Mathematics and Tensegrity

Group and representation theory make it possible to form a complete catalogue
of “strut-cable” constructions with prescribed symmetries

Robert Connelly and Allen Back

In the autumn of 1948, while experi-
menting with ways to build flexible,
modular towers, a young artist named
Kenneth Snelson constructed a sort of
sculpture that had never been seen be-
fore. As ethereal in appearance as a mo-
bile, with no obvious weight-bearing el-
ements, it nonetheless retained its shape
and stability. “I was quite amazed at
what I had done,” Snelson recalled four
decades later. The following summer he
showed the sculpture to his mentor, the
not-yet-famous inventor, artist and self-
styled mathematician R. Buckminster
Fuller. Before long, Fuller had adapted
Snelson’s invention as a centerpiece of
his system of synergetics, even to the
point of calling the new objects “my
structures” and promoting them in his
many inspirational, free-ranging lec-
tures. In the process, he gave them the
name by which they are known today,
referring to their integrity under ten-
sion: fensegrity.
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Snelson’s sculptures, in which rigid
sticks or “compression members” (as an
engineer might call them) are suspend-
ed in midair by almost invisible cables
or very thin wires, can still be seen
around the world. A remarkable, 60-
foot-high sculpture, “N eedle Tower,” is
displayed at the Hirshhorn Museum
and Sculpture Garden in Washington,
D.C. The idea has penetrated into low
art as well. A number of baby toys em-
ploy the same principles as Snelson’s
original tensegrities. One could even ar-
gue that the first tensegrities were not
made by human beings: A spider web
can also be viewed as a tensegrity, al-
beit one with no rigid parts.

Although Fuller’s geodesic domes
and synergetics gained him worldwide
renown, most of the mathematics that
he used was already well established.
However, his student Snelson’s discov-
ery posed genuinely new mathematical
questions, which are far from being
completely resolved: What is a tenseg-
rity? Why is it stable? Can tensegrities
be classified or listed?

Branko Griinbaum, a mathematician
at the University of Washington in
Seattle, was especially responsible for
rekindling the interest of mathemati-
cians in such questions, with a wonder-
ful set of mimeographed notes written
in the early 1970s, called “Lectures on
Lost Mathematics.” In 1980, one of us
(Connelly) proved a conjecture of
Griinbaum’s that allows the systematic
construction of stable planar tensegri-
ties. But the wonder and beauty of
Snelson’s sculptures surely lies in their
three-dimensional nature. One of the
motivations of our recent work, there-
fore, was to find a proper three-dimen-
sional generalization. The mathematical
tools of group theory and representa-
tion theory, coupled with the powerful

graphic and computational capabilities
of computers, have now made it possi-
ble to draw up a complete catalogue of
tensegrities with certain prescribed
types of stability and symmetry, in-
cluding some that have never been
seen before.

What Is a Tensegrity?

Tensegrities have a purity and simplic-
ity that lead very naturally to a mathe-
matical description. Putting aside the
physical details of the construction,
every tensegrity can be modeled math-
ematically as a configuration of points,
or vertices, satisfying simple distance
constraints. Snelson’s structures are
held together with two types of design
elements (engineers say members),
which can be called cables and struts.
The two elements play complementary
roles: Cables keep vertices close to- .
gether; struts hold them apart. Two
vertices connected by a cable may be
as close together as desired—they
might even be on top of one another if
the tensegrity collapsed—but they may
never be farther apart than the length
of the cable joining them. Similarly,
two vertices joined by a strut may nev-
er be closer than the length of the strut,
but may be arbitrarily far apart.

The last point may seem surprising
at first, because in most real tensegri-
ties the struts cannot get either longer
or shorter, In fact, the term “bar” has
been used to describe a design element
of fixed length. However, we have
found that, most of the time, bars can
be replaced by struts without sacrific-
ing stability. Moreover, the concept of
struts can be applied to other prob-
lems, such as the packing of spherical
balls. (In any such packing, the centers
of the balls must keep a minimum dis-
tance but can be as far apart as desired.
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Figure 1. Tensegrily, a concept invented by Kenneth Snelson for use in
sculptures, describes a structure that retains its integrity under ten-
sion. Consisting of struts and cables, these three-dimensional assem-
blages may soar into the sky, float out across landscapes or describe
more familiar geometric figures. Tensegrities appear in high art, low
art and nature, as illustrated by Snelson’s sculpture “Needle Tower” at
the Hirshhorn Museum and Sculpture Garden in Washington, D.C., a
spider web and a child’s toys (Stil-Trix and Tensegritoy, left and right).
All of these structures hold their shape because of internal tension, yet
mathematical generalizations of their somelimes complex structure
have been difficult to develop. The authors have used the mathemati-
cal tools of group theory and representation theory, combined with
the graphic capabilities of computers, to develop a complete catalogue
of tensegrities with certain prescribed types of stability and symmetry.
(Photograph at right courtesy of Kenneth Snelson; upper left photo-
graph courtesy of Design Science Toys Lid.)
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initial configuration

