Limited choice and randomness in evolution of networks Lecture 2
 Cornell Probability summer school July 2012

Shankar Bhamidi

Department of Statistics and Operations Research University of North Carolina

July, 2012

Motivation

Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.

Motivation

Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.
- One of the most popular model: preferential attachment. Among the first models for which explicit power-law degree was derived.

Motivation

Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.
- One of the most popular model: preferential attachment. Among the first models for which explicit power-law degree was derived.

Math world

- Main thrust: asymptotic information on the degree distribution.

Motivation

Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.
- One of the most popular model: preferential attachment. Among the first models for which explicit power-law degree was derived.

Math world

- Main thrust: asymptotic information on the degree distribution.
- Largely based on Recursions and concentration inequalities.

Motivation

Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.
- One of the most popular model: preferential attachment. Among the first models for which explicit power-law degree was derived.

Math world

- Main thrust: asymptotic information on the degree distribution.
- Largely based on Recursions and concentration inequalities.
- Global characteristics such as spectral distribution of adjacency matrix?

Motivation

Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.
- One of the most popular model: preferential attachment. Among the first models for which explicit power-law degree was derived.

Math world

- Main thrust: asymptotic information on the degree distribution.
- Largely based on Recursions and concentration inequalities.
- Global characteristics such as spectral distribution of adjacency matrix?
- Variants such as limited choice or non-local preferential attachment. Analysis?

Outline of the talk

- Preferential attachment model
- Continuous time embedding
- Global results
- Convergence of local neighborhoods
- Construction of sin-trees (single infinite path).

Outline of the talk

- Preferential attachment model
- Continuous time embedding
- Global results
- Convergence of local neighborhoods
- Construction of sin-trees (single infinite path).
- Asymptotic degree distribution
- Random adjacency matrices and Spectra (Arnab Sen, Steve Evans, SB)
- Preferential attachment with choice (Omer Angel, Robin Pemantle, SB)

Basic model

Method of growing trees

Method of recursively growing random trees

- At time 1 start with a single node

Basic model

Method of growing trees

Method of recursively growing random trees

- At time 1 start with a single node
- Let \mathcal{T}_{n} be the tree at time n.

Basic model

Method of growing trees

Method of recursively growing random trees

- At time 1 start with a single node
- Let \mathcal{T}_{n} be the tree at time n. Given a (possibly random) function $f(\cdot, n): V_{n} \rightarrow \mathbb{R}^{+}$.

Basic model

Method of growing trees

Method of recursively growing random trees

- At time 1 start with a single node
- Let \mathcal{T}_{n} be the tree at time n. Given a (possibly random) function $f(\cdot, n): V_{n} \rightarrow \mathbb{R}^{+}$.
- Node $n+1$ attaches itself to a node in \mathcal{T}_{n} with probability proportional to $f(\cdot, n)$.

Basic model

Method of growing trees

Method of recursively growing random trees

- At time 1 start with a single node
- Let \mathcal{T}_{n} be the tree at time n. Given a (possibly random) function $f(\cdot, n): V_{n} \rightarrow \mathbb{R}^{+}$.
- Node $n+1$ attaches itself to a node in \mathcal{T}_{n} with probability proportional to $f(\cdot, n)$.
- Most examples we consider, $f(v, n)=f(D(v, n))$.

Basic model

Method of growing trees

Method of recursively growing random trees

- At time 1 start with a single node
- Let \mathcal{T}_{n} be the tree at time n. Given a (possibly random) function $f(\cdot, n): V_{n} \rightarrow \mathbb{R}^{+}$.
- Node $n+1$ attaches itself to a node in \mathcal{T}_{n} with probability proportional to $f(\cdot, n)$.
- Most examples we consider, $f(v, n)=f(D(v, n))$.
- $D(v, n)=$ out-degree of node v at time n.

Examples of attractiveness functions

Attachment trees
(1) YSBA model: $f(k)=k+1$

Examples of attractiveness functions

Attachment trees
(1) YSBA model: $f(k)=k+1$
(2) Linear Preferential attachment model: $f(k)=k+1+a, a>0$

Examples of attractiveness functions

Attachment trees
(1) YSBA model: $f(k)=k+1$
(2) Linear Preferential attachment model: $f(k)=k+1+a, a>0$
(3) Random fitness models $f_{v} \sim \nu$.
(a) Multiplicative fitness: $f(k)=f_{v}(k+1)$.
(b) Additive fitness: $f(k)=k+1+f_{v}$.

