3.4.3) and G(p) is pre-stress stable.

Suppose w is a proper non-zero self stress in the one-dimensional cone of proper
self stresses. Suppose there is a non-trivial first-order flex p’ such that (p’')7Qp’ < 0.
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If —w is not a proper stress, then tw, t > 0, are the only proper self stresses for G(p).
Then by Corollary 5.2.1 again G(qp) would not be second-order rigid, contradmtlng the
hypothe51s Therefore either (p ) 2p’ > 0 for all non-trivial first-order flexes p' or —w
is a proper self stress. If —w is a proper self stress, then (p')TQp’ = 0 and again p
would extend to a second-order flex. Thus (p')T(£0)p’ > 0 and Zw stabilizes G(p).

' We have already seen an example of tensegrity framework in the plane, Figure 3.5.4,
which is easily seen to be second-order rigid, directly from the definition, but is not pre-
stress stable for any proper self stress. Here we present another example, but one which
is a bar framework in three-space. It also serves as an example of how to calculate using
the stress test.

If we have any bar framework G(p), let

p'(l)’ ce p,(n)

denote a basis for a space of non-trivial first-order flexes of G(p). Let

..

Q(1),...,0(m)

denote a basis for the space of self stresses of G(p). If G(p) is pre-stress stable, some
linear combination of the stress matrices must be positive definite on the space generated
by the first-order flexes p'(1),...,p'(n). From Corollary 5.2.2, the second-order stress
test for bar frameworks, G(p) is not second-order rigid if and only if all of the stress
matrices have a common non-zero vector on which they evaluate to be 0 in this same
space generated by p'(1),...,p'(n). When n = 2, both of these criteria can be checked
with certain easily calculated expressions.

Example 5.3.2. We define a specific example in the three-space. Let G(p) be the
following bar framework in three-space with the following seven vertices:

p1 = (0,0,0) ps = (1,0,0) pr = (1,0,0)
p: = (0,1,0) ps =(1,1,0)
ps =(0,0,1) ps = (0,1,0)

and the following bars:

{1,2},{1,3},{1,4},{1,6},{1,7}
{2,3},{2,5},{2, 7}

{3,4},{3,5}

{4,5},{4,6}

{5,6},{5,7}

{6,7}.
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Figure 5.3.1

See Figure 5.3.1a, where although p2 = ps and ps = p7 we have separated them slightly
so that the framework can be more easily understood.

Note that this framework is made of the following framework and its symmetrlc
copy, with appropnate identifications.

Then p; is added along the z-axis. We consider those first-order flexes p'(k), where
p} (k) = ph(k) = p5(k) = 0, which clearly determines a complement of the space of trivial
flexes, since (pl,pz,p3) determmes a bar triangle. Since (p1, P2, P7) and (P2, Ps, P7) are
bar tnangles in the same plane, sharing a common bar pi, P2, any first-order flex p'
must have (p; — ps) - (P} — p5) = 0. In other words {1, 5} is an “implied bar”. Thus
the first-order rigid tetrahedron (p1, P2, Ps, Ps) is implied and p; = 0. Similarly py =0,
from the implied tetrahedron (pi,p3,Ps,ps). See Connelly (1988a). So the followmg
first-order flexes are a basis for a complementary space.

{001 i i=6
pi(l) = { (0,0,0) otherwise .

Poy — (0,0,1) if =7
Pi(2) { (0,0,0) otherwise . |
We can also find two independent stresses for G(p).

1 {0} =1{2,71{5,6}, or {1,6}
=11 i i =@s{oh o {22} .

if {iaj}={1’4},{6’7}a or {4a5}

0 otherwise

1 if {2’.7]' ={1a7}7{5a7}a or {456}
wij(2) =

These are easy to see by looking at Figure 5.3.1b. Notice that e = 15 = 3v — 6, and that
the space of first-order non-trivial (equilibrium) flexes must be of dimension 2, so the
dimension of the space of self stresses is 2 as well. Thus w(1) and w(2) generate all the
self stresses.
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We next calculate the stress matrices (1), §2(2) corresponding to w(1), w(2), rela-
tive to the vectors p'(1), p'(2). Note that fora =1,2,b=1,2, k =1,2,

p'(a)TQ(Rk)P'(5) = Qap(k) = Zwu(k)(Pi(a) = pj(a)) - (Pi(d) - p3(8)).