target configuration

Figure 2. Snelson’s X tensegtity (Jeff) and its inverse (right), with struts and cables inter-
changed, demonstrate the concept of super stability. The X tensegrity is super stable: Any
comparable configuration must either have shorter strats or longer cables, The inverse is not
super stable, because it can be deformed by flipping along one digonal, so that the struts
remain the same length while the other diagonal cable becomes shorter, Struts are shown in

green; cables are dashed lines,

Thus a packing can be considered to be
a tensegrity with invisible struts.)

Some people have defined a tenseg-
rity in such a way that no two struts
share an end vertex, and each vertex is
at the end of a strut. Again, for reasons
of generality we do not adopt these
conventions, but for many of the ex-
amples that are mentioned later, these
properties happen to hold.

What is Stability?

As in the definition of a tensegrity it-
self, there are several different plausible
notions of stability, each appropriate for
certain circumstances: infinitesimal
rigidity, static rigidity, first- and second-
order rigidity, prestress stability and
others. (See Connelly and Whiteley
1996 for a definition of these terms.)

We have chosen a very direct and
strong definition, whose name was
proposed by one of our undergraduate
students, Alex Tsow, We can call two
configurations “comparable” if they
have the same number of vertices, con-
nected by cables and struts in the same
way. Tsow called a given tensegrity su-
per stable if any comparable configura-
tion of vertices either violates one of
the distance constraints—one of the
struts is too short, or one of the cables
too long—or else is an identical copy
of (in geometrical terms, congruent to)
the original.

For example, Snelson’s X tensegrity
in Figure 2 is super stable. One elemen-
tary tensegrity that is not super stable is
a hinge (two struts sharing one vertex):
By opening or closing the hinge a little

Figure 3, Points in n-dimensional Euclidean space can be identified with their coordinates in
a Cartesian coordinate system, The number of coordinates is the dimension. Distance in 7~
dimensional space is calculated by analogy with the Pythagorean formula from plane geom-
etry, A tensegrity can be defined in any dimension because its points and the distance con-
straints governing the struts and cables can all be stated in terms of coordinates, Here exam~
ples are shown for 1- through 4-dimensional space.
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bit, one obtains a new configuration
with the same strut lengths but a dif-
ferent shape from the original. More in-
terestingly, if one reverses the roles of
cables and struts in the X tensegrity, it
fails to be super stable, even consider-
ing only configurations in the plane. It
is rigid in the plane, in the sense that
there is no continuous or gradual mo-
tion of the vertices that preserves the
cable and strut constraints, However, it
is not rigid in space; like a hinge, it can
be flexed into new shapes that are not
congruent to the original.

Unlike a rigid tensegrity, a super sta-
ble tensegrity must win against all the
comparable configurations in any
number of dimensions—including di-
mensions 4 and higher. Mathemati-
cians are used to such spaces, as
Pythagoras’s formula for distance and
Descartes’s idea of coordinates make
them as easy to work with as 2- and 3-
dimensional space (see Figure 3).

Spider Webs and Stability

To prove that a tensegrity is stable in
such a strong sense, we often invoke a
concept borrowed from physics—the -
idea of potential energy. When a struc-
ture is deformed, physically it adsorbs
or gives up energy. However, mathe-
maticians need not be constrained to
physically realistic energy functions,
but may invent convenient fictional en-
ergy functions to facilitate the verifica-
tion of super stability.

A good starting point for under-
standing these functions is the tenseg-
rity that was constructed long before
Kenneth Snelson—the spider web. A
spider web differs from the tensegrities
discussed so far in two respects. First, it
has some “pinned” vertices, fixed in
space or in the plane; any comparable
configuration must have vertices in ex-
actly the same positions. Second, a spi-
der web has only cables and no struts
(see Figure 4).