Examples of attractiveness functions

Attachment trees
(1) YSBA model: $f(k)=k+1$
(2) Linear Preferential attachment model: $f(k)=k+1+a, a>0$
(3) Random fitness models $f_{v} \sim \nu$.
(a) Multiplicative fitness: $f(k)=f_{v}(k+1)$.
(b) Additive fitness: $f(k)=k+1+f_{v}$.
(4) Sublinear Pref Attachment: $f(k)=(k+1)^{\alpha}, 0<\alpha<1$

Main math idea

Simple idea [Karlin-Athreya]

- Suppose we have vertex set $\{1,2, \ldots, m\}$ with associated weights $\left\{d_{1}, d_{2}, \ldots d_{m}\right\}$

Main math idea

Simple idea [Karlin-Athreya]

- Suppose we have vertex set $\{1,2, \ldots, m\}$ with associated weights $\left\{d_{1}, d_{2}, \ldots d_{m}\right\}$
- Want to selected vertex i with probability proportional to d_{i}

Main math idea

Simple idea [Karlin-Athreya]

- Suppose we have vertex set $\{1,2, \ldots, m\}$ with associated weights $\left\{d_{1}, d_{2}, \ldots d_{m}\right\}$
- Want to selected vertex i with probability proportional to d_{i}
- Simple way: Let X_{i} independent rate d_{i} exponential r.v.s
- Let J be index

$$
X_{J}=\min _{1 \leq i \leq m} X_{i}
$$

- $\mathbb{P}(J=i) \propto d_{i}$

Continuous time construction

Point process corresponding to attractiveness function f

- \mathcal{P} is Markov pure birth process with rate description

$$
\mathbb{P}(\mathcal{P}(t, t+d t]=1 \mid \mathcal{P}(t)=k)=f(k) d t
$$

Continuous time construction

Point process corresponding to attractiveness function f

- \mathcal{P} is Markov pure birth process with rate description

$$
\mathbb{P}(\mathcal{P}(t, t+d t]=1 \mid \mathcal{P}(t)=k)=f(k) d t
$$

For example, for $f(k)=k+1$ (usual preferential attachment model) we get the Yule process.

Continuous time construction

Point process corresponding to attractiveness function f

- \mathcal{P} is Markov pure birth process with rate description

$$
\mathbb{P}(\mathcal{P}(t, t+d t]=1 \mid \mathcal{P}(t)=k)=f(k) d t
$$

For example, for $f(k)=k+1$ (usual preferential attachment model) we get the Yule process.

- Corresponding continuous time branching process $\mathcal{F}(t)$:
(1) Start with a single node at time 0 giving birth to children at times of \mathcal{P}.
(2) Each node born behaves in the same manner (has it's own independent point process of births).

Continuous time construction

Point process corresponding to attractiveness function f

- \mathcal{P} is Markov pure birth process with rate description

$$
\mathbb{P}(\mathcal{P}(t, t+d t]=1 \mid \mathcal{P}(t)=k)=f(k) d t
$$

For example, for $f(k)=k+1$ (usual preferential attachment model) we get the Yule process.

- Corresponding continuous time branching process $\mathcal{F}(t)$:
(1) Start with a single node at time 0 giving birth to children at times of \mathcal{P}.
(2) Each node born behaves in the same manner (has it's own independent point process of births).

Key connection

$T_{n}=\inf \{t: \mathcal{F}(t)=n\}$ then $\mathcal{F}\left(T_{n}\right) \stackrel{d}{=} \mathcal{T}_{n}^{f}$.

Branching process theory

Asymptotics

Conjectured by Euler. Developed by Jagers and Nerman.

- Processes grow exponentially: $|\mathcal{F}(t)| \sim e^{\lambda t}$

Branching process theory

Asymptotics

Conjectured by Euler. Developed by Jagers and Nerman.