Then Swei(l)  —wer(1) ] 1 +1
a = | Zp @ = 1 %

jwei(2) —wer(2) | _ [0 1]
f2) = [z':‘wm(g‘)) Z,w:,((2)) BN S B

To see if any linear combination of these is positive definite, we calculate, for any real

A1, A2

_ A1 MtA| 2 2
det[A (1) + A2 0(2)] = det [ NS ] = A2 Ak - A2

which is a negative definite quadratic form itself, since (—1)2 — 4(-1)(-1) = -3 < 0.
Thus for each choice of (A1,A2) # (0,0), det[A192(1) + A292(2)] < 0, which implies that
none of the forms A; Q(1)+A2Q(2) are positive definite, and thus no stress Ajw(1)+A2w(2)
can serve as a stable pre-stress. ’

On the other hand recall that the second-order stress test for bar frameworks, Corol-
lary 5.2.2, says that a first-order flex p’ will extend to a second-order flex if and only
if p’ is in the zero set of all the proper self stresses (regarded as quadratic forms) of
G(p). If some p' does extend, then so does p’ plus any trivial first order flex, and so
we can assume that p’ is in the space spanned by p’(1) and p’(2). Thus G(p) will be
second-order rigid if and only if (1) and 2(2), (and thus all A; (1) + A22(2)) have a
common 0. The zeros of (1) (as a quadratic form) are scalar multiples of

(0,1) or (2,—1)._

For 2(2) we get
(1,0) or (-1,2).

None of the above four vectors are scalar multiples of any of the others, so G(p) is
second-order rigid, but not pre-stress stable.

Remark 5.3.3. If the dimension of the space of non-trivial (equilibrium) first-order
flexes is two as in the above example, then an analysis similar to the above can determine
whether it is pre-stress stable and second-order rigid no matter what the dimension of the
space of self stresses. We just have to determine whether det[A;Q(1)+... A, 2(n)] is ever
positive for any A1,...,An. But this is a quadratic form again and can be determined
by calculating the determinants of the principle minors of this form in the variables

AyeeesAne
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Also for the example above it is possible to vary the points by a small amount,
keeping all the points except pa in a plane, and obtain many other examples of second-
order rigid but not pre-stress stable bar frameworks in three-space.

Note that the underlying graph of the example above is a triangulated sphere.
Figure 5.3.2a shows a realization of this graph as a triangulated convex surface. By
Connelly (1980), this realization is also second-order rigid. In fact it is pre-stress stable
as well. All members adjacent to pg and p; have positive stress in the stabilizing self
stress. This brings up the question: Are all triangulations of a convex polyhedron in
3-space, with edges as bars, pre-stress stable? In Connelly (1980) it is only shown that
such frameworks are second-order rigid. The answer is yes and will be shown elsewhere.

P3

Figure 5.3.2

In the plane, it turns out that if we take the bipartite graph Kss with its six
points on the line, and {1,2,3}, {4,5,6} as the partition (Figure 5.3.2b), then this
framework K3 3(p) is second-order rigid but not pre-stress stable. We omit this non-
trivial calculation. It also turns out that K3 3(p) is 2 mechanism in R®.

In Kuznetsov (1991c), as well as in Kuznetsov (1991d) page 50, there is another
example of a second-order rigid but not pre-stress stable bar framework in the plane.
The calculation for that example turns out to be quite simple.

§5.4.  Applications in b-c polygons.

