# Limited choice and randomness in evolution of networks Lecture 2

Cornell Probability summer school July 2012

#### Shankar Bhamidi

Department of Statistics and Operations Research University of North Carolina

July, 2012

#### Preferential attachment

 Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.

#### Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.
- One of the most popular model: preferential attachment. Among the first models for which explicit power-law degree was derived.

#### Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.
- One of the most popular model: preferential attachment. Among the first models for which explicit power-law degree was derived.

#### Math world

Main thrust: asymptotic information on the degree distribution.

#### Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.
- One of the most popular model: preferential attachment. Among the first models for which explicit power-law degree was derived.

#### Math world

- Main thrust: asymptotic information on the degree distribution.
- Largely based on Recursions and concentration inequalities.



#### Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.
- One of the most popular model: preferential attachment. Among the first models for which explicit power-law degree was derived.

#### Math world

- Main thrust: asymptotic information on the degree distribution.
- Largely based on Recursions and concentration inequalities.
- Global characteristics such as spectral distribution of adjacency matrix?

#### Preferential attachment

- Recent past enormous amount of interest in formulating models to "explain" real-world networks such as network of webpages, the Internet, etc.
- One of the most popular model: preferential attachment. Among the first models for which explicit power-law degree was derived.

#### Math world

- Main thrust: asymptotic information on the degree distribution.
- Largely based on Recursions and concentration inequalities.
- Global characteristics such as spectral distribution of adjacency matrix?
- Variants such as limited choice or non-local preferential attachment.
   Analysis?



## Outline of the talk

- Preferential attachment model
- Continuous time embedding
- Global results
- Convergence of local neighborhoods
- Construction of sin-trees (single infinite path).

#### Outline of the talk

- Preferential attachment model
- Continuous time embedding
- Global results
- Convergence of local neighborhoods
- Construction of sin-trees (single infinite path).
- Asymptotic degree distribution
- Random adjacency matrices and Spectra (Arnab Sen, Steve Evans, SB)
- Preferential attachment with choice (Omer Angel, Robin Pemantle, SB)

## Method of growing trees

Method of recursively growing random trees

At time 1 start with a single node

#### Method of growing trees

- At time 1 start with a single node
- Let  $\mathcal{T}_n$  be the tree at time n.



#### Method of growing trees

- At time 1 start with a single node
- Let  $\mathcal{T}_n$  be the tree at time n. Given a (possibly **random**) function  $f(\cdot,n):V_n\to\mathbb{R}^+$ .

#### Method of growing trees

- At time 1 start with a single node
- Let  $\mathcal{T}_n$  be the tree at time n. Given a (possibly **random**) function  $f(\cdot,n):V_n\to\mathbb{R}^+$ .
- Node n+1 attaches itself to a node in  $\mathcal{T}_n$  with probability proportional to  $f(\cdot, n)$ .

## Method of growing trees

- At time 1 start with a single node
- Let  $\mathcal{T}_n$  be the tree at time n. Given a (possibly **random**) function  $f(\cdot,n):V_n\to\mathbb{R}^+$ .
- Node n+1 attaches itself to a node in  $\mathcal{T}_n$  with probability proportional to  $f(\cdot, n)$ .
- Most examples we consider, f(v, n) = f(D(v, n)).

#### Method of growing trees

- At time 1 start with a single node
- Let  $\mathcal{T}_n$  be the tree at time n. Given a (possibly **random**) function  $f(\cdot,n):V_n\to\mathbb{R}^+$ .
- Node n+1 attaches itself to a node in  $\mathcal{T}_n$  with probability proportional to  $f(\cdot, n)$ .
- Most examples we consider, f(v, n) = f(D(v, n)).
- D(v, n) = out-degree of node v at time n.



#### Attachment trees

**1** YSBA model: f(k) = k + 1

#### Attachment trees

- **1** YSBA model: f(k) = k + 1
- 2 Linear Preferential attachment model: f(k) = k + 1 + a, a > 0

#### Attachment trees

- **1** YSBA model: f(k) = k + 1
- 2 Linear Preferential attachment model: f(k) = k + 1 + a, a > 0
- **3** Random fitness models  $f_v \sim \nu$ .
  - (a) Multiplicative fitness:  $f(k) = f_v(k+1)$ .
  - (b) Additive fitness:  $f(k) = k + 1 + f_v$ .