- Processes grow exponentially: $|\mathcal{F}(t)| \sim e^{\lambda t}$
- Here λ is a very important characteristic : called the Malthusian rate of growth

Branching process theory

Asymptotics

Conjectured by Euler. Developed by Jagers and Nerman.

- Processes grow exponentially: $|\mathcal{F}(t)| \sim e^{\lambda t}$
- Here λ is a very important characteristic : called the Malthusian rate of growth
- Given by the formula:

$$
\mathbb{E}\left(\mathcal{P}\left(T_{\lambda}\right)\right)=1
$$

$T_{\lambda} \sim \exp (\lambda)$.

Exact result

More precisely, under technical conditions $\left(\mathbb{E}\left(\mathcal{P}\left(T_{\lambda}\right) \log ^{+} \mathcal{P}\left(T_{\lambda}\right)\right)<\infty\right)$

$$
\begin{array}{cl}
\frac{|\mathcal{F}(t)|}{e^{\lambda t}} \longrightarrow{ }_{\text {a.s. }} W & W>0 \\
& T_{n} \sim \frac{1}{\lambda} \log n \pm O_{P}(1)
\end{array}
$$

Case Study: Usual preferential attachment

$$
f(k)=k+1
$$

- Offspring distribution: $\mathcal{P}(\cdot)=$ Yule process

Case Study: Usual preferential attachment

$f(k)=k+1$

- Offspring distribution: $\mathcal{P}(\cdot)=$ Yule process
- Malthusian rate of growth:

$$
\lambda=2
$$

- degree of the root $=\mathcal{P}_{\rho}\left(T_{n}\right)$
- $T_{n} \sim \frac{1}{2} \log n \pm O_{P}(1)$.

Case Study: Usual preferential attachment

$f(k)=k+1$

- Offspring distribution: $\mathcal{P}(\cdot)=$ Yule process
- Malthusian rate of growth:

$$
\lambda=2
$$

- degree of the root $=\mathcal{P}_{\rho}\left(T_{n}\right)$
- $T_{n} \sim \frac{1}{2} \log n \pm O_{P}(1)$. Yule process also grows exponentially: $\mathcal{P}(t) \sim e^{t}$

root degree asymptotics

$\operatorname{deg}_{n}(\rho)=\mathcal{P}\left(\frac{1}{2} \log n+O_{P}(1)\right) \sim O_{P}\left(e^{\frac{1}{2} \log n}\right)=O_{P}(\sqrt{n})$

Case Study: Usual preferential attachment

$f(k)=k+1$

- Offspring distribution: $\mathcal{P}(\cdot)=$ Yule process
- Malthusian rate of growth:

$$
\lambda=2
$$

- degree of the root $=\mathcal{P}_{\rho}\left(T_{n}\right)$
- $T_{n} \sim \frac{1}{2} \log n \pm O_{P}(1)$. Yule process also grows exponentially: $\mathcal{P}(t) \sim e^{t}$

root degree asymptotics

$\operatorname{deg}_{n}(\rho)=\mathcal{P}\left(\frac{1}{2} \log n+O_{P}(1)\right) \sim O_{P}\left(e^{\frac{1}{2} \log n}\right)=O_{P}(\sqrt{n})$ More refined analysis gives

$$
\frac{\operatorname{deg}_{n}(\rho)}{\sqrt{n}} \xrightarrow{\text { a.s. }} Z \quad Z \text { has explicit recursive construction }
$$

Maximal degree

Basic heuristics for all the models

- Due to exponential growth of the models in the natural "time scale", maximal degree occurs in a finite neighborhood of the root.

