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Motivation

Preferential attachment

Recent past enormous amount of interest in formulating models to

“explain” real-world networks such as network of webpages, the Internet,

etc.

One of the most popular model: preferential attachment. Among the first

models for which explicit power-law degree was derived.

Math world

Main thrust: asymptotic information on the degree distribution.

Largely based on Recursions and concentration inequalities.

Global characteristics such as spectral distribution of adjacency matrix?

Variants such as limited choice or non-local preferential attachment.

Analysis?
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Outline of the talk

Preferential attachment model

Continuous time embedding

Global results

Convergence of local neighborhoods

Construction of sin-trees (single infinite path).

Asymptotic degree distribution

Random adjacency matrices and Spectra (Arnab Sen, Steve

Evans, SB)

Preferential attachment with choice (Omer Angel, Robin

Pemantle, SB)
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Basic model

Method of growing trees
Method of recursively growing random trees

At time 1 start with a single node

Let Tn be the tree at time n. Given a (possibly random) function
f(·, n) : Vn → R+.
Node n+ 1 attaches itself to a node in Tn with probability
proportional to f(·, n).
Most examples we consider, f(v, n) = f(D(v, n)).
D(v, n) = out-degree of node v at time n.
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Examples of attractiveness functions

Attachment trees
1 YSBA model: f(k) = k + 1

2 Linear Preferential attachment model: f(k) = k + 1 + a, a > 0

3 Random fitness models fv ∼ ν.
(a) Multiplicative fitness: f(k) = fv(k + 1).
(b) Additive fitness: f(k) = k + 1 + fv.

4 Sublinear Pref Attachment: f(k) = (k + 1)α, 0 < α < 1
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Main math idea

Simple idea [Karlin-Athreya]

Suppose we have vertex set {1, 2, . . . ,m} with associated weights
{d1, d2, . . . dm}

Want to selected vertex i with probability proportional to di

Simple way: Let Xi independent rate di exponential r.v.s

Let J be index
XJ = min

1≤i≤m
Xi

P(J = i) ∝ di
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Continuous time construction

Point process corresponding to attractiveness function f

P is Markov pure birth process with rate description

P(P(t, t+ dt] = 1|P(t) = k) = f(k)dt

For example, for f(k) = k + 1 (usual preferential attachment model) we
get the Yule process.

Corresponding continuous time branching process F(t) :
1 Start with a single node at time 0 giving birth to children at times of

P.
2 Each node born behaves in the same manner (has it’s own

independent point process of births).

Key connection

Tn = inf{t : F(t) = n} then F(Tn)
d
= T f

n .
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Branching process theory

Asymptotics

Conjectured by Euler. Developed by Jagers and Nerman.

Processes grow exponentially: |F(t)| ∼ eλt

Here λ is a very important characteristic : called the Malthusian rate of
growth

Given by the formula:

E(P(Tλ)) = 1

Tλ ∼ exp(λ).

Exact result

More precisely, under technical conditions (E(P(Tλ) log
+ P(Tλ)) < ∞)

|F(t)|
eλt

−→a.s. W W > 0

Tn ∼ 1
λ log n±OP (1)
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Case Study: Usual preferential attachment

f(k) = k + 1

Offspring distribution: P(·) = Yule process

Malthusian rate of growth:

λ = 2

degree of the root = Pρ(Tn)

Tn ∼ 1
2 log n±OP (1). Yule process also grows exponentially: P(t) ∼ et

root degree asymptotics

degn(ρ) = P( 12 log n+OP (1)) ∼ OP (e
1
2 logn) = OP (

√
n)

More refined analysis gives

degn(ρ)√
n

a.s.→ Z Z has explicit recursive construction

.
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Maximal degree

Basic heuristics for all the models
Due to exponential growth of the models in the natural “time scale”,
maximal degree occurs in a finite neighborhood of the root.

For usual preferential attachment model, using explicit distributional
properties of Yule process easy to conclude, for any given � > 0 ∃ K�

lim sup
n→∞

P
�
max degn√

n
> K�

�
< �

With a bit more work, possible to deduce distributional convergence for
the maximal degree.