The energy functions considered for
spider webs are motivated by, but not
identical to, the physical potential en~
ergy for an ideal spring. The English
physicist Robert Hooke (1635-1703)
found that the force needed to displace
a spring was proportional to the dis-
placement from its rest position. (He
wrote this empirical observation, later
known as Hooke's law, as an anagram:
“ceiinosssttuu.” The unscrambled ana-
gram—"Ut tensio, sic vis’—translates
from Latin as, “As the extension, so is
the force.”) Although Hooke did not




hrase the law in terms of energy, it
implies that the energy in a spring is
proportional to the square of the dis-
tance it is stretched or compressed.

In a spider-web tensegrity, the energy
function for each cable is simply pro-
portional to the total length squared—as
if the cable were a spring with a resting
length of zero. It remains to determine
what the constants of proportionality for
each cable should be or (if we think of
the cables as springs) how “strong” the
springs are. For a given configuration,
the goal is to choose these fictional
strengths in such a way that the config-
uration represents a unique minfrum
for the corresponding energy function,
the sum of the energy functions of all
the cables. Then any comparable spider
web that does not increase any cable
length must have the same energy or
smaller, because each cable contributes
the same, or less, to the total. But since
the given configuration is supposed to
represent a unique minimum energy,
the two configurations must be identi-
cal. Consequently, such a spider web
(one that minimizes some energy func-
tion) is super stable. This is called the
principle of least work, in honor of the sim-
ilar principle that is used in structural
engineering.

How does one recognize when a spi-
der web has an energy function that is
precisely minimized by the given con-
figuration? One answer is the equilibri-
um of stresses—another concept bor-
rowed from engineering. Again, it helps
to imagine the cables that meet at any
given vertex as springs, each one tug-
ging in a different direction. Remember
that this force can be made “stronger”
or “weaker” by a proportionality con-
stant, which we will call the stress inthe
cable; thus the strength of each cable’s
tug is equal to its length times its stress.
If the stresses are picked in just the right
way, so that the tug-of-war among all
the cables leading to a given vertex is a
draw, then the stresses at that vertex are
in equilibrium. If that happens at every
unpinned vertex, then the whole spider
web is said to be in equilibrium.

These stresses are simply numbers
that are assigned to cables; they need
not have anything to do with the size of
the cable or even its physical or me-
chanical characteristics, However, it is
important that all the stresses are posi-
tive: If some are zero, then the given
configuration may not be a unique min-
imum of the energy function, and the
principle of least work will not apply.

For tensegrities in general, equilibri-
um of the stresses is not enough to guar-
antee that the configuration has the min-
imum energy. However, for the special
case of a spider web with no unstressed
cables, it is enough. The reason is that
the energy function, composed as it is of
quadratic polynomials with positive co-
efficients, has a property called corvexity.
No matter how you move the (un-
pinned) vertices around, starting from a
critical equilibrium configuration, the
energy function will increase. A convex
function, like a parabola, can only have
one minimum point. If a spider web sat-
isfies the equilibrium condition, it has to
be the one. Thus the principle of least
work applies to show that the spider
web is super stable.

Note that this method does not just
provide a “local” result only valid for
small (or even bounded) perturbations,

Figure 4. Mathematical spider web consists
only of cables, with no struts. Three vertices
are pinned (shaded rectangles) and cannot
move relative to the background, In order for
the web to be super stable, the three cables
coming from the pinned vertices must deter~
mine lines that go through a single point,

Figure 5, Affine transformations include stretches (a), flips (b) and projections (c). Note thata
projection may cause many struts and cables to overlap. All of these transformations have
the property that an equilibrium stress for the original tensegrity also serves as an equilibri-
wm stress for the transformed tensegtity.
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Figure 6. Super stable planar tensegrities can be generated by a 1980 theorem of Connelly. If
the cables form a strictly convex polygon, if the struts are internal diagonals, and if there is a
positive stress for each cable, a negative stress for each strut and equilibrium at each vertex,
then the tensegrity is super stable, The stability is not always intuitively obvious. A configu-
ration inspired by a rigidity theorem proved by French mathematician Augustin Louis
Cauchy in 1813 is shown at top left. An example of a class suggested by the Branko
Griinbaum of the University of Washington is shown at top right. A configuration that is
super stable only if the vertices lie on an ellipse appears at bottom left.
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It works for any other configuration
one can conceive in any higher-dimen-
sional Euclidean space. Spiders cannot
have their webs ruined even by flies in
higher dimensions,