Maximal degree

Basic heuristics for all the models

- Due to exponential growth of the models in the natural "time scale", maximal degree occurs in a finite neighborhood of the root.
- For usual preferential attachment model, using explicit distributional properties of Yule process easy to conclude, for any given $\epsilon>0 \exists K_{\epsilon}$

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(\frac{\max ^{\operatorname{deg}_{n}}}{\sqrt{n}}>K_{\epsilon}\right)<\epsilon
$$

Maximal degree

Basic heuristics for all the models

- Due to exponential growth of the models in the natural "time scale", maximal degree occurs in a finite neighborhood of the root.
- For usual preferential attachment model, using explicit distributional properties of Yule process easy to conclude, for any given $\epsilon>0 \exists K_{\epsilon}$

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(\frac{\operatorname{max~deg}_{n}}{\sqrt{n}}>K_{\epsilon}\right)<\epsilon
$$

- With a bit more work, possible to deduce distributional convergence for the maximal degree.
- Example of interesting results: Sublinear pref attachment $f(k)=(k+1)^{\alpha}$

$$
\frac{\operatorname{deg}_{n}(\rho)}{(\log n)^{\frac{1}{1-\alpha}}} \xrightarrow{P}\left(\frac{1}{\theta(\alpha)}\right)^{\frac{1}{1-\alpha}}
$$

Height

Kingman's result

Let $B_{k}:=$ first time that an individual in the $k^{\text {th }}$ generation (namely an individual at graph distance k from the root) is born.

Height

Kingman's result

Let $B_{k}:=$ first time that an individual in the $k^{\text {th }}$ generation (namely an individual at graph distance k from the root) is born.

There exists a limit constant γ such that:

$$
\frac{B_{k}}{k} \xrightarrow{\text { a.s. }} \gamma_{\text {model }}
$$

Height

Kingman's result

Let $B_{k}:=$ first time that an individual in the $k^{\text {th }}$ generation (namely an individual at graph distance k from the root) is born.

There exists a limit constant γ such that:

$$
\frac{B_{k}}{k} \xrightarrow{\text { a.s. }} \gamma_{\text {model }}
$$

For us we have

$$
B_{h_{n}} \leq T_{n} \leq B_{h_{n}+1}
$$

Height

Kingman's result

Let $B_{k}:=$ first time that an individual in the $k^{\text {th }}$ generation (namely an individual at graph distance k from the root) is born.

There exists a limit constant γ such that:

$$
\frac{B_{k}}{k} \xrightarrow{\text { a.s. }} \gamma_{\text {model }}
$$

For us we have

$$
B_{h_{n}} \leq T_{n} \leq B_{h_{n}+1}
$$

Thus

$$
\frac{B_{h_{n}}}{h_{n}} \leq \frac{T_{n}}{h_{n}} \leq \frac{B_{h_{n}+1}}{h_{n}}
$$

Now use the fact that

$$
\frac{T_{n}}{\frac{1}{\lambda} \log n} \xrightarrow{P} 1 \Rightarrow \frac{h_{n}}{\log n} \xrightarrow{P} C_{\text {model }}
$$

Local asymptotics

Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).

Local asymptotics

Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).
- Local neighborhood of a random node asymptotically looks like neighborhood of the root of appropriately constructed sin-tree.

Local asymptotics

Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).
- Local neighborhood of a random node asymptotically looks like neighborhood of the root of appropriately constructed sin-tree. Infinite path represents the "path to the root".

Age of an individual

$\mathbb{P}\left(\operatorname{Age}\left(V_{n}\right)>10 \mid \mathcal{F}(t)\right)=\frac{N(t-10)}{N(t)}$

Local asymptotics

Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).
- Local neighborhood of a random node asymptotically looks like neighborhood of the root of appropriately constructed sin-tree. Infinite path represents the "path to the root".

Age of an individual

$\mathbb{P}\left(\operatorname{Age}\left(V_{n}\right)>10 \mid \mathcal{F}(t)\right)=\frac{N(t-10)}{N(t)} \sim \frac{W e^{\lambda(t-10)}}{W e^{\lambda t}}$

Local asymptotics

Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).
- Local neighborhood of a random node asymptotically looks like neighborhood of the root of appropriately constructed sin-tree. Infinite path represents the "path to the root".

Age of an individual

$$
\mathbb{P}\left(\operatorname{Age}\left(V_{n}\right)>10 \mid \mathcal{F}(t)\right)=\frac{N(t-10)}{N(t)} \sim \frac{W e^{\lambda(t-10)}}{W e^{\lambda t}}=e^{-10 \lambda}=\mathbb{P}\left(T_{\lambda}>10\right)
$$

Local asymptotics

Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).
- Local neighborhood of a random node asymptotically looks like neighborhood of the root of appropriately constructed sin-tree. Infinite path represents the "path to the root" .

