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1. INTRODUCTION 

When is a triangulated polyhedral surface rigid? In 1813 Cauchy ]4] 
showed the following: 

THEOREM C. If each natural face of a convex polyhedral surface is held 
rigid, then the whole surface is rigid. 

It had been suspected that any (connected) polyhedral surface, convex or 
not, (with its triangular faces, say, held rigid) was rigid, but this has turned 
out to be false (see Connelly [7]). W e extend Cauchy’s theorem to show that 
any convex polyhedral surface, no matter how it is triangulated, is rigid. 
Note that vertices are allowed in the relative interior of the natural faces and 
edges. 

Here we say a triangulated surface in three-space is rigid if any continuous 
deformation -of the surface that keeps the distance fixed between any pair of 
points in each triangle (a part of the triangulation of the surface), keeps the 
distance fixed between any pair of points on the surface (and thus extends to 
an isometry of three-space). A natural face of a convex polyhedral surface is 
the two dimensional intersection of a support plane with the surface (see 
Fig. 3). Similarly natural edges and vertices are one- and zero-dimensional 
intersections, respectively. Thus in Cauchy’s theorem it is insisted that under 
a deformation of the surface the distance is fixed between any pair of points 
of a natural face and not just some triangle of a triangulation. Alexandrov 
[l] showed that if a convex polyhedral surface is triangulated with no 
vertices in the relative interior of a natural face (but they are allowed in 
natural edges), then the surface is rigid. This theorem is the basic result for 
the results of this paper. The author is grateful for a description of Alex- 
androv’s proof by Asimow and Roth [5]. Whiteley [ 151 also has a somewhat 
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different proof of Alexandrov’s theorem in which he derives our Theorem 5.1 
as a corollary. 

However, it does not obviously follow from Alexandrov’s result that if 
vertices are allowed in the interior of natural faces then the surface is rigid. 
In fact Alexandrov’s theorem precisely is the following: 

THEOREM A. If a convex polyhedral surface is triangulated with vertices 
only in the natural edges, then the surface is iqfmitesimally rigid, which 
implies it is rigid. 

(Infinitesimally rigidity will be defined later.) 
This is a sharpened version of a theorem by Max Dehn on the 

infinitesimal rigidity of such surfaces [8]. (See also Gluck [lo], for a nice 
proof of Dehn’s result.) 

If we call the “weak” Alexandrov theorem the case when in Theorem A 
there are no other vertices than the natural vertices in the triangulation, and 
the “strong” Alexandrov theorem as above, then it turns out by techniques in 
this paper we can show how the weak version implies the strong. 

When vertices are in the relative interior of a natural face, then the surface 
is definitely not infinitesimally rigid. It was conceivable that there was a 
deformation (flex) of an appropriately triangulated convex surface that 
immediately moved the surface into a non-convex shape, and this would not 
contradict any known theorems. 

We extend the notion of infinitesimal rigidity to second-order rigidity and 
show that second-order rigidity implies rigidity (as does first-order or 
infinitesimal rigidity). The basic theorem is the following: 

Theorem 6.1. Any triangulated convex surface is second-order rigid and 
thus rigid. 

Ironically the main ingredient here is Alexandrov’s Theorem A applied 
twice. 

As far as we know this is the first it is known that a polyhedral surface is 
rigid no matter how it is triangulated. Even for a tetrahedron it was not 
known whether for some clever triangulation it would be flexible, moving 
immediately into some non-convex shape. 

As a consequence of the techniques developed here we also show that if 
one removes a convex polygonal hole from the interior of some of the 
natural .faces of a convex polyhedral surface, where the boundary of each 
hole touches the boundary of each natural face in at most one point, which is 
a natural vertex, then any triangulation of this surface “with boundary” is 
still second-order rigid (Theorem 6.2). 

Along the way we also develop techniques for showing the rigidity of 
certain cabled “frameworks.” A framework is simply a collection of points in 
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three-space (the vertices) together with two collections of unordered pairs of 
vertices called “rods” and “cables.” A flex (or deformation) of a framework 
is just a motion (in time) of the vertices so that the vertices of any rod stay 
at a fixed distance, and the vertices of any cable do not increase in distance. 
Thus we show that if we take as vertices the natural vertices of a convex 
polyhedral surface, as rods the natural edges of this surface, and a certain 
system of cables in each natural face, then this framework is rigid. That is, 
any flex of this framework does not change any distance between any pair of 
vertices and thus is the restriction of a rigid motion of all of three-space. In 
fact we show a bit more (see Whiteley [ 151, also): 

THEOREM 5.1. Let X be a cabled framework obtained as follows: The 
vertices of ST are the natural vertices of a convex surface. The rods of ST 
are the natural edges of this surface. The cables of ST are any system of 
cables in each natural face such that the vertices, rods, and cables of each 
natural face form an infinitesimally rigidframework in the plane of that face. 
Then K is in~nitesimally rigid (see Fig. 14). (We will also define 
infinitesimally rigid cabled frameworks later.) 

There are many ways of cabling a convex polygon in the plane to make it 
infinitesimally rigid, so the theorem above applies to many cabled 
frameworks. 

We must mention that we owe a great deal not only to the works of Alex- 
androv [ 1 ] and Gluck [lo], but also to a set of notes “Lectures in Lost 
Mathematics” by Griinbaum [ 111. These notes define the notion of cabled 
frameworks, conjecture the theorems about convex triangulated surfaces, and 
generally serve as the inspiration of this paper. These notes also have many 
interesting and illuminating examples and pictures which were very helpful. 

Lastly we point out that there is a strong parallel between the results and 
ideas of this paper and the corresponding situation in the smooth (of class C-’ 
or C” say) category as discussed by Efimov in [9]. For instance Efimov 
defines second-order rigidity for smooth surfaces and shows that second- 
order rigidity implies rigidity but only for analytic deformations. (Note in the 
piecewise-linear case a deformation is essentially automatically analytic so 
the theory turns out to be a bit nicer.) Even our result about cabled 
frameworks is analogous to Efimov’s result about sliced ovaloids where, in 
the holes sliced out, nearby points are not allowed to move apart. Also our 
results about the rigidity of convex polyhedral surfaces with holes removed 
seem to parallel results about the rigidity of similar smooth surfaces. 
Nevertheless, there does not seem to be any obvious way to deduce the 
results of one category from the other, despite their similarity. 