Stability of 2-Dimensional Tensegrities
The quadratic functions that were con-
sidered for the spider web tensegrities
work very nicely, but if there are struts
as well as cables, the situation gets
more complicated. Because a strut is, in
a certain sense, the opposite of a cable,
it is mathematically natural—although
it does not model a physical potential
energy function directly—to define its
energy function similarly but with a
negative proportionality constant. This
is as if the rest position is when the strut
has infinite length! The total energy is,
as before, the sum of the energies in
each of the cables and struts.

Incidentally, although the energy func-
tion just described is not physically real-
istic, it is not completely divorced from
engineering reality. If one analyzes the
local static properties of a structure, the
quadratic energy described here is one
of two terms that enter into a description
of the structure under sufficiently small
perturbations. When the stability can be
detected by such a quadratic approxima-
tion, the structure is called prestress stable
in the engineering literature.

If we consider only small perturba-
tions of the physical energy of a pre-
stress stable structure, the second term
(which we have not described) only
adds to the stability of the structure. In-
deed, for a super stable tensegrity, as
long as there is no catastrophic buckling
of the struts or breaking of the cables, in-
creasing the stress tends to stabilize the
tensegrity. This is not necessarily the
case for a tensegrity that is only pre-
stress stable.

Figure 7. Super stable three-dimensional
tensegrities can be generated from the action
of a symmetry group on one strut and two
cables. In this example, which has the sym-
metry group of half the symmetries of a
cube, each strut (green) can be superimposed
on each’ other one by a rotation or a reflec-
tion. Similarly, each red cable can be super-
imposed on each other red cable, and each
blue cable on each other blue cable. The
whole tensegrity can be seen as being made
up of six identical “stretchers” joined
together at their ends with the red cables. If
the predetermined ratio of the stress in the
blue cables to the stress in the red cables is
increased, the blue cables shorten, and the
configuration approaches that of the baby-
toy tensegrity.
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A second problem when we move
from spider webs to tensegrities is the
lack of pinned vertices, which technically
rules out the whole idea of a “unique”
energy minimum. Since nothing is
pinned, the whole configuration can be
rigidly moved about, and the energy
will remain the same. Not only that,
but there also can be massive distor-
tions to the configuration—certain
kinds of rescaling transformations as
well as projections of a tensegrity
down to its “shadow” in a lower num-
ber of dimensions—that do not alter
the energy. The equilibrium condition
is preserved by such maps, which are
called affine linear transformations (see
Figure 5).

As before, call the coefficient of the
energy function for each cable or strut
the stress. As with the spider web
tensegrities, the tensegrity is said to be
in equilibrium with that collection of
stresses if the stresses balance at each
vertex. For example, Snelson’s X
tensegrity is'in equilibrium when all
four cables have stress 1, and the two
struts have stress —1.

As in the case of spider webs, if a
tensegrity has an energy function that
is minimized for a certain configura-
tion, then the configuration is in equi-
librium. But the converse is no longer
true; Even when the configuration is at
equilibrium for a given set of stresses,
the energy may not be at a minimum.
For example, simply reverse the roles
of cables and struts for Snelson’s X
tensegrity, and reverse the signs of the
stresses as well. The new tensegrity
will still be in equilibrium, but the en-
ergy will be at a maximum instead of a
minimum, and the tensegrity will not
be super stable.

Thus, to prove that a given tensegri-
ty is super stable, there are three tasks
we must complete. First, we must
show that the energy function is at a
minimum—not just at an equilibrium.
Second, we must show that the only
affine transformations that do not vio-
late any cable and strut constraints are
actually congruences (that is, no
stretching or shrinking is allowed). Fi-
nally, we must show that the given
tensegrity cannot be the “shadow” of
any higher-dimensional tensegrity that
is also in equilibrium. (Maria Terrell of
Cornell University has called the latter
property the universality of the tenseg-
rity.) Under these conditions, the prin-
ciple of least work implies that the giv-
en tensegrity is super stable.

Figure 8. Group of permutations of four letters acts on a cube and a tetrahedron in two dif-
ferent ways. On the cube (fop), the permutation that switches vertices labeled (a) with those
labeled (b) while leaving (c) and (d) alone represents a rotation. On the tetrahedron (bottom),
the same permutation represents a reflection. Thus the group of permutations of four letters
(called S,) is seen to have two distinct 3-dimensional representations.