Age of an individual

$$
\mathbb{P}\left(\operatorname{Age}\left(V_{n}\right)>10 \mid \mathcal{F}(t)\right)=\frac{N(t-10)}{N(t)} \sim \frac{W e^{\lambda(t-10)}}{W e^{\lambda t}}=e^{-10 \lambda}=\mathbb{P}\left(T_{\lambda}>10\right)
$$

Suggests tree "below" random node looks like $\mathcal{F}\left(T_{\lambda}\right)$ i.e. branching process run for random exponential amount of time.

Sin-tree

Sin-tree

Can think of random sin-trees

Convergence in probability fringe sense

T is a tree with root r. Given a vertex v, there exists a unique path $v_{0}=v, v_{1}, \ldots, v_{h}=r$ from v to the root.

t_{0}

0
t_{1}

t_{2}

Convergence in probability fringe sense

Decompose tree into a sequence of finite rooted subtrees or fringes $\left(T_{0}(v), T_{1}(v), T_{2}(v), \ldots\right)$. For each $k \geq 1$,

$$
\frac{1}{n} \sum_{v \in T} 1\left(f_{k}(v, T)=\left(t_{0}, t_{1}, \ldots, t_{k}\right)\right) \xrightarrow{P} \mathbb{P}_{\mu}\left(f_{k}(0, \mathcal{T})=\left(t_{0}, t_{1}, \ldots, t_{k}\right)\right)
$$

Convergence in probability fringe sense

Decompose tree into a sequence of finite rooted subtrees or fringes $\left(T_{0}(v), T_{1}(v), T_{2}(v), \ldots\right)$. For each $k \geq 1$,

$$
\frac{1}{n} \sum_{v \in T} 1\left(f_{k}(v, T)=\left(t_{0}, t_{1}, \ldots, t_{k}\right)\right) \xrightarrow{P} \mathbb{P}_{\mu}\left(f_{k}(0, \mathcal{T})=\left(t_{0}, t_{1}, \ldots, t_{k}\right)\right)
$$

sin-trees

Construction

$\mathcal{T}_{\alpha, \mu, \mathcal{P}}^{\text {sin }}$: Random tree with single infinite path

sin-trees

Construction

$\mathcal{T}_{\alpha, \mu, \mathcal{P}}^{\text {sin }}$: Random tree with single infinite path

- $X_{0} \sim \exp (\alpha)$ and for $i \geq 1, X_{i} \sim \mu . S_{n}=\sum_{0}^{n} X_{i}$.
- Conditional on the sequence $\left(S_{n}\right)_{n \geq 0}$
(1) $\mathcal{F}_{X_{0}}$: continuous time branching process driven by \mathcal{P} observed up to time X_{0}.
(2) For $n \geq 1$ let $\mathcal{F}_{S_{n}, S_{n-1}}$: continuous time branching process observed up to time S_{n};

sin-trees

Construction

$\mathcal{T}_{\alpha, \mu, \mathcal{P}}^{\text {sin }}$: Random tree with single infinite path

- $X_{0} \sim \exp (\alpha)$ and for $i \geq 1, X_{i} \sim \mu . S_{n}=\sum_{0}^{n} X_{i}$.
- Conditional on the sequence $\left(S_{n}\right)_{n \geq 0}$
(1) $\mathcal{F}_{X_{0}}$: continuous time branching process driven by \mathcal{P} observed up to time X_{0}.
(2) For $n \geq 1$ let $\mathcal{F}_{S_{n}, S_{n-1}}$: continuous time branching process observed up to time S_{n}; only difference being that the distribution of the points of birth of founding ancestor is \mathcal{P} conditioned to have a birth X_{n} time units after the birth of the founding ancestor.
- \sin-tree construction: Infinite path is $\mathbb{Z}^{+}=0,1,2, \ldots$.

sin-trees

Construction

$\mathcal{T}_{\alpha, \mu, \mathcal{P}}^{\text {sin }}$: Random tree with single infinite path

