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Plan of the lectures

Underlying theme

Mathematical techniques for dynamic random graph models

Effect of limited choice

Lecture content
Lecture 1: Critical random graphs, Bounded size rules [Scaling limits]

Lecture 2: Preferential attachment models, random trees [Local Weak
convergence]
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Lecture 1

General motivation

Critical random graphs

Bounded size rules and the emergence of the giant

Method of proof (Joint work with Budhiraja and Wang)

Extensions: “Explosive percolation”
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Lecture 2

Preferential attachment models

Convergence of random trees

Implications: Convergence of the spectral measure (Arnab Sen, Steve
Evans, SB)

Power of choice in random trees

Local weak convergence (Angel, Pemantle, SB)
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Power of two choices

Application setting

Consider n bins (servers) into which we are going to sequentially place n
balls (jobs).

Centralized scheme (asking bins current load) computationally
expensive and time consuming

Simplest scheme, each stage choose bin at random and place ball

Each ball has ∼ Poi(1) # of balls at end

Max load ∼ Θ(log n/ log(log n))

Limited choice Choose 2 bins u.a.r.

Put ball in bin with minimal # of balls at that stage

Max load ∼ Θ(log log n)
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Network models

Motivation
Last few years have seen an explosion in empirical data on real world
networks.

Has motivated an interdisciplinary study in understanding the
emergence of properties of these network models.

Formulation of many mathematical models of network formation.

Limited choice
Incorporate effect of limited choice in network formation

Mathematically understand explosive percolation

Simple variants of standard models give much better fit but hard to
mathematically analyze
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Erdos-Renyi random graph

Setting

n vertices

Edge probability t/n

Phase transition at t = 1

# of edges ∼ n/2

t < 1, C1(t) ∼ log n

t > 1, C1 ∼ f(t)n

t = 1 +
1

n1/3

Beautiful math theory
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Bounded size rules

The Erdős-Rényi random graph of GER
n

Gn(0) = 0n the graph with n vertices but no edges
Each step, choose one edge e uniformly among all

(
n
2

)
possible

edges, and add it to the graph.

Gn(t): add edges at rate n/2.
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The Erdős-Rényi random graph of GER
n

Gn(0) = 0n the graph with n vertices but no edges
Each step, choose one edge e uniformly among all

(
n
2

)
possible

edges, and add it to the graph.
Gn(t): add edges at rate n/2.

Shankar Bhamidi Limited choice in networks
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The Erdős-Rényi random graph process

The phase transition of GER
n (t)

The giant component: the component contains Θ(n) vertices.

Let C(k)
n (t) be the size of the kth largest component

tc = tER
c = 1 is the critical time.

(super-critical) when t > 1, C(1)
n = Θ(n), C(2)

n = O(log n).

(sub-critical) when t < 1, C(1)
n = O(log n), C(2)

n = O(log n).

(critical) when t = 1, C(1)
n ∼ n2/3, C(2)

n ∼ n2/3.

after initial work by [ER1960], further work by [JKLP1994], finally proved
by [Aldous1997].

Merging dynamics through the scaling window of the components
described by a Markov Process called the multiplicative coalescent.

Formal existence of multiplicative coalescent.
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Bounded size rules: Effect of limited choice

[Bohman, Frieze 2001]The Bohman-Frieze random graph

Motivated by very interesting question of D. Achlioptas. Delay
emergence of giant component using simple rules

Each step, two candidate edges (e1, e2) chosen uniformly among all(
n
2

)
×
(
n
2

)
possible pairs of ordered edges. If e1 connect two singletons

(component of size 1), then add e1 to the graph; otherwise, add e2.
Shall consider continuous time version wherein between any ordered
pair of edges, poisson process with rate 2/n3.
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The Bohman-Frieze process
[Bohman, Frieze 2001] The delay of phase transition
Consider the continuous time version GBF

n (t), then there exists ε > 0
such that at time tER

c + ε,

C(1)n (tER
c + ε) = o(n)

[Spencer, Wormald 2004] The critical time
tBF
c ≈ 1.1763 > tER

c = 1.
(super-critical) when t > tc, C(1)n = Θ(n), C(2)n = O(log n).
(sub-critical) when t < tc, C(1)n = O(log n), C(2)n = O(log n).

Near Criticality
Janson and Spencer (2011) analyzed how s2(·), s3(·)→∞ as
t ↑ tc.
Kang, Perkins and Spencer (2011) analyze the near subcritical
(tc − ε) regime.
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General bounded size rules

Fix K ≥ 1

Let ΩK = {1, 2, . . . ,K, ω}

General bounded size rule: subset F ⊂ Ω4
K .