#### Attachment trees

- **1 YSBA** model: f(k) = k + 1
- 2 Linear Preferential attachment model: f(k) = k + 1 + a, a > 0
- **3** Random fitness models  $f_v \sim \nu$ .
  - (a) Multiplicative fitness:  $f(k) = f_v(k+1)$ .
  - (b) Additive fitness:  $f(k) = k + 1 + f_v$ .
- **3** Sublinear Pref Attachment:  $f(k) = (k+1)^{\alpha}$ ,  $0 < \alpha < 1$

## Main math idea

## Simple idea [Karlin-Athreya]

• Suppose we have vertex set  $\{1, 2, ..., m\}$  with associated weights  $\{d_1, d_2, ..., d_m\}$ 

## Main math idea

## Simple idea [Karlin-Athreya]

- Suppose we have vertex set  $\{1, 2, \dots, m\}$  with associated weights  $\{d_1, d_2, \dots d_m\}$
- Want to selected vertex i with probability proportional to  $d_i$

## Main math idea

## Simple idea [Karlin-Athreya]

- Suppose we have vertex set  $\{1, 2, \ldots, m\}$  with associated weights  $\{d_1, d_2, \ldots d_m\}$
- Want to selected vertex i with probability proportional to  $d_i$
- Simple way: Let  $X_i$  independent rate  $d_i$  exponential r.v.s
- Let *J* be index

$$X_J = \min_{1 \le i \le m} X_i$$

•  $\mathbb{P}(J=i) \propto d_i$ 

## Point process corresponding to attractiveness function f

ullet is Markov pure birth process with rate description

$$\mathbb{P}(\mathcal{P}(t, t + dt) = 1 | \mathcal{P}(t) = k) = f(k)dt$$

## Point process corresponding to attractiveness function f

ullet is Markov pure birth process with rate description

$$\mathbb{P}(\mathcal{P}(t, t + dt) = 1 | \mathcal{P}(t) = k) = f(k)dt$$

For example, for f(k) = k + 1 (usual preferential attachment model) we get the Yule process.

## Point process corresponding to attractiveness function f

 $\bullet$   $\mathcal{P}$  is Markov pure birth process with rate description

$$\mathbb{P}(\mathcal{P}(t, t + dt) = 1 | \mathcal{P}(t) = k) = f(k)dt$$

For example, for f(k) = k + 1 (usual preferential attachment model) we get the Yule process.

- ullet Corresponding continuous time branching process  $\mathcal{F}(t)$ :
  - ① Start with a single node at time 0 giving birth to children at times of  $\mathcal{P}$ .
  - Each node born behaves in the same manner (has it's own independent point process of births).

## Point process corresponding to attractiveness function f

ullet is Markov pure birth process with rate description

$$\mathbb{P}(\mathcal{P}(t, t + dt) = 1 | \mathcal{P}(t) = k) = f(k)dt$$

For example, for f(k) = k + 1 (usual preferential attachment model) we get the Yule process.

- Corresponding continuous time branching process  $\mathcal{F}(t)$ :
  - Start with a single node at time 0 giving birth to children at times of  $\mathcal{P}$ .
  - Each node born behaves in the same manner (has it's own independent point process of births).

#### Key connection

$$T_n = \inf\{t : \mathcal{F}(t) = n\} \text{ then } \mathcal{F}(T_n) \stackrel{d}{=} \mathcal{T}_n^f$$
 .



# Branching process theory

## **Asymptotics**

Conjectured by Euler. Developed by Jagers and Nerman.

• Processes grow exponentially:  $|\mathcal{F}(t)| \sim e^{\lambda t}$ 

# Branching process theory

#### **Asymptotics**

Conjectured by Euler. Developed by Jagers and Nerman.

- Processes grow exponentially:  $|\mathcal{F}(t)| \sim e^{\lambda t}$
- Here  $\lambda$  is a very important characteristic : called the *Malthusian rate of growth*

# Branching process theory

#### **Asymptotics**

Conjectured by Euler. Developed by Jagers and Nerman.

- Processes grow exponentially:  $|\mathcal{F}(t)| \sim e^{\lambda t}$
- Here  $\lambda$  is a very important characteristic : called the *Malthusian rate of growth*
- Given by the formula:

$$\mathbb{E}(\mathcal{P}(T_{\lambda})) = 1$$

$$T_{\lambda} \sim \exp(\lambda)$$
.