- $X_{0} \sim \exp (\alpha)$ and for $i \geq 1, X_{i} \sim \mu . S_{n}=\sum_{0}^{n} X_{i}$.
- Conditional on the sequence $\left(S_{n}\right)_{n \geq 0}$
(1) $\mathcal{F}_{X_{0}}$: continuous time branching process driven by \mathcal{P} observed up to time X_{0}.
(2) For $n \geq 1$ let $\mathcal{F}_{S_{n}, S_{n-1}}$: continuous time branching process observed up to time S_{n}; only difference being that the distribution of the points of birth of founding ancestor is \mathcal{P} conditioned to have a birth X_{n} time units after the birth of the founding ancestor.
- sin-tree construction: Infinite path is $\mathbb{Z}^{+}=0,1,2, \ldots$.

0 designated as the root. $\mathcal{F}_{X_{0}}$ to be rooted at 0 and for $n \geq 1$ consider $\mathcal{F}_{S_{n}, S_{n-1}}$ to be rooted at n.

- $\mathbf{f}_{k}\left(\mathcal{T}_{\alpha, \mu, \mathcal{P}}^{\sin }\right)=\left(\mathcal{F}_{X_{0}}, \mathcal{F}_{S_{1}, S_{0}}, \mathcal{F}_{S_{2}, S_{3}}, \ldots, \mathcal{F}_{S_{k}, S_{k-1}}\right)$

Random matrices

Notation

- A_{n} adjacency matrix of tree \mathcal{T}_{n}

Random matrices

Notation

- A_{n} adjacency matrix of tree \mathcal{T}_{n}
- $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are the n eigen values.

Random matrices

Notation

－A_{n} adjacency matrix of tree \mathcal{T}_{n}
－$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are the n eigen values．
－$F_{n}=\frac{1}{n} \sum_{1}^{n} \delta_{\lambda_{i}}$ spectral distribution

Setting

－For the convergence of spectral distribution can take general families of trees satisfying sin－tree convergence．

Random matrices

Notation

－A_{n} adjacency matrix of tree \mathcal{T}_{n}
－$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are the n eigen values．
－$F_{n}=\frac{1}{n} \sum_{1}^{n} \delta_{\lambda_{i}}$ spectral distribution

Setting

－For the convergence of spectral distribution can take general families of trees satisfying sin－tree convergence．
－For maximal eigen value convergence talking about preferential attachment with $f(v, n)=\operatorname{Deg}(v, n)+a$ ．

Main result

Theorem (SB, Evans, Sen 08)

(a) Consider a sequence of trees converging in fringe since to a random infinite sin-tree. Then there exists a model dependent probability distribution function F such that

$$
d\left(F_{n}, F\right) \xrightarrow{P} 0
$$

as $n \rightarrow \infty$.
(b) Let $\gamma_{a}=a+2$. Then for the linear preferential attachment model

$$
\left(\frac{\lambda_{1}}{n^{1 / 2 \gamma_{a}}}, \frac{\lambda_{2}}{n^{1 / 2 \gamma_{a}}}, \ldots, \frac{\lambda_{k}}{n^{1 / 2 \gamma_{a}}}\right) \xrightarrow{d} \nu_{k}
$$

Main result

Theorem (SB, Evans, Sen 08)

(a) Consider a sequence of trees converging in fringe since to a random infinite sin-tree. Then there exists a model dependent probability distribution function F such that

$$
d\left(F_{n}, F\right) \xrightarrow{P} 0
$$

as $n \rightarrow \infty$.
(b) Let $\gamma_{a}=a+2$. Then for the linear preferential attachment model

$$
\left(\frac{\lambda_{1}}{n^{1 / 2 \gamma_{a}}}, \frac{\lambda_{2}}{n^{1 / 2 \gamma_{a}}}, \ldots, \frac{\lambda_{k}}{n^{1 / 2 \gamma_{a}}}\right) \xrightarrow{d} \nu_{k}
$$

Spectral distribution turns out to be a local property of random node, maximal eigen values, local property about the root