We specialize here to the case when G(p) is a b-c polygon as discussed in Section

3.5. That is, G(p) is a convex polygon in the plane with bars as edges and only cables
on the inside.

Proposition 5.4.1. Let p' be any non-trivial first-order flex of G(p), a b-c polygon
in the plane. Then p' extends to a strict second-order flex (p',p") of G(p).

Proof: Let Q be any stress matrix coming from a proper self stress w of G(p). Since p’
is non-trivial it is easy to check that p’ is not an affine image of p. By Connelly (1980)

(") Tep' <0,
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since for the reversed polygon (with struts on the inside) the corresponding matrix (—Q)
is positive semi-definite. Thus by Corollary 5.2.1, p’ extends to a strict second-order flex

p',p")- |

Remark 5.4.2. We will use this result in the next section to prove Roth’s conjecture
about b-c polygons. It is interesting (although painful) to calculate p” directly for the
p’ as indicated in Figure 3.5.7.

Note, however, with this result alone we can prove a weak form of Roth’s Conjecture.
. Namely, if p’ is a non-trivial first-order flex of a strut-cable polygon (the outside edges
are struts), then an argument similar to the one above can be used to find a strict
second-order flex (p’,p") as well. Then p(t) = p +ip + %tzp is a flex at G(p) as
required.

The only problem left in the stronger form of Roth’s Conjecture is to find a way of
handling the bars. We will treat this in Chapter 6.

§5.5. Interpretation for triangulated spheres.

For any triangulated sphere G(p) in IR3, there is a natural correspondence between
first-order flexes p' of G(p) (modulo, trivial first-order flexes) and self stresses w of G(p).
In fact for each edge {i,5} there is a dehedral angle 8;;, which itself “varies” and thus
there is a 6}; defined as the derivative of 6;;. Then

6};
wij = ———, {i,j} and edge at G.
v Ipi _ pjl’ ’ }
serves as a self stress for G(p). Conversely, given a self stress it is possible to define a

first-order flex p’ with 6;; as above. See Gluck (1975) or Crapo and Whiteley (1982) for
a discussion of this.

Thus using Corollariy 5.2.1 we can state the dual condition for a second-order flex.

Corollary 5.5.1. A first-order flex p' of a triangulated sphere G(p) in IR® extends to
a second-order flex if and only if for every 0! j (coming from a possibly different first-order
flex) we have

}:—-%—Ip’- - p;* =0.
ij |pt—p.7l ' ?

§5.6. Iﬁterpretation in terms of packings.

For the rigidity of packings as in Connelly (1988¢) or Connelly (1990) we see that
the associated framework has certain vertices pinned and all the members are struts.

For any proper self stress w, wi; < 0 for all {7,7} struts, and thus such a G(p) has for
all p/, a first-order flex,

(P)TQp' = wij(p} - p})* <0,
7
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since we can take p' to be 0 on the pinned vertices. In fact we get strict inequality
assuming G is connected and p' # 0. Thus there is a strict second-order flex (p', p"),
and it is easy to see that such a G(p) is rigid if and only if it is first-order rigid. This
was observed directly in Connelly (1988c).

§6. Extending Second-Order Flexes.

§6.1. The general result.

Some second-order flexes extend to continuous flexes of the framework. For example,
if a second-order flex shortens all cables and lengthens all struts, and there are no bars,
then it is clear that we can complete these first two derivatives to a real analytic path,
We describe a less restrictive situation where we can still extend the second-order flex.
This result is an extension of and motivated by some of the results in Asimow and Roth
(1978) and Asimow and Roth (1979). A bar framework G(p) is called independent if the
only self stress for G(p) is the zero self stress.

Proposition 6.1.1.  Let G(p) be any independent bar framework with a second-order
flex (p',p"") in IRY. Then there is an analytic flex p(t) of G(p) with

P(0)=p
Dp()|_, =P

D¥p(t)]| _ =»"

Proof: Let
Meg(p) = {q € IRd”“q,' —gjl=1pi—pjl, {i,j} a member of G}

be the set of all configurations equivalent to p. By Asimow and Roth (1978) or Roth
and Whiteley (1981), since G(p) is independent, Mg(p) is a smooth analytic manifold of
dimension at least d(d + 1)/2 in a neighborhood of p (when the dimension of the affine
span of p is at least d— 1), and we may naturally identify the tangent space T, of Mg(p)
at p with the first-order flexes of G(p).