#### **Exact result**

More precisely, under technical conditions ( $\mathbb{E}(\mathcal{P}(T_{\lambda})\log^{+}\mathcal{P}(T_{\lambda}))<\infty$ )

$$\frac{|\mathcal{F}(t)|}{e^{\lambda t}} \longrightarrow_{a.s.} W$$
  $W > 0$ 

$$T_n \sim \frac{1}{\lambda} \log n \pm O_P(1)$$

$$f(k) = k + 1$$

• Offspring distribution:  $\mathcal{P}(\cdot)$  = Yule process



$$f(k) = k + 1$$

- Offspring distribution:  $\mathcal{P}(\cdot)$  = Yule process
- Malthusian rate of growth:

$$\lambda = 2$$

- degree of the root =  $\mathcal{P}_{\rho}(T_n)$
- $T_n \sim \frac{1}{2} \log n \pm O_P(1)$ .

$$f(k) = k + 1$$

- Offspring distribution:  $P(\cdot)$  = Yule process
- Malthusian rate of growth:

$$\lambda = 2$$

- degree of the root =  $\mathcal{P}_{\rho}(T_n)$
- $T_n \sim \frac{1}{2} \log n \pm O_P(1)$ . Yule process also grows exponentially:  $\mathcal{P}(t) \sim e^t$

#### root degree asymptotics

$$\deg_n(\rho) = \mathcal{P}(\frac{1}{2}\log n + O_P(1)) \sim O_P(e^{\frac{1}{2}\log n}) = O_P(\sqrt{n})$$



$$f(k) = k + 1$$

- Offspring distribution:  $\mathcal{P}(\cdot)$  = Yule process
- Malthusian rate of growth:

$$\lambda = 2$$

- degree of the root =  $\mathcal{P}_{\rho}(T_n)$
- $T_n \sim \frac{1}{2} \log n \pm O_P(1)$ . Yule process also grows exponentially:  $\mathcal{P}(t) \sim e^t$

#### root degree asymptotics

$$\deg_n(\rho) = \mathcal{P}(\tfrac{1}{2}\log n + O_P(1)) \sim O_P(e^{\frac{1}{2}\log n}) = O_P(\sqrt{n})$$
 More refined analysis gives

$$\frac{\deg_n(\rho)}{\sqrt{n}} \overset{a.s.}{ o} Z$$
 Z has explicit recursive construction



# Maximal degree

#### Basic heuristics for all the models

 Due to exponential growth of the models in the natural "time scale", maximal degree occurs in a finite neighborhood of the root.

# Maximal degree

#### Basic heuristics for all the models

- Due to exponential growth of the models in the natural "time scale", maximal degree occurs in a finite neighborhood of the root.
- For usual preferential attachment model, using explicit distributional properties of Yule process easy to conclude, for any given  $\epsilon > 0 \; \exists \; K_{\epsilon}$

$$\limsup_{n\to\infty} \mathbb{P}\left(\frac{\max \deg_n}{\sqrt{n}} > K_{\epsilon}\right) < \epsilon$$

# Maximal degree

#### Basic heuristics for all the models

- Due to exponential growth of the models in the natural "time scale", maximal degree occurs in a finite neighborhood of the root.
- For usual preferential attachment model, using explicit distributional properties of Yule process easy to conclude, for any given  $\epsilon > 0 \; \exists \; K_{\epsilon}$

$$\limsup_{n\to\infty} \mathbb{P}\left(\frac{\max \deg_n}{\sqrt{n}} > K_{\epsilon}\right) < \epsilon$$

- With a bit more work, possible to deduce distributional convergence for the maximal degree.
- Example of interesting results: Sublinear pref attachment  $f(k) = (k+1)^{\alpha}$

$$\frac{\deg_n(\rho)}{(\log n)^{\frac{1}{1-\alpha}}} \stackrel{P}{\to} \left(\frac{1}{\theta(\alpha)}\right)^{\frac{1}{1-\alpha}}$$



## Kingman's result

Let  $B_k :=$  first time that an individual in the  $k^{th}$  generation (namely an individual at graph distance k from the root) is born.

#### Kingman's result

Let  $B_k :=$  first time that an individual in the  $k^{th}$  generation (namely an individual at graph distance k from the root) is born.

There exists a limit constant  $\gamma$  such that:

$$\frac{B_k}{k} \xrightarrow{a.s.} \gamma_{\mathtt{model}}$$

#### Kingman's result

Let  $B_k :=$  first time that an individual in the  $k^{th}$  generation (namely an individual at graph distance k from the root) is born.