Pick 4 vertices uniformly at random. If (c(v1), c(v2), c(v3), c(v4)) ∈ F then
choose edge e1 else e2

BF model
K = 1, F = {(1, 1, α, β)}.
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Applied context
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Main questions

Question: when t = tc, do we have C(1)
n ∼ n2/3? How do components

merge?

scaling window?

What about the surplus of the largest components in the scaling
window?
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Notation

C(i)
n (t) size of i-th largest component at time t

Surplus (Complexity) of a component

ξ(i)

n (t) = E(C(i)

n (t))− (C(i)

n (t)− 1)

l2↓ =
{

(xi)i≥1 : x1 ≥ x2 ≥ · · · ≥ 0,
∑
i x

2
i <∞

}
l2,∗↓ =

{
(xi, yi)i≥1 : (xi) ∈ l2↓, yi ∈ Z+,

∑
i xiyi <∞

}
d((x, y), (x′, y′)) =

√∑
i(xi − x′i)2 +

∑
i |xiyi − x′iy′i|+

∑∞
i=1

|yi−y′i|
2i
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The Erdős-Rényi random graph

Theorem (Aldous 1997)

Let (C(1)n (t), C(2)n (t), ...) be the component sizes of GER
n (t) in decreasing order

and ξi(t) the corresponding complexity (surplus). Define rescaled size vector
C∗n(λ), −∞ < λ < +∞ as(

(
1

n2/3
C(i)n (tc +

λ

n1/3
),

ξ(i)

n (tc +
λ

n1/3
)) : i ≥ 1

)
Then Cn(λ)

d−→ X(λ) = (X(λ), ξ(λ)). Here (X(λ),−∞ < λ < +∞) is the
standard multiplicative coalescent, a continuous time Markov process on the
state space l2↓.

Distribution for fixed λ
For fixed λ ∈ R, let

Wλ(t) = W (t) + λt− t2

2
,

W̄λ(·) is the above process reflected at 0.
X(λ) has same distribution as lengths of excursions away from 0
of W̄ (·) arranged in decreasing order
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The standard multiplicative coalescent X(λ)

Think of each edge having a Poisson rate 1/n clock
C̄i(λ) = n−2/3Ci(1 + λ/n1/3)

At some time λ, rate at which two components i, j merge:

Ci(1 +
λ

n1/3
)Cj(1 +

λ

n1/3
)

· 1

n
· 1

n1/3
= C̄i(λ)C̄j(λ)

Dynamics of X(λ)

suppose X(λ) = (x1, x2, x3, ...), each xl is viewed as the size of a
cluster.
each pair of clusters of sizes (xi, xj) merges at rate xixj into a
cluster of size xi + xj .
if xi, xj is merging, then (x1, x2, x3, ...) (x′1, x

′
2, x
′
3, ...) where the

latter is the re-ordering of {xi + xj , xl : l 6= i, j}.
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λ

n1/3
) · 1

n
· 1

n1/3

= C̄i(λ)C̄j(λ)

Dynamics of X(λ)

suppose X(λ) = (x1, x2, x3, ...), each xl is viewed as the size of a
cluster.
each pair of clusters of sizes (xi, xj) merges at rate xixj into a
cluster of size xi + xj .
if xi, xj is merging, then (x1, x2, x3, ...) (x′1, x

′
2, x
′
3, ...) where the

latter is the re-ordering of {xi + xj , xl : l 6= i, j}.
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Bounded size rules

Theorem (Bhamidi, Budhiraja, Wang, 2012)

Let (C(1)n (t), C(2)n (t), ...) be the component sizes of GBSR
n (t) in decreasing

order and ξi(t) the corresponding surplus. Define the rescaled size
vector Cn(λ), −∞ < λ < +∞ as the vector

((C̄i(λ), ξi(λ) : i ≥ 1) =

(
β1/3

n2/3
C(i)n (tc +

β2/3αλ

n1/3
), ξi(tc +

β2/3αλ

n1/3
) : i ≥ 1

)

where α, β are constants determined by the BSR process. Then

Cn(λ)
d−→ X(λ)

where (X(λ),−∞ < λ < +∞) is the standard augmented
multiplicative coalescent and convergence happens in l2↓ with metric d.
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Techniques

Branching process methods: Great tool above and below criticality.