We give a brief outline of the following sections. Section 2 defines 
infinitesimal rigidity and gives a brief discussion of different definitions of 
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rigidity. Section 3 introduces second-order rigidity and shows that it or first- 
order rigidity imply rigidity. Section 4 shows that certain cabled frameworks 
in the plane are infinitesimally rigid and thus rigid. Section 5 shows that the 
cabled frameworks mentioned before, associated to a convex polyhedral 
surface, are infinitesimally rigid. Note that here Alexandrov’s Theorem A is 
used the first time. Section 6 applies the result of Section 5 to show that 
convex surfaces are second-order rigid. Note this uses Alexandrov’s theorem 
the second time. Also if the reader is willing to look at a bit more detail, we 
generalize Theorem 6.1 to show the result about convex surfaces with convex 
polygonal holes removed. (This is Theorem 6.2.) 

2. RIGIDITY AND INFINITESIMAL RIGIDITY 

In order to discuss the rigidity of surfaces and other gadgets we define the 
notion of a framework in m-space. Let pl, p2,..., pv be V points in Rm, 
possibly not distinct. Let B be a collection of unordered pairs of these points. 
We call 8’ the rods and p = (p , ,..., pv) E Rmv the vertices of a framework, 
ST. Note here we often regard the ordered collection of vertices simply as a 
single m V vector in Rmv. For a triangulated surface, the vertices of the 
triangulation are the vertices of the associated framework, and the edges of 
the triangulation are the rods of the associated framework. Often it is 
convenient to regard a rod as the unordered pair of indices (i, j} rather than 
{p,, p,}. Figure 1 is a picture of one such framework. 

As indicated in the introduction we say a deformation or jlex of a 
framework F is simply a continuous path, for 0 < t Q 1, p(t) = 

FIGURE 1 
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(p,(t),..., I+,) such that the length of any rod lpi(t) - pi(t)I (i, j} E 8, is 
constant in t, and p(O) = p. 

We say a flex p(t) of .-F is trivial if for all pairs of vertices, the length 
[p,(t) - pj(t)j is constant. We leave it to the reader to check that this is 
equivalent to finding a continuous path T,, 0 < t < 1, in the (Lie) group of 
rigid motions of R” such that p(t) = Tjp = (T,p, ,..., TIpy). 

We say a framework F is rigid if jr admits only trivial flexes. The reader 
is referred to Gluck [lo] for a discussion of these definitions as well as some 
examples. The following is a convenient alternate definition of rigidity 
following Gluck [ lo] : 

Let E be the number of rods. Define a map (the rigidity map) f: WY + IRE 
by f(p, ,..., p,,) = (..., (pi - pi) . (pi - pj) ,... ). (Here . is the usual dot 
product). 

THEOREM 2.1 (Gluck). Let m = 3. Suppose the vertices of p are not 
colinear. Then .F is rigid if and only if the dimension of the component of p 
in f -‘f (p) is 6 (the dimension of the group of rigid motions of R3). (See 
Asimow and Roth [4] also for a discussion of this type of restilt.) 

By including a few more equations it is possible to define a new map-? and 
say ST is rigid if and only if dim $- ‘$ is 0 in a neighborhood of p. This is an 
idea of Kuiper [ 121 and is outlined in the Appendix. 

We now define the notion of infinitesimal rigidity. It is convenient 
notationally to define a map R: lRm” X IR”” + IRE by R(p, q) = (..., (pi - pj) . 
(qi - qj) ,... ), where p = (pl ,..., py), q = (qi ,..., qy), each pi, qi is an m-vector 
in I?, and the dot product above appears in the {i, j}th slot corresponding 
to a typical rod in some framework X with V vertices. Thus in the previous 
notation f (p) = R(p, p), and the differential 

d&(q) = ~R(P, 4). 

We also regard R(p) as the matrix defined by R(p)(q)=R(p,q) (with 
respect to the standard basis say). Then dfp = 2R(p). We call R(p) the 
rigidity matrix (corresponding to a framework with vertices p, and rods 8). 

Let F be a framework with vertices p E Rm” and rods 8. We say a vector 
p’ E WV is an infinitesimal deformation (or infinitesimal flex) of .F if 
R(p, p’) = 0. Thus writing p’ = (pi ,..., pi ,..., pb) 

(Pi - Pj) ’ (PI - Pj) = O 

for each {i, j) a rod of the framework. Intuitively we regard p as a vector 
field defined on each vertex of fl, and the above condition simply says that 
the lengths of rods do not change infinitesimally, since (pi - pj)’ is the 
length squared of the {i, j}th rod. 
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We say the infinitesimal flex p’ is trivial ifp’ = Dp(0) where T,, 0 < t < 1, 
is a path in the group of rigid motions of I?“, and D is differentiation with 
respect to t. For instance, in the case m = 3, p’ takes the form 
pi = t + r x pi, where t and r are fixed vectors in I? 3. t can be regarded as an 
infinitesimal translation, and r an infinitesimal rotation, where X is the cross 
product. Note that this group of infinitesimal flexes is six dimensional. 

We say a framework F with vertices p is i~~~itesimaiiy rigid if there are 
only trivial infinitesimal flexes of Sr. 

Remark 2.1. If a framework Sr is infinitesimally rigid, then it is rigid. 
The proof of this in Gluck [lo], for instance (see also Asimow and Roth 
[5]), is to show that the rank of the rigidity matrix R(p) is “too small,” if 
there is a non-trivial flex, and thus there is a vector p’ in the kernel that is 
not a trivial infinitesimal flex. For instance when m = 3, the vertices of p are 
not colinear, and Sr is flexible, by Theorem 2.1, the dimension off -‘f(p) 
near p is greater than 6, and so the implicit function theorem says that the 
rank of dfP = 2R(p) is less than 3V- 6. (Here say E > 3V - 6.) Thus there 
is a vector p’ in the kernel of R(p) that is not in the six-dimensional space of 
trivial infinitesimal flexes. 

Intuitively, however, it seems to us to be more natural just to take p’ = 
Dp(0) = p’(O), where p(t) is some non-trivial flex of Y. Unfortunately this 
does not always work. For instance we could replace a p(t) that does “work” 
(so that p’(0) is not trivial) by p(t) = p(t’). So p(O) = 0. In the next section 
we see how to avoid this problem and use this second idea which is very 
useful for second-order rigidity. 

The reader is referred to Asimow and Roth [5] for examples of 
infinitesimally rigid frameworks. We mention only a few here. 