This approach has made it possible
to identify a large number of super sta-
ble tensegrities. For example, take any
convex polygon in the plane, where the
edges are cables and some collection of
the internal diagonals are struts, (Here
the word “convex” is applied in a dif-
ferent context from before. A polygon
is convex if the line segment connecting
any two of its vertices is contained en-
tirely in the interior) One of us (Con-
nelly) proved in 1980 that, if an equi-
librium collection of stresses can be
found, positive on the external edge ca-
bles and negative on the internal diag-
onal struts, then each of the three con-
ditions holds; thus, any such tensegrity
is super stable. Therefore, for this class
of convex planar tensegrities as well as
for spider webs, equilibrium implies
stability (see Figure 6).

The question remains as to what the
proper generalization is for 3-dimen-
sional space. A natural choice for a
configuration is the collection of ver-

tices of a 3-dimensional polytope
(polyhedron), and perhaps the edges
of the polytope should provide the ca-
bles of the tensegrity. But it is not clear
just how to identify precisely a satisfy-
ingly general class of super stable
tensegrities. One idea is to specialize
somewhat and look at tensegrities that
have a great deal of symmetry. This
can be used to short-circuit the un-
pleasant parts of the calculations.

Symmetric Tensegrities
Some of the most appealing tensegrities
made by Snelson and later by others are
highly symmetric, exhibiting a sub-
group of the symmetries of the cube or
the regular dodecahedron. To be effi-
cient about the analysis, and—even
more important—to provide a frame-
work for the classification of such struc-
tures, it is convenient to use the theory of
representations of finite groups.

The theory of representations of finite
groups, developed at the turn of the past
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Figure 9, Super stable tensegrities like these are gen

University, This class includes Snelson’s “octet truss,” one of his earliest designs (right),

century by F Georg Frobenius and Isai
Shur, was originally motivated by a prob-
lem in algebra, but soon found a wide va-
riety of applications, especially to the
physics of the then new theory of the
atom. A typical success story begins with
a fairly complicated mathematical model
of a structure with some form of (geo-
metric) symmetry. Representation theory
allows one to break down the complicat-
ed model into a predetermined, small
number of much more tractable models,
each of which can be treated more or less
independently. Fan Chung and Shlomo
Sternberg (1993) gave a very nice exam-
ple of such an application: the analysis of
the infrared spectra of the buckyball, a
molecule with 60 carbon atoms that has
the symmetry of a regular dodecahedron.
In our situation, the representation theory
is called on in almost the same way, ex-
cept that the underlying mathematical
objects are different.

Suppose that a tensegrity can be ro-
tated about some line in such a way that
the rotated tensegrity is indistinguish-
able from the original: each vertex su-
perimposed on a vertex, each cable su-
perimposed on a cable and each strut
superimposed on a strut. All the mo-
tions, or congruences, that superimpose
the tensegrity on itself in this fashion
form a mathematical structure called
the group of symmetries of the tensegrity.
(It may include some reflections and
other congruences, and always includes

the “identity,” a Zen-like motion that-

simply leaves everything untouched.)
If a tensegrity has enough symme-
tries that any vertex can be superim-
posed onto any other by a congruence,
then the group of symmetries is said to
be transitive on the vertices. Similarly,
any pair of vertices (or any pair of ca-
bles or any pair of struts) is said to be
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in the same orbit if at least one symme-
try of the tensegrity superimposes one
of the pair onto the other. In Figure 7,
each cable or strut in a given orbit has
the same color. The group of symme-
tries of these tensegrities is transitive
on the struts (because there is only one
orbit, colored green) but not quite tran-
sitive on the cables (because there are
two orbits, colored red and blue).

With this in mind, it is especially easy
to check whether there is an equilibrium
stress for the cables and struts. If there is
any energy function at all that is mini-
mized by the given configuration, then
there is one that has the same symmetry
as the tensegrity itself. Thus the same
stress can be assigned to each cable or
strut in any given orbit. Similarly, the bal-
ance of stresses only needs to be checked
at one vertex, because all vertices are
alike under the group of symmetries. For
almost all the examples considered here,
it turns out to be easy to check that the
only affine motions that preserve the ca-
ble and strut constraints are congruences.
Hence only one difficulty remains before
we can apply the least work principle:
We have to make sure that the energy is
a minimum. That is where group repre-
sentations enter the picture.