Let h: Ty — Mg(p) be a smooth analytic map such that the following hold:

(a) On a neighborhood of p in T}, h is a real analytic diffeomorphism onto a neigh-
borhood of p in Mg(p):

(b) Identifying the tangent space of T with itself, h(p) = p and dhp(p') = p’ for
all p' € Ty, where dhy, is the differential of h at p.

For instance, the exponential map has these properties.

Let q(t) = p+tp+%t2q be a smooth analytic path in T}, where we see that q(0) = p.
D:[q(1))],., = P’ and D}[q(t)}|,_, = 4" , which will be determined later. Then p(%) is
a smooth analytic flex of G(p) with p(0) = p. Also
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Dq[p(t)] = Dy[h(q(t))] = dhqe)(De[a(t))) 6.1.2
and

Didp(t)l| _, = dha(®) =P,

=

by condition (b). Since p(t) € Mg(p), P(t) is an analytic flex of G(p) and thus the

second derivatives of the squares of the edge lengths are zero. Restating this in terms of .

the matrix R(p) we get
R(Di[p(t)))Dilp(t)] + R(p(£))D2[p(2)] = 0.

Evaluating when t = 0, we get
R(p")p' + R(p)r" =0,

where r = DZ[p(2)]|,_,
We must choose q" such that r" = p'’ the preassigned vector. Recalling that (p’, p")
is a second-order flex of G(p) we see that for any q",

R(pl)pl + R(p)pu =0= R(pl)pl + R(p)r".

So
R(p)(p" -r")=0. 6.1.3

Differentiating (6.1.2) again we obtain
Di[p(t)] = Di[dhqy]De[a(t)] + dhg(sy D} [a(t)).

Applying the chain rule to each entry of the matrix dhq(y), we see that Dt[dhq(t)]l = de-
pends only on q' and not on q"". Let s" be the value of the second derivative of p(T') (that
is r") when q" = 0, evaluated when ¢t = 0. In other words

s = Dt[dhq(t)]Dt[q(t)H +=o 15 independent of the choice of q". We must then solve
the following linear equation ‘

pll —_ SN + dhp(q”) — S" + qll

for q". Recall that dhy, is the identity map by condition (b). By (6.1.3) (p’,s") is a
second-order flex of G(p) and p" — s is a first-order flex of R(p) and thus is in T}.
Thus we can define q" = p" — s”. Then p(t) as defined is the desired flex. |

Remark 6.1.2. One way of looking at the above proof is to think of adding some
curvature via q" to the curve q(t) to cancel the curvature in Mg(p) in order to achieve
the given second derivative p".

For our purposes we do not need p(t) to be real analytic. It only needs to be twice
differentiable. In the spirit of Definition 2.1.2 (c) we stated things in this more general
form.

It seems natural that there also should be a generalization of this result involving
any number of derivatives.
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§6.2. Roth’s conjecture.

We can now prove Roth’s conjecture in its full generality.

Proposition 6.2,1. A convex b-c polygon in the plane is rigid if and only if it is
first-order rigid.

Proof: Let p' be any non-trivial first-order flex of a b-c polygon, G(p). If G(p) has no
non-zero proper self stress, then by the first-order stress test, we can choose p' such that
(pi — pj) - (P} — P}) < 0 for all cables {7,j}. If w is any proper non-zero self stress for
G(p), then by Connelly (1982), the associated stress matrix Q is negative semi-definite
with only the affine motions in the kernel. It is easy to check, due to the convex nature
of the polygon and the cabling, that (p')TQp’ # 0. Thus (p')TQp' < 0. Thus by the
second-order stress test, Corollary 5.2.1, p' extends to a second-order flex (p’, p") that
is strict on all cables. But the sub-framework Go(p) of G(p) consisting of just the bars
is just a convex polygon and so is independent. Thus Proposition 6.1.1 applies to show
that there is a flex p(t) of G(p), such that D?[p(t)]|,_, = P". But since (p', p") is strict
on all cables, p(t) is a non-trivial continuous flex of G(p) as well. Thus G(p) is not rigid,
and the result is proved. |

Corollary 6.2.2. If a convex b-c polygon in the plane, with v vertices has less than
v — 2 cables then it is not rigid.