Example of interesting results: Sublinear pref attachment f(k) = (k+1)α

deg
n
(ρ)

(logn)
1

1−α

P→
�

1
θ(α)

� 1
1−α

Shankar Bhamidi Limited choice in networks
Tuesday, July 24, 2012



Maximal degree

Basic heuristics for all the models
Due to exponential growth of the models in the natural “time scale”,
maximal degree occurs in a finite neighborhood of the root.

For usual preferential attachment model, using explicit distributional
properties of Yule process easy to conclude, for any given � > 0 ∃ K�

lim sup
n→∞

P
�
max degn√

n
> K�

�
< �

With a bit more work, possible to deduce distributional convergence for
the maximal degree.

Example of interesting results: Sublinear pref attachment f(k) = (k+1)α

deg
n
(ρ)

(logn)
1

1−α

P→
�

1
θ(α)

� 1
1−α

Shankar Bhamidi Limited choice in networks
Tuesday, July 24, 2012



Maximal degree

Basic heuristics for all the models
Due to exponential growth of the models in the natural “time scale”,
maximal degree occurs in a finite neighborhood of the root.

For usual preferential attachment model, using explicit distributional
properties of Yule process easy to conclude, for any given � > 0 ∃ K�

lim sup
n→∞

P
�
max degn√

n
> K�

�
< �

With a bit more work, possible to deduce distributional convergence for
the maximal degree.

Example of interesting results: Sublinear pref attachment f(k) = (k+1)α

deg
n
(ρ)

(logn)
1

1−α

P→
�

1
θ(α)

� 1
1−α

Shankar Bhamidi Limited choice in networks
Tuesday, July 24, 2012



Height

Kingman’s result

Let Bk := first time that an individual in the kth generation (namely an

individual at graph distance k from the root) is born.

There exists a limit constant γ such that:

Bk

k
a.s.−→ γmodel

For us we have

Bhn ≤ Tn ≤ Bhn+1

Thus
Bhn

hn
≤ Tn

hn
≤ Bhn+1

hn

Now use the fact that

Tn
1
λ log n

P−→ 1 ⇒ hn

log n
P→ Cmodel
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Local asymptotics

Conceptual point
Construction of infinite (locally finite) rooted trees with a single infinite
path. (Trees with one end).

Local neighborhood of a random node asymptotically looks like
neighborhood of the root of appropriately constructed sin-tree.
Infinite path represents the “path to the root ” .

Age of an individual

P(Age(Vn) > 10|F(t)) =
N(t− 10)

N(t)
∼ Weλ(t−10)

Weλt
= e−10λ = P(Tλ > 10)

Suggests tree “below” random node looks like F(Tλ) i.e. branching process
run for random exponential amount of time.
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Sin-tree

0

T0

1

T1

2

T2

3

sin-tree

f2(0, sin-tree)
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Sin-tree

0

T0

1

T1

2

T2

3

sin-tree

f2(0, sin-tree)

Can think of random sin-trees
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Convergence in probability fringe sense

T is a tree with root r. Given a vertex v, there exists a unique path
v0 = v, v1, ..., vh = r from v to the root.

v = v0

T0(v)

v1

T1

v2

T2

r = Vh

Th
tree T
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Convergence in probability fringe sense

Decompose tree into a sequence of finite rooted subtrees or fringes
(T0(v), T1(v), T2(v), . . .). For each k ≥ 1,

1

n

∑

v∈T

1(fk(v, T ) = (t0, t1, ..., tk))
P
→ Pµ(fk(0,T ) = (t0, t1, ..., tk)).

v = v0

T0

v1

T1

v2

T2

r = Vh

Th

f2(v, T )

tree T
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Decompose tree into a sequence of finite rooted subtrees or fringes
(T0(v), T1(v), T2(v), . . .). For each k ≥ 1,

1

n

∑

v∈T

1(fk(v, T ) = (t0, t1, ..., tk))
P
→ Pµ(fk(0,T ) = (t0, t1, ..., tk)).