Group Representations

So far, groups have appeared in only one
guise: the group of symmetries of a
tensegrity. But groups can also be de-
fined in the abstract, without reference
to any particular physical object. From
this point of view, a group is simply a set
whose elements can be “multiplied” and
that obeys certain rules, such as the exis-
tence of an identity element, In the case
just presented, the elements of the group
were motions that superimpose a tenseg-
rity on itself, and “multiplication” of two

erated by the dihedral groups, in joint work of Connelly and Maria Terrell of Cornell

congruences is defined by first perform-
ing one motion and then the other.

Group theory is something like the
ancient Oriental game of go. There are
only a few simple rules, and they are
easy to learn. But their consequences
can take many years of intense study to
master, Like certain move sequences (or
“joseki”) in go, certain groups occur of-
ten enough to have their own names.
The simplest, and perhaps most ubig-
uitous, is a group with two elements
called Z,,. Its elements can be thought of
as the numbers +1 and 1, with the op-
eration of multiplication. (Note that a
product of either +1 or -1 with either +1
or -1 again gives +1 or —1.) Or they can
be thought of as the words “even” and
“odd,” with the operation of addition.
Or they can be thought of as the identity
motion and reflection in a mirror.

Of the many guises an abstract group
can assume, among the most conve-
nient ones are sets of linear functions.
Rotations and reflections are examples
of linear functions. If the elements of the
abstract group are thought of as actors
and the linear functions as roles, then
the playbill, which assigns certain actors
to certain roles, is called a representation
of the group. The abstract group itself
can be used to do group calculations
and effectively provide a common point
of reference. A representation, on the
other hand, may have more structure,
and may give deep and subtle informa-
tion about the abstract group.

An essential concept in dealing with
representations is that of equivalerice.
Consider, for example, the group of sym-
metries of the word MOM. There are two
ways to superimpose this word on itself:
Either leave it alone (the identity motion)
or reflect it about a vertical line through
the center of the O. This symmetry




group, therefore, is a representation of
the abstract group Z,. Likewise, if we
turned the word MOM on its side, its
symmetry group would still be a repre-
sentation of Z,. Although the actual re-
flection involved is different—it is now a
reflection through a horizontal line—the
essential symmetry of the word has not
been changed by turning it on its side. A
mathematician would say that these two
representations of Z, are equivalent.

Compare this with the group of sym-
metries of the word MOW. Again, there
are two ways to superimpose the word
on itself: the identity and a 180-degree
rotation about the center of the O. This
symmetry group is also a representa-
tion of Z,, but somehow it feels differ-
ent. The difference is not in the group
itself, but in the geometry—the linear
function involved is a rotation, not a re-
flection. Thus a mathematician would
say that this representation of Z, is not
equivalent to the previous one.

The symmetries of 3-dimensional
figures involve representations of some
more interesting groups than Z,. The
group of rotations of the cube and the
group of all symmetries of the regular
tetrahedron are both representations-of
the group of permutations of four let-
ters (denoted S,). These two represen-
taions of S, turn out to be inequivalent,
as can be seen in Figure 8.

The representations of a group can
be combined in a simple but important
way. For example, think of two repre-
sentations of a group, one as motions
of 3-space and the other as motions of
2-space. Now think of a 5-dimensional
space, where the first three coordinates
correspond to the 3-space, and the next
two coordinates correspond to the 2-
space. Create a new representation of
the group by letting the first represen-
tation act on the first three coordinates
and the second representation act on
the next two coordinates. Then the new
representation is called the sum of the
two representations.

The process sometimes works in re-
verse, too: Given a representation, it may
be possible to split it up as a sum of
smaller-dimensional representations. For
example, each of the two elements in the
symmetry group of the word MOM su-
perimposes a horizontal line through the
center of the O onto itself. Likewise, each
one superimposes a vertical line onto it-
self. This representation, therefore, is re-
ducible to the sum of two 1-dimensional
representations. But the situation is dif-
ferent for the two 3-dimensional repre-

sentations of the group S,. Although a
line or plane may be superimposed on it-
self by an individual rotation, there is no
line or plane that is superimposed on it-
self by all the symmetries of the cube or
the tetrahedron, Thus these representa-

tions are called irreducible.