Proof: At least v —2 cables are needed to make the tensegrity framework infinitesimally

rigid. |

Remark 6.2.3. When one is attempting to show directly that a particular convex b-c
polygon is not rigid in the plane, one might be tempted to force some of the stressed cables
to be bars in order to decrease the “degrees of freedom” and simplify the calculation.
For example, the framework G(p) of Figure 6.2.1 is not rigid. It is obtained by forcing
two of the cables of Figure 3.5.7 a to be bars.

Figure 6.2.1
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If the horizontal cable is changes to a strut (or bar), then the framework becomes
rigid. The sub-framework Go(p), consisting of just the bars, is independent: G(p) has
a first-order flex; and from first-order considerations, as in Asimow and Roth (1978),
Go(p) has a continuous flex. The length of the horizontal cable cannot increase under
this flex (by Connelly (1982)), and the other cable lengths decrease strictly in their first
derivative. Thus we obtain a continuous flex of G(p).

However, one must be careful in deciding which of the cables to force to be bars,

a Figure 6.2.2 b

We have changed four of the stressed cables of Figure 1.5.1 (¢) to bars, and we
consider only {1,6} from the rest of the cables of Figure 1.5.1 (c). There is a proper
stress w involving only members among the pairs of the first six vertices, which determine
a rigid sub-framework. See Figure 6.2.2 (b) for a c-b subframework which is rigid, by
Connelly (1982). Thus the whole framework of Figure 6.2.2 (a) is rigid. But the sub-
framework determined by just the bars is independent and not rigid. In fact, the first-
order flexes of Figure 1.2.1 (c) and Figure 6.2.2 (a) are the same. The critical point is
that Figure 6.2.2 (a) has a proper self stress w that is not proper for Figure 1.5.1 (c).
Thus Figure 6.2.2 (with all the other cables of Figure 1.5.1 (c) added) has more self
stresses to test than Figure 1.5.1 (c) does. Indeed, w flunks its second-order stress test,
causing Figure 6.2.2 (a) to be second-order rigid, and by Proposition §.3.1 it is pre-stress
stable. :

8§A Appendix on Replacement Principles
A.1, From Bar Frameworks to cables and Struts.

Recall from Section 2.3 that if a bar framework is infinitesimally rigid, with a non-
zero self-stress, we can replace some of the bars with cables and struts, following the
signs of the self stress (see Roth and Whiteley (1981)).

Similarly, from Section 3.4 if a bar framework is pre-stress stable with a non-trivial
self-stress w, then we are able to replace some of the bars with cables or struts, following
the signs of this self stress w.

For a second-order rigid bar framework, we have no such replacement principle. If
the framework is not pre-stress stable, we must check the signs of all streses used to block
the cone of first-order flexes. If these all agree on a specific sign, then the corresponding
bar can be replaced, while preserving second-order rigidity.
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For a framework which is rigid, by some other test, we know of no general replace-
ment principle.

A.2. Equivalent Bar Frameworks.

Given a tensegrity framework with cables and struts, we can always replace all mem-
bers with bars. This replacement will, of course, preserve any rigidity in the framework.
In fact it may increase the rigidity, turning a non-rigid framework into a rigid framework,
a second-order rigid framework into a pre-stress stable framework, or a prestress-stable
_ framework into a first-order rigid framework. We would like a more delicate replacement
principle which leaves the rigidity, prestress stability or second-order rigidity unchanged.