Spectral distribution: Method of proof

Stieltjes transform

$$
s(z)=\int_{\mathbb{R}} \frac{1}{x-z}
$$

Spectral distribution: Method of proof

Stieltjes transform

$$
s(z)=\int_{\mathbb{R}} \frac{1}{x-z}
$$

For eigen value distribution

$$
\begin{aligned}
s(z) & =\frac{1}{n} \operatorname{Tr}(A-z I)^{-1} \\
& =\frac{1}{n} \sum_{v=1}^{n} R_{v v}(z)
\end{aligned}
$$

Spectral distribution: Method of proof

Stieltjes transform

$$
s(z)=\int_{\mathbb{R}} \frac{1}{x-z}
$$

For eigen value distribution

$$
\begin{gathered}
s(z)=\frac{1}{n} \operatorname{Tr}(A-z I)^{-1} \\
=\frac{1}{n} \sum_{v=1}^{n} R_{v v}(z) \\
R_{v v}(z)=\frac{1}{-z+\sum_{1}^{N(v)} R_{v_{i} v_{i}}(z)+R_{A(v)}^{\mathrm{big}}(z)}
\end{gathered}
$$

Spectral distribution contd

- Fix $\operatorname{Im}(z)>1$. Iterate the above expansion d times. Get a continued fraction upto d terms and some error term.

Spectral distribution contd

- Fix $\operatorname{Im}(z)>1$. Iterate the above expansion d times. Get a continued fraction upto d terms and some error term.
- Not hard to see that for $\operatorname{Im}(z)>1$, this implies that $s_{n}(z)$ "depends" on the first K terms

Spectral distribution contd

－Fix $\operatorname{Im}(z)>1$ ．Iterate the above expansion d times．Get a continued fraction upto d terms and some error term．
－Not hard to see that for $\operatorname{Im}(z)>1$ ，this implies that $s_{n}(z)$＂depends＂on the first K terms
－Fringe convergence of the random trees tells you what happens upto distance K for any fixed K

Spectral distribution contd

- Fix $\operatorname{Im}(z)>1$. Iterate the above expansion d times. Get a continued fraction upto d terms and some error term.
- Not hard to see that for $\operatorname{Im}(z)>1$, this implies that $s_{n}(z)$ "depends" on the first K terms
- Fringe convergence of the random trees tells you what happens upto distance K for any fixed K
- So not hard to show that there exists a fixed Stieltjes transform $s(z)$ such that

$$
s_{n}(z) \xrightarrow{P} s(z)
$$

Properties and questions

- Sufficient conditions for a point $a \in \mathbb{R}$ to be an atom of limiting F
- Implies that for most standard models, limiting F has dense set of atoms

Properties and questions

- Sufficient conditions for a point $a \in \mathbb{R}$ to be an atom of limiting F
- Implies that for most standard models, limiting F has dense set of atoms
- Open Question: Does limiting F have absolutely continuous part?

At this point, fair question

- If one can embed things in a continuous time all good things happen
- Can one expect such behavior generally?

Power of choice in random trees［D＇Souza， Mitzenmacher］

Model：Motivation and construction

－Usual pref．attachment：Basic assumption：every new vertex has knowledge of entire network
－Each stage new vertex chooses 2 vertices uniformly at random
－Connect to vertex with maximal degree amongst the ones chosen （breaking ties with probability $1 / 2$ ）
－Model which incorporates randomness as well as limited choice
－Let \mathcal{T}_{n} denote the tree on n vertices

Power of choice in random trees［D＇Souza， Mitzenmacher］

Model：Motivation and construction

－Usual pref．attachment：Basic assumption：every new vertex has knowledge of entire network
－Each stage new vertex chooses 2 vertices uniformly at random
－Connect to vertex with maximal degree amongst the ones chosen （breaking ties with probability $1 / 2$ ）
－Model which incorporates randomness as well as limited choice
－Let \mathcal{T}_{n} denote the tree on n vertices

Theorem（Angel，Pemantle，SB）

There exists a rooted limiting random tree \mathcal{T}_{∞} ，described by Jagers－Nerman stable age distribution theory such that such that \mathcal{T}_{n} converges locally \mathcal{T}_{∞} ．

Main idea

- Pick a vertex uniformly at random: Chance it is a leaf in \mathcal{T}_{n} ?