One of the major insights of Frobenius
and Shur was that any representation
can be decomposed in an essentially
unique way into irreducible ones. Hence
the irreducible representations are the
building blocks of the theory, much like
prime numbers in number theory.

Now we can define a representation
that is very closely related to the energy
function for tensegrities, Any group,
such as the group S,, has a representa-
tion as a permutation of its own ele-
ments. (If we return to the actor-and-role
metaphor, this is like every actor playing
himself.) Since S, has 24 elements, imag-
ine a space with 24 coordinates, with

................

i

each coordinate axis labeled by one ele-
ment of the group, Each element of 54
corresponds to a permutation of the axes,
and each one of these extends in a natur-
al way to a congruence of the 24-dimen-
sional Buclidean space, These congru-
ences form the regular representation of Sy.

Frobenius proved that the regular rep-
resentation of any group “contains” all of
the irreducible ones, each repeated a
number of times equal to its dimension.
For example, for S, the irreducible repre-
sentations are the two 3-dimensional
ones illustrated above, as well as a 2-di-
mensional one, a nontrivial 1-dimension-
al representation, and the trivial 1-dimen-
sional representation (where all elements
of the group are represented as the iden-
tity). So in the regular representation, the
two 3-dimensional representations are re-
peated three times, accounting for nine
dimensions each; the 2-dimensional rep-
resentation is repeated twice, accounting

Figure 10. How to build your own tensegrity: Start with a cardboard model of the coxre-
sponding regular polyhedron (a). Cut out the sides and use a paper punch to place holes at
the proper points in each side (b). It works best if the size of the holes just lets the sticks pass
through. Here, however, the holes are shown larger for better viewing, Locations need not be
precisely correct. Tape the edges back together again and pierce the polytope with the dow-
els according to the way they look in the final tensegtity (c). (Compare Figure 7.) Insert rub-
Dber bands in the appropriate pattern through the notches in the ends of the dowel struts (d).
The figure shows pins at the ends of the dowel struts, which also works. Cut away the card-
Dboard and let the whole structure come to equilibrium. Replace the rubber bands with string
or cord. (The rubber bands may deteriorate within a few weeks,)
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Figure 11 The authors’ catalogue of super stable symmetric tensegrities includes dozens to hundreds of examples with the symmetry of each
regular polyhedron. Here, one tensegrity representing each type of symmetry is portrayed. Tensegrities in the right hand column, from the
top down, come from representations of the group of even permuations on four letters, the group of even permutations on five letters, and
the group of all permutations of four letters. These representations turn out to be the rotations of the regular tetrahedron, the regular dodeca-
hedron, and the cube respectively. The tensegrities in the left hand column come from the direct sum of the group with two elements and the

group generating the right hand column.

for four dimensions; and the nonirivial
and trivial 1-dimensjonal representations
account for one more dimension each. In
total, we get 9 + 9 + 4+ 1+ 1 =24 dimen-
sions accounted for.
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Suppose that we have a tensegrity
whose group of symmetries acts transi-
tively on the vertices. Its energy function,
which was defined using the stresses
(motivated from the equilibrium condi-

tion), corresponds to the regular repre-
sentation of the symmetry group. This
was not at all obvious to us at first: Only
after doing several special cases did we
discover that Frobenius’s theorem was




made to order for our problem. Using
that theorem, the energy function can be
written as a sum of energy functions that
correspond to each of the irreducible rep-
resentations. So the calculations can be
done for the much smaller-dimensional
irreducible configurations. For example,
calculating a minimum energy configu-
ration for the group S,, without the de-
composition coming from representation
theory, would involve solving equations
in at least 24 variables, But by using the
irreducible representations, it takes only
two calculations with three variables,
one calculation involving two variables
and one with one variable.

Now consider the problem a bit differ-
ently. Start with the stresses, and then ask
if one of the representations has an equi-
librium configuration for that collection
of stresses. This is like looking for the
smile of the Cheshire cat (the stress) be-
fore we find the cat itself (the tensegrity).
If all the stresses are positive, then it is
clear that all the terms in the definition of
the energy function are positive or zero. If
the cable graph is connected, this means
that the only representation that gives an
equilibrium configuration will be the triv-
ial one—in which all the vertices are on
top of each other. Next, choose one of the
orbits that you eventually want to be a
strut. Decrease the stress coefficient for
that strut, even allowing it to be negative.
Keep decreasing that coefficient until the
total energy function itself just starts to
have values on the borderline of being
negative (that is, zero). Then at Jeast one
of the nontrivial irreducible representa-
tions has a configuration that is in equi-
librium with respect to that stress. Call
these equilibrium configurations, result-
ing from irreducible representations, crit-
ical configurations. Usually, but not al-
ways, it turns out that there is only one
representation that has a critical configu-
ration. If s0, this is the desired configura-
tion and the corresponding tensegrity.