There exists a limit constant  $\gamma$  such that:

$$\frac{B_k}{k} \xrightarrow{a.s.} \gamma_{\text{model}}$$

For us we have

$$B_{h_n} \leq T_n \leq B_{h_n+1}$$

#### Kingman's result

Let  $B_k :=$  first time that an individual in the  $k^{th}$  generation (namely an individual at graph distance k from the root) is born.

There exists a limit constant  $\gamma$  such that:

$$\frac{B_k}{k} \xrightarrow{a.s.} \gamma_{\text{model}}$$

For us we have

$$B_{h_n} \leq T_n \leq B_{h_n+1}$$

Thus

$$\frac{B_{h_n}}{h_n} \le \frac{T_n}{h_n} \le \frac{B_{h_n+1}}{h_n}$$

Now use the fact that

$$\frac{T_n}{\frac{1}{\lambda}\log n} \xrightarrow{P} 1 \Rightarrow \frac{h_n}{\log n} \xrightarrow{P} C_{\text{model}}$$

## Conceptual point

 Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).

#### Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).
- Local neighborhood of a random node asymptotically looks like neighborhood of the root of appropriately constructed sin-tree.

#### Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).
- Local neighborhood of a random node asymptotically looks like neighborhood of the root of appropriately constructed sin-tree.
   Infinite path represents the "path to the root".

#### Age of an individual

$$\mathbb{P}(\mathsf{Age}(V_n) > 10 | \mathcal{F}(t)) = \frac{N(t-10)}{N(t)}$$



#### Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).
- Local neighborhood of a random node asymptotically looks like neighborhood of the root of appropriately constructed sin-tree.
   Infinite path represents the "path to the root".

#### Age of an individual

$$\mathbb{P}(\mathsf{Age}(V_n) > 10 | \mathcal{F}(t)) = \frac{N(t-10)}{N(t)} \sim \frac{We^{\lambda(t-10)}}{We^{\lambda t}}$$



#### Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).
- Local neighborhood of a random node asymptotically looks like neighborhood of the root of appropriately constructed sin-tree.
   Infinite path represents the "path to the root".

#### Age of an individual

$$\mathbb{P}(\mathsf{Age}(V_n) > 10 | \mathcal{F}(t)) = \frac{N(t-10)}{N(t)} \sim \frac{We^{\lambda(t-10)}}{We^{\lambda t}} = e^{-10\lambda} = \mathbb{P}(T_{\lambda} > 10)$$



#### Conceptual point

- Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with one end).
- Local neighborhood of a random node asymptotically looks like neighborhood of the root of appropriately constructed sin-tree.
   Infinite path represents the "path to the root".

#### Age of an individual

$$\mathbb{P}(\mathsf{Age}(V_n) > 10 | \mathcal{F}(t)) = \frac{N(t-10)}{N(t)} \sim \frac{We^{\lambda(t-10)}}{We^{\lambda t}} = e^{-10\lambda} = \mathbb{P}(T_{\lambda} > 10)$$

Suggests tree "below" random node looks like  $\mathcal{F}(T_{\lambda})$  i.e. branching process run for random exponential amount of time.



## Sin-tree





Can think of random sin-trees

## Convergence in probability fringe sense

T is a tree with root r. Given a vertex v, there exists a unique path  $v_0 = v, v_1, ..., v_h = r$  from v to the root.





## Convergence in probability fringe sense

Decompose tree into a sequence of finite rooted subtrees or fringes  $(T_0(v), T_1(v), T_2(v), \ldots)$ . For each  $k \geq 1$ ,

$$\frac{1}{n} \sum_{v \in T} 1(f_k(v, T) = (t_0, t_1, ..., t_k)) \xrightarrow{P} \mathbb{P}_{\mu}(f_k(0, T) = (t_0, t_1, ..., t_k)).$$



## Convergence in probability fringe sense

Decompose tree into a sequence of finite rooted subtrees or fringes  $(T_0(v), T_1(v), T_2(v), \ldots)$ . For each  $k \geq 1$ ,

$$\frac{1}{n} \sum_{v \in T} 1(f_k(v, T) = (t_0, t_1, ..., t_k)) \xrightarrow{P} \mathbb{P}_{\mu}(f_k(0, T) = (t_0, t_1, ..., t_k)).$$



#### Construction

#### Construction

- $X_0 \sim \exp(\alpha)$  and for  $i \geq 1$ ,  $X_i \sim \mu$ .  $S_n = \sum_{i=0}^n X_i$ .
- Conditional on the sequence  $(S_n)_{n\geq 0}$ 
  - ①  $\mathcal{F}_{X_0}$ : continuous time branching process driven by  $\mathcal{P}$  observed up to time  $X_0$ .
  - 2 For  $n \ge 1$  let  $\mathcal{F}_{S_n,S_{n-1}}$ : continuous time branching process observed up to time  $S_n$ ;