0

T0

1

T1

2

T2

3

sin-tree

f2(0, sin-tree)
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sin-trees

Construction
T sin
α,µ,P : Random tree with single infinite path

X0 ∼ exp(α) and for i ≥ 1, Xi ∼ µ. Sn =
�n

0 Xi.

Conditional on the sequence (Sn)n≥0

1 FX0 : continuous time branching process driven by P observed up
to time X0.

2 For n ≥ 1 let FSn,Sn−1 : continuous time branching process
observed up to time Sn; only difference being that the distribution of
the points of birth of founding ancestor is P conditioned to have a
birth Xn time units after the birth of the founding ancestor.

sin-tree construction: Infinite path is Z+ = 0, 1, 2, . . ..
0 designated as the root. FX0 to be rooted at 0 and for n ≥ 1 consider
FSn,Sn−1 to be rooted at n.

fk(T sin
α,µ,P) = (FX0 ,FS1,S0 ,FS2,S3 , . . . ,FSk,Sk−1)
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Random matrices

Notation
An adjacency matrix of tree Tn

λ1 ≥ λ2 ≥ · · · ≥ λn are the n eigen values.

Fn = 1
n

�n
1 δλi spectral distribution

Setting
For the convergence of spectral distribution can take general families of
trees satisfying sin-tree convergence.

For maximal eigen value convergence talking about preferential
attachment with f(v, n) = Deg(v, n) + a.
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Main result

Theorem (SB, Evans, Sen 08)
(a) Consider a sequence of trees converging in fringe since to a random
infinite sin-tree. Then there exists a model dependent probability distribution
function F such that

d(Fn, F )
P→ 0

as n → ∞.
(b) Let γa = a+ 2. Then for the linear preferential attachment model

�
λ1

n1/2γa
,

λ2

n1/2γa
, . . . ,

λk

n1/2γa

�
d−→ νk

Spectral distribution turns out to be a local property of random node, maximal
eigen values, local property about the root
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Spectral distribution: Method of proof

Stieltjes transform

s(z) =

�

R

1

x− z

For eigen value distribution

s(z) =
1

n
Tr(A− zI)−1

=
1

n

n�

v=1

Rvv(z)

Rvv(z) =
1

−z +
�N(v)

1 Rvivi(z) +Rbig
A(v)(z)
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Spectral distribution contd

Fix Im(z) > 1. Iterate the above expansion d times. Get a continued
fraction upto d terms and some error term.

Not hard to see that for Im(z) > 1, this implies that sn(z) “depends” on
the first K terms

Fringe convergence of the random trees tells you what happens upto
distance K for any fixed K

So not hard to show that there exists a fixed Stieltjes transform s(z) such
that

sn(z)
P−→ s(z)
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Properties and questions

Sufficient conditions for a point a ∈ R to be an atom of limiting F

Implies that for most standard models, limiting F has dense set of atoms

Open Question: Does limiting F have absolutely continuous part?

At this point, fair question
If one can embed things in a continuous time all good things happen

Can one expect such behavior generally?
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Power of choice in random trees [D’Souza,
Mitzenmacher]

Model: Motivation and construction
Usual pref. attachment: Basic assumption: every new vertex has
knowledge of entire network

Each stage new vertex chooses 2 vertices uniformly at random

Connect to vertex with maximal degree amongst the ones chosen
(breaking ties with probability 1/2)

Model which incorporates randomness as well as limited choice

Let Tn denote the tree on n vertices

Theorem (Angel, Pemantle, SB)
There exists a rooted limiting random tree T∞, described by Jagers-Nerman
stable age distribution theory such that such that Tn converges locally T∞.
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Main idea

Pick a vertex uniformly at random: Chance it is a leaf in Tn?

Assume stabilizes to some p0

Number of times queried: Poisson with mean

n�

i=N+1

2

i
∼ −2 log

N

n
≈ 2 exp(1)

So have interval [0, T ] with T ∼ exp(1/2) where queries come at uniform
times

If still a leaf, for each query, no connection made which happens with
probability 1− p0 + p0/2 = 1− p0/2.