One unsettling feature of this process
is that there do not seem to be any assur-
ances beforehand as to which represen-
tation will be the one that provides the
crucial stress. If one of the “winners”
happens to be a 3-dimensional represen-
tation (as it has been in many of the cases
we have tried), then we get a super sta-
ble tensegrity that we can see, rather than
just inferring its existence in some higher
dimension. But we do not know of any
general theory that would predict the
outcome without doing the calculation.

Not many abstract groups can occur
as finite groups of symmetries in 3-

space. They include two infinite fami-
lies: the cyclic groups on 7 elements
(which can be identified with the rota-
tions of a regular n-sided polygon) and
the dihedral group with 27 elements
(the group of all symmetries, including
reflections, of a regular n-sided poly-
gon). There are six other possibilities:
S,; the “alternating groups” A, and Ag
with 12 and 60 elements respectively;
and the “direct sum” of each of these
with the group Z,, which doubles the
number of elements. Each of these six
can be represented as a group or sub-
group of symmetries of a regular poly-
hedron: For example, the group of ro-
tations of a regular dodecahedron is a
representation of Asg.

For any given finite group, our
method allows us to compile efficiently a
complete catalogue of the symmetric
tensegrities with two orbits of cables, one
orbit of struts and one orbit of vertices.
The most intriguing—and most recently
discovered—ones correspond to the six
groups mentioned in the last paragraph.
Because the struts can be connected to
the cables in hundreds of different ways,
maintaining the symmetry, the complete
catalogue has well over a hundred dif-
ferent tensegrities. For Figure 11 we
have chosen one representative to il-
lustrate each of the six possible types of
symmetry. The complete catalogue can
be viewed on our World Wide Web
page at http:/ /mathlab.cit.cornell.edu/
visualization/tenseg/ tenseg.html.

In Figure 10 we show you how to de-
sign your own tensegrities. Although the
number of configuration types is finite,
there is still plenty of room for artistic ex-
perimentation: The lengths of the struts
can be chosen more or less at will (pro-
vided they are all the same length), and
the locations and lengths of the other

members will change accordingly, Mak-
ing the tensegrity initially with rubber
bands helps the tensegrity “find” a su-
per stable configuration, and the design
can then be made permanent by replac-
ing the rubber bands with string.

For readers who would like to build
virtual tensegrities, we recommend a
program called STRUCK, by Gerald de
Jong and Karl Erickson, This program
can be accessed on the World Wide Web
at http://wolfenet.com/~setebos/
springspace html.

Acknowledgment

The authors thank Dana Mackenzie for his
excellent editing in the preparation of this
article. Connelly also thanks the Alexan-
der von Humboldt Foundation for their
generous support in the academic year
1991-92, where many of the ideas of this
article were developed.

References

Chung, F, and S. Sternberg,1993. Mathematics
and the buckyball. American Scientist 81:56-71.

Connelly, R. 1980. Rigidity and energy.
Inventiones Mathematicae 66;11-33,

Connelly, R, and M. Terrell, 1995. Globally
rigid symmetric tensegrities. Structural
Topology 21:59-78.

Connelly, R., and W, Whiteley. 1996. Second-
order rigidity and prestress stability for
tensegrity frameworks, SIAM Journal of
Discrete Mathematics (9)3:453-491.

Hartog, J. P. 1949. Strength of Materials. New
York: Dover, pp. 3-4.

Lyusternik, L. A, 1956, Convex Figures and
Polyhedra. New York: Dover.

New York Academy of Sciences, 1989, Kenneth
Snelson: The Nature of Structure, New York:
New York Academy of Sciences.

Pugh, A. 1976. An Introduction to Tensegrity.
Berkeley and Los Angeles, Calif.: University
of California Press .

Snelson, Kenneth. Kenneth Snelson. <http://
www.teleport.com/~pdx4d /snelson.html>.