#### Construction

- $X_0 \sim \exp(\alpha)$  and for  $i \geq 1$ ,  $X_i \sim \mu$ .  $S_n = \sum_{i=0}^n X_i$ .
- Conditional on the sequence  $(S_n)_{n\geq 0}$ 
  - ①  $\mathcal{F}_{X_0}$ : continuous time branching process driven by  $\mathcal{P}$  observed up to time  $X_0$ .
  - 2 For  $n \ge 1$  let  $\mathcal{F}_{S_n,S_{n-1}}$ : continuous time branching process observed up to time  $S_n$ ; only difference being that the distribution of the points of birth of founding ancestor is  $\mathcal{P}$  conditioned to have a birth  $X_n$  time units after the birth of the founding ancestor.
- sin-tree construction: Infinite path is  $\mathbb{Z}^+ = 0, 1, 2, \dots$

#### Construction

- $X_0 \sim \exp(\alpha)$  and for  $i \geq 1$ ,  $X_i \sim \mu$ .  $S_n = \sum_{i=0}^n X_i$ .
- Conditional on the sequence  $(S_n)_{n\geq 0}$ 
  - ①  $\mathcal{F}_{X_0}$ : continuous time branching process driven by  $\mathcal{P}$  observed up to time  $X_0$ .
  - 2 For  $n \ge 1$  let  $\mathcal{F}_{S_n,S_{n-1}}$ : continuous time branching process observed up to time  $S_n$ ; only difference being that the distribution of the points of birth of founding ancestor is  $\mathcal{P}$  conditioned to have a birth  $X_n$  time units after the birth of the founding ancestor.
- sin-tree construction: Infinite path is  $\mathbb{Z}^+ = 0, 1, 2, \ldots$  0 designated as the root.  $\mathcal{F}_{X_0}$  to be rooted at 0 and for  $n \geq 1$  consider  $\mathcal{F}_{S_n,S_{n-1}}$  to be rooted at n.
- $\mathbf{f}_k(\mathcal{T}_{\alpha,\mu,\mathcal{P}}^{\sin}) = (\mathcal{F}_{X_0},\mathcal{F}_{S_1,S_0},\mathcal{F}_{S_2,S_3},\ldots,\mathcal{F}_{S_k,S_{k-1}})$



#### **Notation**

•  $A_n$  adjacency matrix of tree  $\mathcal{T}_n$ 

#### **Notation**

- $A_n$  adjacency matrix of tree  $\mathcal{T}_n$
- $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$  are the *n* eigen values.

#### **Notation**

- $A_n$  adjacency matrix of tree  $\mathcal{T}_n$
- $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$  are the *n* eigen values.
- $F_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}$  spectral distribution

#### Setting

 For the convergence of spectral distribution can take general families of trees satisfying sin-tree convergence.

#### **Notation**

- $A_n$  adjacency matrix of tree  $\mathcal{T}_n$
- $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$  are the *n* eigen values.
- $F_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}$  spectral distribution

#### Setting

- For the convergence of spectral distribution can take general families of trees satisfying sin-tree convergence.
- For maximal eigen value convergence talking about preferential attachment with f(v, n) = Deg(v, n) + a.

#### Main result

#### Theorem (SB, Evans, Sen 08)

(a) Consider a sequence of trees converging in fringe since to a random infinite sin-tree. Then there exists a model dependent probability distribution function F such that

$$d(F_n, F) \stackrel{P}{\to} 0$$

as  $n \to \infty$ .

(b) Let  $\gamma_a = a + 2$ . Then for the linear preferential attachment model

$$\left(\frac{\lambda_1}{n^{1/2\gamma_a}}, \frac{\lambda_2}{n^{1/2\gamma_a}}, \dots, \frac{\lambda_k}{n^{1/2\gamma_a}}\right) \xrightarrow{d} \nu_k$$

#### Main result

#### Theorem (SB, Evans, Sen 08)

(a) Consider a sequence of trees converging in fringe since to a random infinite sin-tree. Then there exists a model dependent probability distribution function F such that

$$d(F_n, F) \stackrel{P}{\to} 0$$

as  $n \to \infty$ .