We associate a special bar framework to .a tensegrity framework, which does not
depend on fixing a self stress. Suppose some framework G(p) has a cable {i,5} with
pi # pj. We can then replace the cable by two bars {z, k} and {k,j} and place px on
the open line segment between p; and p; to get a framework as in Figure A.2.1a.

Figure A.2.1.

Similarly a strut {i,j} can be replaced by two bars {7,k} and {k,j} but now we
insist that pr be on the line through p; and pj, but outside the closed line segment
between p; and p; as in Figure A.2.1b.

We call the above processes splitting a cable and splitting a strut respectively. It is
clear that such splittings do not change the rigidity of a framework in R4 for d > 2, but
any such splitting creates a framework that is not first-order rigid. In fact we can split
all the cables and struts of G(p) to create what we shall call an equivalent bar framework
G(p), where G(P) is rigid if and only if G(p) is rigid.

We next look at the relation between splitting members and pre-stress stability.
Suppose w is a proper self stress for the tensegrity framework G(p), and {7,;j} is a cable
or strut for G. Suppose G(p) is split along {i,j} at px. Define

lp; — pil
[pi — Pk

Dik = Wij
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w;,--LE‘EEl if wi;;>0
@jk = IPi=pe| ’ :
—Wij Pi—Pl:l if wij<0

and Ogm = wem for {€,m} # {i,k} and {€,m} # {j, k}, where p; is between p; and p;
when wi;j < 0. It is easy to check that & defined above is a self stress for C:‘(f)), the split
framework.

Proposition A.2.1. Let G(p) be any tensegrity framework with a proper strict self
stress w. Let G(p) be the framework split along any cable or strut. Then w stabilizes
G(p) if and only if & stabilizes G(P).

Proof: By Proposition 3.4.3 we need only consider a space of first-order flexes p' of G(p)
that are complementary to the trivial first-order flexes and then evaluate them on the
form determined by Q. A similar statement holds for é(f)) By the first-order stress test
since wi; # 0 we know that (pi —p;) - (P; — Pj) = 0. By adding a trivial first-order flex
to p' we may consider some space of first-order flexes of G(p) that has p; = p} = 0.
Similarly for G‘(f)) we may consider only those first-order flexes p' that are the direct
sum of p’ on the vertices of G(p) and pj which is perpendicular to p; — pj, where k is
the splitting vertex.
We evaluate Q at p'.

(BT =) Sem|pl — Blul?

m

= > [Pt — Plul? + wik[PLI® + wjk [P’
m .

It is easy to check (even for struts) that wix +wjr > 0. Thus Q is positive definite on its
complementary space of non-trivial first-order flexes if and only if  is positive definite
on its corresponding space. ' |

Corollary A.2.2. Let G(p) be any tensegrity framework and G(P) the equivalent bar
framework obtained by splitting all the cables and struts of non-zero length. Then G(p)

is pre-stress stable with a strict proper self stress if and only if é’(f)) is pre-stress stable.

Thus, if we wish, we can “reduce” the problem of when a framework is pre-stress
stable to the case when all the members are bars.

A.3. Equivalent Bar Frameworks for Second-Order Rigidity.

If we have a tensegrity framework with no strict proper self stress, such as in Figure
3.5.4, then replacing this with the equivalent pair of bars can destroy second-order rigidity
(but not rigidity). For example, a second-order flex is indicated on Figure A.3.1.
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Figure A.3.1.

If we restrict ourselves to tensegrity frameworks in which all cables and struts have
non-zero coefficients in some self stress, then we can switch to the equivalent bar frame-
work to check second-order rigidity. Recall that for a tensegrity framework a proper
self stress is strict if w;; # 0 for every cable or strut. We omit the proof, which is not
difficult. See Section 5.2 and the second-order stress test.

Proposition A.3.1. A tensegrity framework with a strict proper self stress is second-
order rigid if, and only if, the equivalent bar framework is second-order rigid.
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