Main idea

- Pick a vertex uniformly at random: Chance it is a leaf in \mathcal{T}_{n} ?
- Assume stabilizes to some p_{0}

Main idea

- Pick a vertex uniformly at random: Chance it is a leaf in \mathcal{T}_{n} ?
- Assume stabilizes to some p_{0}
- Number of times queried: Poisson with mean

$$
\sum_{i=N+1}^{n} \frac{2}{i} \sim-2 \log \frac{N}{n} \approx 2 \exp (1)
$$

Main idea

- Pick a vertex uniformly at random: Chance it is a leaf in \mathcal{T}_{n} ?
- Assume stabilizes to some p_{0}
- Number of times queried: Poisson with mean

$$
\sum_{i=N+1}^{n} \frac{2}{i} \sim-2 \log \frac{N}{n} \approx 2 \exp (1)
$$

- So have interval $[0, T]$ with $T \sim \exp (1 / 2)$ where queries come at uniform times
- If still a leaf, for each query, no connection made which happens with probability $1-p_{0}+p_{0} / 2=1-p_{0} / 2$.

Main idea

- Pick a vertex uniformly at random: Chance it is a leaf in \mathcal{T}_{n} ?
- Assume stabilizes to some p_{0}
- Number of times queried: Poisson with mean

$$
\sum_{i=N+1}^{n} \frac{2}{i} \sim-2 \log \frac{N}{n} \approx 2 \exp (1)
$$

- So have interval $[0, T]$ with $T \sim \exp (1 / 2)$ where queries come at uniform times
- If still a leaf, for each query, no connection made which happens with probability $1-p_{0}+p_{0} / 2=1-p_{0} / 2$.
- Rate one poisson process, marking each with probability $p_{0} / 2$, time of first point: $X_{0} \sim \exp \left(p_{0} / 2\right)$
- So probability not a leaf: $1-p_{0}=\mathbb{P}\left(T>X_{0}\right)$

Description of the limit tree

Recursive construction of the degree

- Let p_{0} limiting fraction of leaves
- Define $q_{0}=p_{0} / 2$
- Then p_{0} obtained by doing the following: Let $T \sim \exp (1 / 2)$ and $X_{0} \sim \exp \left(q_{0}\right)$. Then

$$
1-p_{0}=\mathbb{P}\left(T>X_{0}\right)
$$

$$
p_{0}=\frac{\sqrt{5}-1}{2}
$$

- General, having obtained p_{k}, get p_{k+1} by solving

$$
1-\left(p_{0}+\cdots+p_{k+1}\right)=\mathbb{P}\left(X_{0}+\cdots X_{k+1}>T\right)
$$

where

$$
X_{k+1} \sim \exp \left(p_{0}+\cdots+p_{k}+\frac{p_{k+1}}{2}\right)
$$

Description of \mathcal{T}_{∞}

- After having obtained p_{i}, let $L_{i}=\sum_{j=0}^{i} X_{j}$
- Consider the point process $\mathcal{P}_{\max }=\left(L_{0}, L_{1}, \ldots\right)$
- Define

$$
\begin{aligned}
& \mu_{\max }(0, t)=\mathbb{E}\left(\# i: L_{i}<t\right) \\
& \nu_{\max }(d x)=\exp \left(-\frac{x}{2}\right) \mu(d x)
\end{aligned}
$$

Description of \mathcal{T}_{∞}

- After having obtained p_{i}, let $L_{i}=\sum_{j=0}^{i} X_{j}$
- Consider the point process $\mathcal{P}_{\max }=\left(L_{0}, L_{1}, \ldots\right)$
- Define

$$
\begin{aligned}
& \mu_{\max }(0, t)=\mathbb{E}\left(\# i: L_{i}<t\right) \\
& \nu_{\max }(d x)=\exp \left(-\frac{x}{2}\right) \mu(d x)
\end{aligned}
$$

Theorem

- Then \mathcal{T}_{∞} is the Jagers-Nerman stable age distribution tree with offspring distribution $\mathcal{P}_{\text {max }}$, age distribution $\exp (1 / 2)$ and time to nearest ancestor $\nu_{\text {max }}$
- Implies convergence of global functionals as well such as the spectral distribution of adjacency matrix