EXAMPLE 2.1. Any affine independent set of points in I? with all 
possible rods is infinitesimally rigid. For example, a triangle in the plane or 
three-space, or a tetrahedron in three-space Fig. 2). 

EXAMPLE 2.2. Recall from Theorem A of the introduction that any 
triangulated convex surface with no vertices in the interior of a natural face 
is infinitesimally rigid (see Fig. 3). 

Next we define second-order rigidity. Let Y be a framework with vertices 

FIGURE 2 
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FIGURE 3 

p. Let p’ be an infinitesimal flex of .F. Then for another vector p” E IR3’ we 
say (p’, p”) is a second-order deformation (or a second-order flex) for .F if 

R(p’, p,“) + R(p, p”) = 0. (*I 

We say 7 is second-order rigid if for every second-order flex (p’, p”), the 
first-order flex p’ is trivial. 

Remark 2.2. If ST is second-order rigid, then it is rigid. However we do 
not see how to use the idea of Gluck’s proof (actually due more to Alex- 
androv). Instead we use the more natural idea indicated in Remark 2.1. One 
price we pay for this, perhaps, is that we do not see how to extend the notion 
to higher-order rigidity so that nth order rigidity implies rigidity. Note 
Efimov [9] has the same problem. But fortunately this is enough for 
Theorem 6.1. 

Remark 2.3. The proof of the infinitesimal rigidity of triangulated 
convex surfaces in Gluck f lo] unfortunately only applies to the case when 
each natural face is a triangle. This is enough for Gluck’s main theorem, but 
it seems more work must be done to show the stronger result of Theorem A, 
which we need. 

3. SECOND-ORDER RIGIDITY 

Here we investigate the notion of higher-order rigidity. Our main purpose 
is to show that second-order rigidity implies rigidity. To do this we 
generalize the notion of a first-order flex to an nth-order flex. An nth-order 
jlex of an mV vector p of a framework is a sequence of n, m V vectors, 
P I 9 P”,..., p (n) such that 

k = I,..., n, 

This is motivated by differentiating the equation R(p, p) = constant n times 
via Leibniz’s rule, where we regard p = p(t) as a function of the parameter t 
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and p”’ is the ith derivative of p(t). However, formally the p% are only 
some mV vectors satisfying (**). We say the nth-order flex of .Y, p’,..., p(“) 
is trivial if there is a path T,, in the group of rigid motions of I?“’ such that if 
T,(P) = (TIP, ,..., Ttpy) then 

D&T, p(0) = pck), k = 0, l,..., n. 

We say the framework .F is nth-order rigid if for every nth-order flex 
(p’,..., p’“‘) of ST, p’ is trivial (see Remark 2.1). 

The following are some examples of &h-order rigid frameworks for 
n = 1, 2,... . They are typical of the kind of phenomenon to come. 

EXAMPLE 3.1. In iR2, an arc, with one vertex in the middle, is not tirst- 
order rigid, where the ends are held fixed (Fig. 4). 

We can push the center vertex perpendicular to the line on which it sits 
keeping the end points fixed. However if there is to be a second-order flex we 
are stuck, since from’ (*) (p;)’ + (p’; - p:‘) . (p2 - pl) = 0 hence 
py . (p2 - p,) < 0 and similarly p; (p2 - p3) < 0, but (p2 - p,) = 
- A(p, - p3), I > 0 and we have a contradiction. Thus this is second-order 
rigid. 

EXAMPLE 3.2. See Fig. 5. Here there are non-trivial first and second- 
order flexes, but no third order. Namely, we can push p2 by pi to the tirst- 
order perpendicular to (pl - p,), but all other pi’s are 0. Then by choosing 
p;’ and pl, both pointing toward p,(pg = 0, say), appropriately, we get a 
second-order flex. This is third-order rigid since p: and pp are 0 if there is to 
be a third-order flex from the above. So pi is then also 0 from the above. 
Thus all the p; = 0, and thus it is third-order rigid. 

It is easy to see how to continue this construction for any n to get a 
structure that is nth-order rigid, but not n - l-order rigid in the plane. 
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FIGURE 6 

EXAMPLE 3.3. See Fig. 6. Any collection of non-degenerate triangles 
stuck together along common edges will be first-order rigid in R2. In fact 
such a “truss” can be used to keep the stationary vertices of Examples 3.1 
and 3.2 fixed. 

EXAMPLE 3.4. The edges of a tetrahedron in R3 when the vertices do not 
lie in a plane are easily seen to describe an infinitesimally rigid framework 
(Fig. 7). However, if we do allow them to lie in some plane then it becomes 
infinitesimally flexible as we can see by pushing one point perpendicular to 
the plane of the other three. However we shall see that this framework is still 
second-order rigid. 

In the following we replace an nth-order flex, trivial up to some order k by 
another nth-order flex 0 up to the order k. The approach suggested by N. H. 
Kuiper is possible also. See the Appendix. 

Remark 3.1. If Dk(pi - pi)*(O) # 0, for some i, j then the derivatives of 
p(t) cannot generate a trivial &h-order flex of any framework, because 
(T,p,(O) - 7’,~~(0))~ = (p,(O) - p,(O))’ for any rigid motion r,. 

THEOREM 3.1. If a framework F is rigid of order 1 or 2, then Y is 
rigid. 

ProoJ The case n = 1 is well known (see Gluck [IO]), but for 
completeness we prove it here as well from our point of view. Suppose F is 
not rigid, i.e., ST is flexible. By Lemma 18.3 of Wallace [ 141, or by 
Lemma 3.1 of Milnor [ 131, there is an analytic path p(t) with p(O) = p such 

A 
0 0 

FIGURE 7 
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that R(p(t), p(t)) = R(p, p) for all t, wherep = (pr ,..., pV) are the vertices of 
.F as usual. If p(t) is not a trivial flex there must be some first k’ for which 
the k’th derivative of the square of the length between some pair of points 
pi(t), pj(t) changes. Thus there is a path Tt in the group of rigid motions of 
R” such that @p(O) = @T’,p(O), j= l,..., k - 1, for k < k’, k as large as 
possible. So by replacing p(t) by T;‘p(t) (or by using Kuiper’s formula in 
the Appendix) we may assume p”‘(O) = 0 for j = l,..., k - 1. Then by (**) 
p”‘(O) satisfies R(p, pck’(0)) = 0 and by assumptionp”‘(0) is not trivial as a 
kth-order flex. But it is also not trivial as a first-order flex, since if there is a 
T, such that DT,p(O) = p”-“(O), then D’T,,k,,,,(O) = p(j)(O), j = O,..., k. 
Thus X is not first-order rigid. (Note that p may lie on a hyperplane, but if 
it does not, it turns out that k = k’.) 