Exploration walks: Very refined results presence of lots of
independence, including structure of components

Differential equation method: Technical, standard workhorse for such
models. Can be pushed all the way to the critical window.
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Typical method of proof

Exploration of the graph

Explore the components of the graph one by one

choose a vertex. Let c(1) be the number of children of this vertex

choose one of the children of this vertex, let c(2) be number of children
of this vertex

continue, when one component completed move onto another
component

Define Z(0) = 0, Z(i) = Z(i− 1) + c(i)− 1

Z(·) = −1 for the first time when we finish exploring component 1, then
hits −2 for first time when exploring component 2 and so on.

Try to use Martingale functional limit theorem to show
1

n1/3Z(n2/3t)→d W
λ(t)
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Bounded size rules

Hard to think about exploration process especially at criticality

Turns out: Easier to analyze the entire process
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Proof idea: The Bohman-Frieze process

Where does tc come from ?
Define Xn(t) = # of singletons, S2(t) =

∑
i(C

(i)
n (t))2, S3(t) =

∑
i(C

(i)
n )3.

and x̄n(t) = Xn(t)/n, s̄2(t) = S2/n, s̄3(t) = S3/n.
Then [Spencer, Wormald 2004] for any fix t > 0,

x̄n(t)
P−→ x(t), s̄2(t)

P−→ s2(t), s̄3(t)
P−→ s3(t)
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Why?

Behavior of xn(t)

In small time interval [t, t+ ∆(t)), xn(t)→ xn(t)− 1/n at rate
2

n3

((
n

2

)
−
(
Xn(t)

2

))
Xn(t)(n−Xn(t)) ∼ n(1− x2n(t))xn(t)(1− xn(t))

[t, t+ ∆(t)), xn(t)→ xn(t)− 2/n at rate
2

n3

[(
Xn(t)

2

)(
n

2

)
+

((
n

2

)
−
(
Xn(t)

2

))(
Xn(t)

2

)]
∼ 1

2
(x2n(t)+(1−x2n(t)x2n(t)))

Suggests that xn(t)→ x(t) where
x′(t) = −x2(t)− (1− x2(t))x(t) for t ∈ [0,∞, ) x(0) = 1

Similar analysis suggests that for s̄2(t), s̄3(t)

s′2(t) = x2(t) + (1− x2(t))s22(t) for t ∈ [0, tc), s2(0) = 1

s′3(t) = 3x2(t) + 3(1− x2(t))s2(t)s3(t) for t ∈ [0, tc), s3(0) = 1.
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The Bohman-Frieze process

Scaling exponents of s2 and s3 (Janson, Spencer 11)
Functions x(t), s2(t), s3(t) are determined by some differential
equations
Differential equations imply ∃ constants α, β such that t ↑ tc

s2(t) ∼
α

tc − t

s3(t) ∼ β(s2(t))
3 ∼ β α3

(tc − t)3
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I: Regularity conditions of the component sizes at
“−∞”

Let C̄(λ) = n−2/3C
(
tc + β2/3αλ/n1/3

)
.

For δ ∈ (1/6, 1/5) let tn = tc − n−δ = tc + β2/3α λn

n1/3 , then
λn = −β2/3αn1/3−δ.

Need to verify the three conditions∑
i

(
C̄i(λn)

)3[∑
i

(
C̄i(λn)

)2]3 P−→ 1 ⇔ n2S3(tn)

S3
2(tn)

P−→ β

1∑
i

(
C̄i(λn)

)2 + λn
P−→ 0 ⇔ n4/3

S2(tn)
− n−δ+1/3

α

P−→ 0

C̄1(λn)∑
i

(
C̄i(λn)

)2 P−→ 0 ⇔ n2/3C(1)
n (tn)

S2(tn)

P−→ 0
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II: Dynamics of merging in the critical window

The dynamic of merging

In any small time interval [t, t+ dt), two components i and j merge at
rate

2

n3

[(
n

2

)
−
(
Xn(t)

2

)]
Ci(t)Cj(t)

∼ 1

n
(1− x̄2(t))Ci(t)Cj(t)

Let λ = (t− tc)n1/3/αβ2/3 be rescaled time paramter, rate at which two
components merge

γij(λ) ∼
(1− x2(tc + β2/3α λ

n1/3 ))

n

β2/3α

n1/3
Ci
(
tc +

β2/3αλ

n1/3

)
Cj
(
tc +

β2/3αλ

n1/3

)

= α

(
1− x2

(
tc + β2/3α

λ

n1/3

))
C̄i(λ)C̄j(λ)

= C̄i(λ)C̄j(λ) since α(1− x2(tc)) = 1
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How to check regularity conditions

Analysis of C(1)
n (t)

Key point: need to get refined bounds on maximal component in barely
subcritical regime.

known result: for fixed t < tc, C(1)
n (t) = O(log n).

not enough, since we want a sharp upper bound when t ↑ tc.