Rate one poisson process, marking each with probability p0/2, time of
first point: X0 ∼ exp(p0/2)

So probability not a leaf: 1− p0 = P(T > X0)

Shankar Bhamidi Limited choice in networks
Tuesday, July 24, 2012



Main idea

Pick a vertex uniformly at random: Chance it is a leaf in Tn?

Assume stabilizes to some p0

Number of times queried: Poisson with mean

n�

i=N+1

2

i
∼ −2 log

N

n
≈ 2 exp(1)

So have interval [0, T ] with T ∼ exp(1/2) where queries come at uniform
times

If still a leaf, for each query, no connection made which happens with
probability 1− p0 + p0/2 = 1− p0/2.

Rate one poisson process, marking each with probability p0/2, time of
first point: X0 ∼ exp(p0/2)

So probability not a leaf: 1− p0 = P(T > X0)

Shankar Bhamidi Limited choice in networks
Tuesday, July 24, 2012



Main idea

Pick a vertex uniformly at random: Chance it is a leaf in Tn?

Assume stabilizes to some p0

Number of times queried: Poisson with mean

n�

i=N+1

2

i
∼ −2 log

N

n
≈ 2 exp(1)

So have interval [0, T ] with T ∼ exp(1/2) where queries come at uniform
times

If still a leaf, for each query, no connection made which happens with
probability 1− p0 + p0/2 = 1− p0/2.

Rate one poisson process, marking each with probability p0/2, time of
first point: X0 ∼ exp(p0/2)

So probability not a leaf: 1− p0 = P(T > X0)

Shankar Bhamidi Limited choice in networks
Tuesday, July 24, 2012



Main idea

Pick a vertex uniformly at random: Chance it is a leaf in Tn?

Assume stabilizes to some p0

Number of times queried: Poisson with mean

n�

i=N+1

2

i
∼ −2 log

N

n
≈ 2 exp(1)

So have interval [0, T ] with T ∼ exp(1/2) where queries come at uniform
times

If still a leaf, for each query, no connection made which happens with
probability 1− p0 + p0/2 = 1− p0/2.

Rate one poisson process, marking each with probability p0/2, time of
first point: X0 ∼ exp(p0/2)

So probability not a leaf: 1− p0 = P(T > X0)

Shankar Bhamidi Limited choice in networks
Tuesday, July 24, 2012



Main idea

Pick a vertex uniformly at random: Chance it is a leaf in Tn?

Assume stabilizes to some p0

Number of times queried: Poisson with mean

n�

i=N+1

2

i
∼ −2 log

N

n
≈ 2 exp(1)

So have interval [0, T ] with T ∼ exp(1/2) where queries come at uniform
times

If still a leaf, for each query, no connection made which happens with
probability 1− p0 + p0/2 = 1− p0/2.

Rate one poisson process, marking each with probability p0/2, time of
first point: X0 ∼ exp(p0/2)

So probability not a leaf: 1− p0 = P(T > X0)

Shankar Bhamidi Limited choice in networks
Tuesday, July 24, 2012



Description of the limit tree

Recursive construction of the degree
Let p0 limiting fraction of leaves

Define q0 = p0/2

Then p0 obtained by doing the following: Let T ∼ exp(1/2) and
X0 ∼ exp(q0). Then

1− p0 = P(T > X0)

p0 =

√
5− 1

2

General, having obtained pk, get pk+1 by solving

1− (p0 + · · ·+ pk+1) = P(X0 + · · ·Xk+1 > T )

where
Xk+1 ∼ exp(p0 + · · ·+ pk +

pk+1

2
)
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Description of T∞

After having obtained pi, let Li =
�i

j=0 Xj

Consider the point process Pmax = (L0, L1, . . .)

Define
µmax(0, t) = E(#i : Li < t)

νmax(dx) = exp(−x

2
)µ(dx)

Theorem
Then T∞ is the Jagers-Nerman stable age distribution tree with offspring
distribution Pmax, age distribution exp(1/2) and time to nearest ancestor
νmax

Implies convergence of global functionals as well such as the spectral
distribution of adjacency matrix
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