Next we must show .F is not second-order rigid, continuing from above, 
assuming again we have a flex p(t). Define ~7, =p(“)/n!, for n = 0, I,..., so 
p(r) = C,“=O p, tn. Here p’@(O) and thus Is, is non-trivial as a first order flex. 
We set 4’ = pk = pfL’(0)/k! and we must find a vector to serve as q” to 
satisfy the second equation of (**), i.e., R(q’, q’) + R(p, q”) = 0. Since 
p’(0) = . .. = pck-” = j, = . . = pkk- r = 0, looking at the 2kth coefficient of 
the power series of t we get 

thus 

0 = R(P, 2F2J + R(Ak, Ak). 

Set q” = 2pzk = (2/(2k)!)ptzk’(0). Thus q’, q” serves as a second-order flex 
and q’ is non-trivial. Thus second-order rigidity implies rigidity and we are 
done. 

Remark 3.2. It would be interesting to know if, by any chance, third- 
order (or higher-order) rigidity implied rigidity also. The above proof breaks 
down, since, in the Leibnitz formula, beyond the 2k level, more cross terms 
enter and make the problem more difficult. 

It might be thought that we can somehow reparametrize the flex p(t) so 
that p’(0) is not trivial. Perhaps this is possible for our situation but we 
should be reminded of the following example: 

Consider the curve defined in the plane by y* = x3. This has the “analytic” 
parametrization y = t3 and x = t*. So if p(t) = (t*, t”), p’(0) = 0 and this is 
true for any such analytic parametrization. Thus perhaps it may be useful to 
work with some other definition of nth-order rigidity for n > 3. 

We thank M. Gromov for pointing out to us that a reasonable converse is. 
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however, true. Namely, Theorem 6.1 of Artin [3] (see also [2] for helpful 
comments) shows that if ST is rigid then it is nth-order rigid for some n 
(using the definitions above). 

4. CABLED FRAMEWORKS AND FIRST ORDER RIGIDITY 

In order to proceed with the discussion of rigidity of frameworks, it is 
necessary to generalize the notion slightly to “tensed cabled” frameworks or 
simply cabled frameworks, a notion from Branko Griinbaum’s notes. Here 
we have a finite number of points p, ,..., pV in IR” and a collection of unor- 
dered pairs of points B as before. However, we also give ourselves another 
collection of unordered pairs of points K, which we call cables. The first 
collection B we still call rods. Here a flexp(t) will not permit any of the rods 
to change length, but it must also not permit the cables to increase length. 

EXAMPLE 4.1. See Fig. 8. As before, we say p(t) is trivial if there is a 
rigid motion T, of W” such that T,p = p(t). 

We shall mostly be concerned with flexes in the plane (m = 2), and, as 
before, we define the notion of an infinitesimal flex p’. p’ is an infinitesimal 
flex if 

(PI - PJ) . (Pi - Pj) = O if (i,j} E 8, 

(Pi - Pj) ( Pi - Pj) < O if {i,j}EE. 
(***I 

p’ is trivial if it is trivial as a flex ofp as a rod framework. (Note the notion 
of triviality is independent of which pairs of vertices are rods.) 

As before we say ST is rigid if it only has trivial flexes, and Y is 
injhitesimally rigid if it only has trivial inlinitesimal flexes. 

Remark 4.1. Note that the argument of Theorem 3.1 in the previous 
section implies that if ST, a cabled framework, is infinitesimally rigid, then it 
is rigid. The only problem that might arise is when we apply Wallace’s 
lemma to obtain the analytic path. But the cabling conditions with 
inequalities still define a real variety (or algebraic set). This can be seen by 

flexible rigid 

FIG. 8. The solid lines are rods, the dotted lines cables. n = 2. 
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introducing another variable yii say for each inequality and replacing the 
cable conditions (xi 1 Xjl* <pi -pjl* with 1Xi - x~I* + JJ:= Ipi -pjl** Thus 
Wallace’s lemma still applies, and we obtain the analytic path p(t) as before. 
The rest of the proof is the same. Alternatively, Milnor’s statement in [ 131 
applies. 

Here we give an example of a tensed cable framework that is 
infinitesimally rigid. This is the infinitesimal analogue of an observation due 
to Griinbaum. 

THEOREM 4.1. Let (p , ,..., py) = p be the natural vertices of a 
framework ST corresponding to a convex polygon in IF?* with (pi, pi+ ,) 
i = 1, 2,..., V as rods and (pi, pi+ 2) i = 1,2,..., V - 2 as cables, where 
(pi, pi+ ,> are the natural edges. Then F is infinitesimally rigid (Fig. 9). 

Remark 4.2. Griinbaum correctly points out that the fact that X is rigid 
follows from any of a number of standard sources, but we need the 
infinitesimal version here. 

We copy the approach used by Cauchy for the infinitesimal version of this 
key result. 

ProoJ: We proceed by induction on V, the number of vertices of p, 
starting with V = 3 where it is obvious. We make a slightly different 
statement that will imply the theorem and is more convenient. 

Let (P I ,..., py> = p be a convex polygon with (pl, p2> ,..., (py-, , py> only 
as rods and (pl, pv) ,..., (pyp2, py) as cables (Fig. 10). Let p’ = (pi ,..., p;) 
be any infinitesimal flex. Then (pl, pv) is a cable, i.e., 
(pi - p;)(pl - py) Q 0. Furthermore if any cable is strictly bent, i.e., 
(P; - P;+~)(P, - pi+*) < 0 i= I,..., V- 2, then (p,, py) is strictly bent. 
Obviously this implies the theorem (since if all the cables are rods p is 
infinitesimally rigid) and is true for V = 3. 

P, 

FIGURE 9 
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FIGURE 10 

Let V > 3. By adding the appropriate trivial flex to p we may assume 
p; = pi = 0 since (p2, p3) is a rod. 