Lemma (Bounds on the largest component)
Let δ ∈ (0, 1/5), tc be the critical time for the BF process, C(1)

n (t) be the size of
the largest component. Then there exists a constant B = B(δ) such that as
n→ +∞,

P{C(1)

n (t) ≤ B log4 n

(tc − t)2
for all t < tc − n−δ} → 1

Proof strategy: Coupling with a near critical multi-type branching process on
an infinite dimensional type space. delicate analysis of the maximal
eigenvalue.
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Random graph with Immigrating doubletons
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Sketch of the proof
Regularity condition at time λ = −∞
Check the following properties for the un-scaled component sizes. For
δ ∈ (1/6, 1/5), and tn = tc − n−δ,

n2S3(tn)

S3
2(tn)

P−→ β (1)

n4/3

S2(tn)
− n−δ+1/3

α

P−→ 0 (2)

n2/3C(1)
n (tn)

S2(tn)

P−→ 0 (3)

Analysis of S2(t), S3(t)

above relations hold for limiting functions s2, s3 for tn.

Delicate stochastic analytic argument combined with result on C(1)
n (t) to

show this holds for S2, S3 near criticality.
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Work in progress

Explosive percolation
In 2009, Achlioptas,D’Souza and Spencer considered “product rule”.
Conjectured that this process exhibits Explosive percolation
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Truncated product rule

Fix K
Choose 2 edges e1 = (v1, v2) and e2 = (v3, v4) at random

If max{C(v1), C(v2)C(v3), C(v4)} ≤ K, then use the edge which
minimizes of min{C(v1)C(v2), C(v3)C(v4)}.

Else use e2.

Work in progress

Consider the rescaled and re-centered component sizes

CK(λ) =

(
1

n2/3
C(i)

K

(
tc(K) + γ(K)

λ

n1/3

)
: i ≥ 1

)
λ ∈ R

Then we have (CK(λ) : λ ∈ R)
d−→ (X(λ) : λ ∈ R) as n→∞.

tc(K)→ tc; γ(K) → 0
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Choose 2 edges e1 = (v1, v2) and e2 = (v3, v4) at random

If max{C(v1), C(v2)C(v3), C(v4)} ≤ K, then use the edge which
minimizes of min{C(v1)C(v2), C(v3)C(v4)}.

Else use e2.

Work in progress

Consider the rescaled and re-centered component sizes

CK(λ) =

(
1

n2/3
C(i)

K

(
tc(K) + γ(K)

λ

n1/3

)
: i ≥ 1

)
λ ∈ R

Then we have (CK(λ) : λ ∈ R)
d−→ (X(λ) : λ ∈ R) as n→∞.

tc(K)→ tc; γ(K) → 0
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Other questions

“Natural questions”

What happens if we start with a configuration other than the empty
graph?

Related to the entrance boundary of the multiplicative coalescent.

Unnatural next questions

Scaling limits?

Conjecture: Rescale each edge by n−1/3

Largest components converge to random fractals (Gromov-Hausdorff
sense), the same limits as for Erdos-Renyii

Shankar Bhamidi Limited choice in networks



Other questions

“Natural questions”

What happens if we start with a configuration other than the empty
graph?

Related to the entrance boundary of the multiplicative coalescent.

Unnatural next questions

Scaling limits?

Conjecture: Rescale each edge by n−1/3

Largest components converge to random fractals (Gromov-Hausdorff
sense), the same limits as for Erdos-Renyii

Shankar Bhamidi Limited choice in networks



Minimal spanning tree

Connected Graph, put distinct positive edge lengths (road network)

Want to get a spanning graph,

minimal total weight

Choose spanning tree with minimal total weight: MST

Enormous literature in applied sciences

Deep connections to statistical physics models of disorder
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Statistical physics models of disorder

Weak disorder (First passage percolation)

Weight of a path = sum of weight on edges

Choose optimal path

Strong disorder (Minimal spanning tree)

Weight of path = max edge on the path

Choose optimal path
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Adario-Berry, Broutin, Goldschmidt + Miermont

Minimal spanning tree

Consider complete graph, each edge given iid continuous edge length

Mn minimal spanning tree

Asymptotics?

For the Erdos-Renyi, the largest components at criticality rescaled by
n−1/3 converge to limiting random fractals [BBG]

This implies that n−1/3Mn converges to a limiting random fractal
[BBGM]

Open Problem: Show that for these models, have same limiting
structure
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