Because p is strictly convex at pz and pi = p; = 0, we get 
p; . (p, - pi) < 0 i = 2, 3,4 ,..., V with strict inequality unless pi = 0 or i = 2. 
Similarly pi (p4 - pI) ,< 0. Consider the polygon (pl, pj, p4,..., p,,) = fi 
with V - 1 vertices and the infinitesimal flex p ’̂ = (0, 0,~; ,..., p;). Since 
P; . (PI - PI) G 07 (PI, P4) is a cable in 15. Since p^; = 8; = 0, (pl, pj) is a 
rod. Thus p^ satisfies the induction hypothesis, and we get pj, . (pv - pl) < 0. 
Since pi (pl - py) < 0, (p; - p;)(py - pl) < 0. If any of the cables of p 
are decreased strictly by j’ then the (pl, py) cable is decreased strictly by p^ 
and the same is true for p’. Thus we are done if any but the ( pl, pj) and 
(pz , p4) cables are decreased strictly. If the (pz , p4) cable decreases strictly 
this means pi # 0 and thus the (pl, p4) cable decreases strictly, and 
(p, , p,,) decreases by induction. If the (p, , p2) cable decreases strictly, then 
p; # 0 and thus the (pl, py) cable decreases directly. 

This completes the induction and the proof of the theorem. 

Remark 4.3. If one of the vertices of p is not a natural vertex, then the 
resulting polygon is in fact flexible as well as infinitesimally flexible (see 
Fig. 1 I). 

DEFINITION. We call such a cabled polygon as in the theorem, a (cabled) 
Cuuchy polygon. 

FIGURE 11 
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Remark 4.4. The proof above is very much in the spirit of Cauchy’s 
original proof. The difftculty in the non-infinitesimal case comes in the 
induction process where an intermediate polygon may not be convex. In 
another paper we shall investigate other cabled polygons both for their 
infinitesimal rigidity and their uniqueness properties. For our purposes here 
it is sufficient to find some cabled polygon of the sort above. 

Addendum. Here we observe that a slightly different cabled framework 
from the Cauchy polygon is also infinitesimally rigid. Let p, ,..., pv be 
vertices of a strictly convex polygon (see Fig. 12). We have rods from pi to 
pi+, , i = l,..., V, (p,,+ I = p,) as before, but instead of cables from pi to pi+ 2, 
i= l,..., V - 2, we have a different cable system. Let Bi, i= 2,..., V - 1, be a 
point in the interior of the triangle (pi_, , p,, pi+ i). Then we put cables from 
Pi to Pi- 1, pi, and Pi+ 1. Call this new cabled framework an altered Cauchy 
pobwn. 

THEOREM 4.2. An altered Cauchy polygon is infinitesimally rigid in the 
plane. 

Proof. Let p’ be an infinitesimal flex of the altered Cauchy polygon Sr. 
If we can show (pj - ~j+~)(p, - pi+ 2) Q 0, i = l,..., V - 2, then p’ will be a 
flex of the associated Cauchy polygon F and thus be trivial on the pi%. It 
then will be easy to see that the flex is trivial on all of the jIi)s as well. So we 

FIGURE 12 
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need only look at pi-,, pi, pi+, and ~7~ (see Fig. 13). We observe pi = 
A*Pi-l +A*Pi+A3Pi+19 Ai + 1, + A, = 1, A,, &, 1, > 0. For simplicity we 
may assume piPI = pi = 0, without loss in generality. If we assume 
-Pi+ 1 (pip1 -pi+,) > 0 we wish to arrive at a contradiction. Thus 
Pi+, (pi - pi+ 1) < 0 since Ai # 0, and from the rod conditions. 
~~.(~i-pi-,)~O,p~~(~i-pi)~O and (~~-p~+,).(~i-ppiil)~Oo. But 
then 

a contradiction. Thus -~:+~(p~-, -pi+ ,) < 0 and (pi- 1, pi+ 1) is a cable, 
i.e., p’ is an infinitesimal deformation of the Cauchy polygon R. Thus p’ is 
trivial on the vertices (p,,..., py). Thus we may assume each pi = 0. From 
the proof above, then each & = 0, and jr is rigid. (We will see this idea also 
used later.) 

Note. If pi is on the interior of the rods (pi-,, pi) or (pi, P~+~) the 
altered Cauchy polygon is still rigid, but not infinitesimally rigid, which we 
need. 

5. INFINITESIMALLY RIGID CABLED CONVEX SURFACES 

Here we show that if we take the Cauchy polygons of the previous section 
and put them together to form a convex polyhedral surface, then the resulting 
cabled framework in three-space is infinitesimally rigid. This is inspired from 
the discussion by Griinbaum in his “Lectures on Lost Mathematics” [9], 
where he has several examples of such frameworks which are experimentally 
seen to be rigid. 

In the following we wish to use the information about rigidity in the plane 
to get information about rigidity in three-space. If jr in the plane is a 
(cabled) framework that is rigid in R*, unless F is a triangle (or an edge or 
point), then ST will not be infinitesimally rigid in three-space. For example 
we can hold three points fixed and choose any collection of pi’s (for the 
other vertices) that are perpendicular to the R* c R3. We show first that this 
is essentially the only way we can infinitesimally flex .Y in R3. 

Lemma 5.1. Let X be a cabled framework in the plane, I?*. Let p’ be an 
infinitesimal flex in three-space. Then np’ is a flex of p in R* (and R3), where 
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7Lp’ = (np; ,...) rrp’,) is the orthogonal projection of R3 onto R2 in each coor- 
dinate. 

Proof. We check, (np; - ~rp;) . (pt - p,) = n(pi - p;) . (pt - p,) = 0, 
since p; - p,’ = rr( pi - p;) + n, where n is perpendicular to Rz and pi - p,, 
{i,j}EGY. 

Remark 5.1. Thus we see that if F is infinitesimally rigid in the plane, 
then an infinitesimal flex of ST, p’, is of the form p’ = np’ + n, where np’ is a 
trivial flex in the plane and each n, of n is perpendicular to the plane. 

THEOREM 5.1. Let .F be a cabled framework obtained as follows: The 
vertices of Y are the natural vertices of a convex surface. The rods of T 
are the natural edges of this surface. The cables of .F are any system of 
cables in each natural face such that the vertices, rods, and cables of each 
natural face form an infinitesimally rigid framework in the plane that face. 
Then ST is infinitesimally rigid. 

COROLLARY 5.1. Let Sr be a framework defined as above, where a 
Cauchy polygon cables each natural face. Then X is infinitesimally rigid. 

Remark 5.2. In general the faces of Sr above will not even be rigid in 
three-space. We only insist that they be infinitesimally rigid in the plane. If 

.’ ‘. 
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. , 

rods cables 

FIGURE 15 

FIGURE 16 

each face is just rigid in the plane this is not enough to make Y rigid, as we 
shall see with later examples (Figs. 17 and 20). 

We cannot allow the boundary of the faces to be cables either, even if the 
framework in the plane of each face is inf. rigid. The framework of Fig. 14 is 
flexible, whereas the cabled framework in the plane of each face is 
infinitesimally rigid. 

EXAMPLE 5.1. Figure 15 shows some pictures of the frameworks 
described by Corollary 5.1. 

Remark 5.3. There are other ways of cabling a convex polygon to make 
it infinitesimally rigid in the plane and thus generate examples for 
Theorem 5.1. Figure 16 is an example conjectured by Griinbaum [ 1 I]. 

Proof of Theorem 5.1. Call the framework defined by the theorem X. 
Let p’ be an infinitesimal flex of ;T. We next consider another rod 
framework ST with the same vertices p, but with a different collection of 
rods. Namely the rods of 9- will be the edges of some triangulation of the 
convex surface spanned by p, where the vertices of p are the only vertices in 
the triangulation. (For instance we can triangulate each convex natural face 
separately and arbitrarily without adding any new vertices). 
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We claim that p’ is an infinitesimal flex for fl as well as 3. To see this 
let (pi, pj) be an edge of g in some natural face F of the convex surface. In 
the framework Y, the face F is infinitesimally rigid in the plane, so if 
4= (4 i ,..., qk) are the vertices of F, and q’ is the corresponding restriction of 
p’, then q’ = nq’ + n where each ni is perpendicular to F and xq is a 
trivial flex of the vertices of F. Thus (p; -p;) (p, -pi) = 
trPP; + “i - zPj - nj) ’ (Pi - Pj) = tnPi - TPj) ’ (Pi - Pj) + tni - nj) ’ 
(pi - pi) = 0; since (pi, p,) lies in F. This shows p’ is a flex of F, the rod 
polygon. 

We now appeal to the theorem of Alexandrov referred to in the beginning. 
It says that since p’ is an honest flex of F, p’ is trivial. But if p’ is trivial for 
y, it is trivial for .E Thus the cabled framework R is infinitesimally rigid, 
and we are done. 

Remark 5.4. It is not possible to extend the above theorem to allow 
vertices in the interior of natural edges. If one takes a cube and puts vertices 
in the interior of the lateral edges (as in Fig. 17) there is no way of cabling 
the lateral faces to prevent the resulting framework from flexing even if the 
top and bottom faces are kept rigid. 

Notice with this example, however, that the infinitesimal flex this flex 
generates is trivial on the vertices not in the interior of the natural edges, and 
the infinitesimal flex on these vertices in the interior of the natural edges 
points “in” to the center of the cube. Alexandrov’s theorem is true for 
vertices in the interior of the natural edges (but not faces of course), but it is 
the infinitesimal rigidity of the appropriate polygons in the plane that fails 
us. 

We also need to consider the case when a convex polyhedral surface is 
triangulated with vertices anywhere. We apply the technique of this section 
to see what we can say. 

THEOREM 5.2. Let ST be the framework obtained from an arbitrary 
triangulation of a convex surface where all the edges are rods. Let 

P=(P , ,..., py) be the vertices of X, and q = (q, ,..., qr,,) be the vertices of .T 

FIGURE 17 
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that lie in the natural edges or vertices. Let p’ be an infinitesimaljlex of jr. 
Then q’, the corresponding flex on the subset of vertices, is trivial. 

Proof. We proceed as before. Since the triangulation restricted to each 
face is infinitesimally rigid in the plane, the argument of the previous 
theorem shows that if we find any new triangulation of the convex surface 
with just q as the vertices, then for this new rod framework F, q’ will be a 
legitimate flex. By the full strength of Alexandrov’s theorem F is 
infinitesimally rigid, and so q’ is trivial for 7. Thus q’ is trivial as desired. 

Remark 5.5. Note that this does not imply that p’ is trivial, or that even 
F is rigid, yet. If we add an appropriate trivial flex to p’, we may assume 
q’ = 0. In this case the argument also implies that if pi is in the interior of a 
natural face, then pi is perpendicular to that face, and as mentioned earlier 
any collection of such pj’s will be a valid infinitesimal flex of X. Thus we 
have a complete picture of what the infinitesimal flexes of .F look like, and 
to complete our study we must look at the possible second-order flexes. If .F 
were to flex, this theorem says intuitively that the vertices on the natural 
edges or vertices do not start to move until the second order. 

6. THE SECOND-ORDER RIGIDITY OF TRIANGULATED 
CONVEX SURFACE 

We know from the last theorem of the preceding section what a first-order 
flex of a triangulated convex surface looks like, and here we wish to get 
information about the second-order flex. Since the infinitesimal flex is trivial 
on the natural edges and vertices of the surface, any second-order flex will 
satisfy the equations of a first-order flex there, if the first-order flex is made 
0. But this alone is not enough to make it rigid, since the framework, 
consisting of the natural edges and vertices only, will be flexible unless all 
the natural faces are triangles. See Asimow and Roth [4, part I]. In a sense, 
the natural faces keep the natural vertices and edges from moving in or out 
at the first order, but the important observation is that the natural vertices in 
a natural face still cannot move apart at the second order. This allows us to 
use the theorem in the previous section about cabled frameworks to conclude 
that the second-order flex on the natural vertices is trivial. But then it is 
impossible for there to have been a non-trivial first-order flex to start with, 
since it forces the vertices in the interior of natural faces to move toward 
each of the natural vertices on its face at the second order. This is our plan 
for showing second-order rigidity. 

Suppose p = (p, ,..., py) describes the vertices of some triangulation of a 
disk in the plane. If p’ is an infinitesimal flex of an associated rod 
framework, then we regard that “vector field” as being defined at every point 
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in the disk by using the triangulation and extending linearly. That is, if x is 
in the triangle formed by (p,, pr, pj) and x = I, p, + I,p, + 1, p3, then 
X’ =I,p’, +A,& + &pi, A, +A, +I, = 1, li~0, i= 1,2,3. It is easy t0 

see that this infinitesimal deformation is trivial on each triangle. In particular 
if we consider pi, pi two vertices such that the arc form pi to p, lies in the 
disk and x,, x2 ,..., x, are the points between pi and pj that lie on edges 
(Fig. 18), then pi, x; ,..., xl,, pJ is an infinitesimal flex of the arc 
(Pi 7 xI)v (xI 3 x*),***9 (x,, pj) though of as a framework. Clearly this also 
extend to any order. 

We apply this idea to the following two lemmas. 

LEMMA 6.1. Let p = (p , ,..., py) be the vertices of some triangulation of 
a convex disk in the plane. Let p’ and p” be first- and second-order flexes of 
the associated rod framework in three-space such that q’ = 0, where 
q = (q, ,...) represent the vertices of the boundary. Let ri, rj be two of the 
natural vertices of p on the boundary. Then (ri - rj) . (r; - r$‘) < 0, and if 
the arc from ri to rj is in the boundary, then (ri - r,) (r; - rj’) = 0. 

Proof. Let xi ,..., x,, be the intersection points along a straight line 
segment from ri to rj. (If an interior edge is in the line segment just include 
its endpoints in the ~~5.) From the above remarks we know that p’, and pN 
induce a first- and second-order flex on this line segment with vertices 
(rivX~,-e9 X,,rj).S~ifwedelinex,=r~,x,+,=r~, 

(x;-x;+,)2+(x~-x~+L)‘(x~-x~+,)=o, k = O,..., n. 

Since ri - r, is a positive multiple of (xk - xk+ i), 

(ri - rj) (xi -xi+ 1) < 0, k = O,..., n, 

and adding (r, - rJ) (ry - r$‘) < 0, as desired. 
If ri and rj are on a natural edge then xi = 0, for k = l,..., n, so 

(r, - rj) (rj - rj) = 0. 

P. 
1 

FIGURE 18 
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LEMMA 6.2. Let p, p’, p” be as above where we assume in addition that 
r” = 0, where r = (rl ,...) are the natural vertices. (Also r’ = 0 of course.) 
Then p’ = 0. 

Proof Let pi be any vertex and rj a natural vertex on the boundary. 
Suppose pi # 0. From the calculation of the previous lemma we get 

(rj - pi) . (r; - p;) < 0 

since some x(,zx;+,, since rJ=O and p;#O. But rj’=O so 
p:( (rj - pi) > 0, for all rj. But this is impossible since pi is in the convex 
linear span of the rj’s. (For examtile, let pi = A, r, + ... A, rn, C li = 1, 
li > 0. Then rip; > 1, ri . pf’ + . .. I,r, . py = pi p/, j = l,..., n. But a 
weighted mean cannot be less than each of its terms.) Thus each p; = 0 as 
desired. 

THEOREM 6.1. Let jr be rod framework associated to any triangulation 
of a convex surface. Then F is second-order rigid. 

ProoJ Let p = (p , ,..., py) be the vertices of a triangulation, q = (ql ,...) 
those vertices of p that lie in the natural edges and natural vertices, and 
r = (ri ,.,.) the natural vertices of p. Suppose p’ and p” is a second-order flex 
of Y. By Theorem 5.2 q’ is trivial. By adding a trivial flex to all of p’ we 
may assume that q’ = 0. Let y be the cabled framework obtained with r as 
vertices and a Cauchy polygon on each natural face. 

By Lemma 6.1 and r’ = 0, r” is a first-order flex of F by definition. 
By Theorem 5.1 R is infinitesimally rigid. So we may assume r” = 0. By 

Lemma 6.2 of this section p’ = 0. Thus there is no non-trivial second-order 
flex, and jT is second-order rigid. 

Remark 6.1. Instead of adding a trivial flex at each stage as in the proof 
above, it is possible to apply Kuiper’s Eqs. (i) and (ii) of the Appendix. Here 
it seems best to only include the natural vertices in the collection of those 
points appearing in (i) and (ii). Theorem 5.2 implies that q’ is trivial in the 
above argument so r’ is trivial and thus 0 by (ii). Thus q’ = 0, or just 
knowing r’ = 0 by Remark 5.5 each qi is perpendicular to each face in which 
it sits and thus is 0 also. Then Lemma 6.1, applied as above, shows r” is a 
first-order flex of F and Kuiper’s equations imply r” = 0, so p’ = 0 by 
Lemma 6.2 as above. 

Interestingly the above argument can also show that the weak Alexandrov 
theorem implies the strong as mentioned in the Introduction. 

Remark 6.2. We can improve the above theorem somewhat. Namely, if 
we remove convex holes from the interior some of the natural faces, 
triangulate this surface with boundary, and take the associated rod 



CABLED FRAMEWORKS AND CONVEX SURFACES 293 

framework, it will still be second-order rigid. The idea here is the same as 
above except we must work a bit harder to create the cabled framework and 
to show that the vertices on the interior of natural faces do not move to the 
first order (assuming of course there were a non-trivial second-order flex). 

As a simple example of the above consider some convex surface where 
some of the natural faces are pentigons as pictured in Fig. 19 (e.g., a regular 
dodecahedron). 

If we remove the shaded portion and triangulate the rest, then the 
machinery we have already shows the resulting framework is second-order 
rigid. The disk minus the hole is clearly infinitesimally rigid in the plane, so 
when we retriangulate the whole convex surface and apply Alexandrov’s 
theorem we get that q’ is trivial as before. So we assume q’ = 0. We still 
have the cables for the Cauchy polygon so the same argument as above 
implies r” is trivial (so we assume r” = 0). To finally get p’ = 0 we see that 
each vertex in the relative interior of a natural face is in the convex linear 
span of some three of the natural r vertices of its natural face. The argument 
of Lemma 6.2 above applies and makes p’ = 0, as defined. 

Remark 6.3. With more work we can allow the holes to expand 
arbitrarily close to the natural edges, but if just one hole touches one edge in 
its relative interior, the resulting framework may be flexible as seen in 

FIGURE 19 

FIGURE 20 
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FIGURE 21 

Fig. 20, a triangulation of a tetrahedron with the shaded triangle (really a 4- 
gon) removed. 

Incidentally this is also a counterexample to Conjecture 4 of Griinbaum in 
his “Lectures on Lost Mathematics” [9]. 

Addendum. Here we show how to improve the above techniques to 
strengthen the results to allow “holes” in the natural faces of the convex 
surfaces. 

THEOREM 6.2. Let T be a framework obtained from a convex 
polyhedral surface by removing the interior of a convex polygonal hole 
(possibly empty) from each natural face and then triangulating the resulting 
surface with boundary (see Fig. 21). If the boundary of each hole intersects 
the boundary of the natural face at at most one point, a natural vertex, then 
X is second-order rigid. 

FIGURE 22 
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Proof: We first show a special case. Namely, if pI ,..., pv are the natural 
vertices (in order) of a natural face then we choose points &, p, ,..., pV where 
pi is near to p,, in the interior of the natural face Fig. 22). Let &, & ,..., p’,- , 
be defined by Gi = (pi, pi+ i) n (pi, pi+, ). Then the hole removed will be the 
convex linear span of p,, pz, A, h, A ,..., &-r, &. We triangulate this 
surface arbitrarily. We now proceed as before. Let p = vertices of ST, q = 
vertices of ST in the natural edges of the convex surface, r = natural vertices 
of the convex surface. It is clear that the triangulation of each natural face, 
even though it has a hole in it possibly, is infinitesimally rigid in the plane of 
that face. Let p’, p” be the second-order flex of Sr. Then by Alexandrov’s 
theorem, and our argument about projections, q’ is trivial. Thus we assume 
q’ = 0. Then r” may be regarded as a first-order flex of the framework 
obtained by using rods for the natural edges. However, by the way the holes 
are placed, each natural face has an altered Cauchy polygon imbedded in the 
surface away from the hole. The argument of Lemma 5.1 still applies then to 
show that the projection of r” is a first-order flex of this altered Cauchy 
polygon in the plane. Thus the projections are trivial in each plane, Alex- 
androv’s theorem applies again, and we conclude that r” is trivial. Thus we 
may assume r” = 0. But then the argument of Lemma 6.2 applies to each p, 
in the interior of the natural face in the following way. If pj is on the line 
segment from p, to pi, i = 2,..., V, in the notation above, then the proof of the 
lemma implies that p; = 0, and in fact any vertex pk on the line segment from 
pi to pi-i, pi, on pi+., must have pi = 0. From the way the hole was chosen 
this includes all the vertices in the natural face. Thus p’ = 0. Thus X is 
second-order rigid. 

To get the general case we observe that a triangulation such as the ones 
considered above can be made a subcomplex of any triangulation for any 
admissible collection of holes. Let F be the subframework-described above, 
and p the given one subdivided, and Sr the given one. If 9 is second-order 
rigid, clearly Y is. Since F is known to be second-order rigid, if p’, p” is 
second-order flex of X we know that p’ is trivial for the vertices of y. So as 
before we may assume these p’ = 0. But then p” for y is then a first-order 
flex. We know that for these flexes (which may be non-trivial) q” is trivial. 
Thus we may assume q” = 0 (the vertices of the natural edges). Then for any 
pj in X in the interior of a natural face, if we draw a line segment with pj in 
the interior with the endpoints in the natural edges (Fig. 23), since q” = 0, we 
know p; = 0. Thus p ’ = 0 and Sr itself is second-order rigid. 

Remark 6.4. The proof above fails for the example of the previous 
remark because the triangulation in the plane of the face with the hole is not 
infinitesimally rigid, even though it is rigid. We alter the example slightly as 
seen in Fig. 24. 

We remove a smaller convex hole (or slit) now which touches the natural 
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FIGURE 23 

FIGURE 24 

edge only in its interior. Note the framework in the plane of the face is 
infinitesimally rigid, but there is no way to show that the new vertices do not 
move at the p’ level, since there is no way to generate enough vertices, which 
are known not to move at the second level, which have the added vertices 
between them. 

APPENDIX: KUIPER'S DISCRETE ANGULAR MOMENTUM 

In [ 121 Kuiper mentions a method which would restrict the motion of a 
finite collection of particles (in R3) such that if their motion is part of a rigid 
motion of all of R3, then they stay fixed. 

Call the points p(t) = (p,(t),..., p,(t)), 0 < t < 1, as before. First he 
assumes the baricenter or center of gravity is fixed at 0. 

$, z pi(t) = 0. 0) 
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The second condition is 

C Pi(O) X PiCt> = O9 (ii) 

which is a kind of “discrete angular momentum.” (Note. xi pi(t) x p:(t) is 
the usual angular momentum.) 

For our purposes we need to show two things: 

A. If (i) and (ii) hold (and the p,(O)% do not lie on a line), and pi(t) = 
T,pi(O), 0 < t < 1, for r, a continuous path in the group of rigid motions on 
R 3, then T1 = identity. 

B. If p(t) is any continuous motion of the points, then there is a rigid 
euclidean motion Tt such that (i) and (ii) hold for T,p(t). 

We also observe that an infinitesimal version of A holds. Namely if 
xi p; = 0 and xi pi x pi = 0, where pi = r X pi + t is a trivial infinitesimal 
motion, then pi = 0 for all i. This is a well-known fact from physics. If a 
rigid body moves with 0 linear and angular momentum it is not moving. 
Note that if the points pi move satisfying (i) and (ii), then at t = 0 the linear 
and angular momentum is automatically zero. 

For A we observe that (i) implies that the center of gravity 0 is a fixed 
point, so T, is a rotation. Suppose Tf is a rotation about the vector V, in IF?-‘. 
Then each pi(O) x pi(t) is a scalar multiple of u,, all of the same sign, not 
zero unless T, = identity. So (ii) insures each T, = identity and A holds. 

For B there is no problem in finding T[ such that (i) holds for T,p,(t). So 
we assume (i) holds to start with. Write pi(t) = (ail, a,, , ai3). Then 

[,$ Pi(O) X PiCt) = ii, Pi X @ilel+ aizez + ai3e3) 

=,$ (g, ‘i.iP.f) xejy 

where pi = p,(O), and e,i, j = 1,2,3, are the standard basis for R”. Let P be 
the 3 x 3 matrix whose columns for j = 1,2,3 are 

Let P be an orthogonal matrix so that 

P = SP’, 
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where S is a symmetric 
desired matrix because 

ROBERTCONNELLY 

matrix and ( )’ denotes the transpose. Then P is the 

T cdtpi(O) X pi(t) = 
I 

F (TaijpPi) x<i 

=YF zaijpi Xqi 
4 ) .i 

= C S(ej) X ej 

= 0, 

since S is symmetric. 
Thus there is a T, such that (ii) holds, and this shows B. It is also clear 

that T, can be chosen as a continuous function of t. 
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