(b) Let  $\gamma_a = a + 2$ . Then for the linear preferential attachment model

$$\left(\frac{\lambda_1}{n^{1/2\gamma_a}}, \frac{\lambda_2}{n^{1/2\gamma_a}}, \dots, \frac{\lambda_k}{n^{1/2\gamma_a}}\right) \xrightarrow{d} \nu_k$$

Spectral distribution turns out to be a local property of random node, maximal eigen values, local property about the root

# Spectral distribution: Method of proof

#### Stieltjes transform

$$s(z) = \int_{\mathbb{R}} \frac{1}{x - z}$$

# Spectral distribution: Method of proof

#### Stieltjes transform

$$s(z) = \int_{\mathbb{R}} \frac{1}{x - z}$$

For eigen value distribution

$$s(z) = \frac{1}{n} \operatorname{Tr}(A - zI)^{-1}$$
$$= \frac{1}{n} \sum_{v=1}^{n} R_{vv}(z)$$

## Spectral distribution: Method of proof

#### Stieltjes transform

$$s(z) = \int_{\mathbb{R}} \frac{1}{x - z}$$

For eigen value distribution

$$s(z) = \frac{1}{n} \operatorname{Tr}(A - zI)^{-1}$$
$$= \frac{1}{n} \sum_{v=1}^{n} R_{vv}(z)$$

$$R_{vv}(z) = \frac{1}{-z + \sum_{1}^{N(v)} R_{v_i v_i}(z) + R_{A(v)}^{\text{big}}(z)}$$

• Fix Im(z) > 1. Iterate the above expansion d times. Get a continued fraction upto d terms and some error term.

- Fix Im(z) > 1. Iterate the above expansion d times. Get a continued fraction upto d terms and some error term.
- Not hard to see that for Im(z) > 1, this implies that  $s_n(z)$  "depends" on the first K terms

- Fix Im(z) > 1. Iterate the above expansion d times. Get a continued fraction upto d terms and some error term.
- Not hard to see that for Im(z) > 1, this implies that  $s_n(z)$  "depends" on the first K terms
- Fringe convergence of the random trees tells you what happens upto distance K for any fixed K

- Fix Im(z) > 1. Iterate the above expansion d times. Get a continued fraction upto d terms and some error term.
- Not hard to see that for Im(z) > 1, this implies that  $s_n(z)$  "depends" on the first K terms
- ullet Fringe convergence of the random trees tells you what happens upto distance K for any fixed K
- ullet So not hard to show that there exists a fixed Stieltjes transform s(z) such that

$$s_n(z) \xrightarrow{P} s(z)$$

# Properties and questions

- Sufficient conditions for a point  $a \in \mathbb{R}$  to be an atom of limiting F
- ullet Implies that for most standard models, limiting F has dense set of atoms

# Properties and questions

- ullet Sufficient conditions for a point  $a\in\mathbb{R}$  to be an atom of limiting F
- Implies that for most standard models, limiting F has dense set of atoms
- Open Question: Does limiting F have absolutely continuous part?

#### At this point, fair question

- If one can embed things in a continuous time all good things happen
- Can one expect such behavior generally?



# Power of choice in random trees [D'Souza, Mitzenmacher]

#### Model: Motivation and construction

- Usual pref. attachment: Basic assumption: every new vertex has knowledge of entire network
- Each stage new vertex chooses 2 vertices uniformly at random
- Connect to vertex with maximal degree **amongst** the ones chosen (breaking ties with probability 1/2)
- Model which incorporates randomness as well as limited choice
- Let  $\mathcal{T}_n$  denote the tree on n vertices

# Power of choice in random trees [D'Souza, Mitzenmacher]

#### Model: Motivation and construction

- Usual pref. attachment: Basic assumption: every new vertex has knowledge of entire network
- Each stage new vertex chooses 2 vertices uniformly at random
- Connect to vertex with maximal degree **amongst** the ones chosen (breaking ties with probability 1/2)
- Model which incorporates randomness as well as limited choice
- Let  $\mathcal{T}_n$  denote the tree on n vertices

#### Theorem (Angel, Pemantle, SB)

There exists a rooted limiting random tree  $\mathcal{T}_{\infty}$ , described by Jagers-Nerman stable age distribution theory such that such that  $\mathcal{T}_n$  converges locally  $\mathcal{T}_{\infty}$ .



• Pick a vertex uniformly at random: Chance it is a leaf in  $\mathcal{T}_n$ ?

- Pick a vertex uniformly at random: Chance it is a leaf in  $\mathcal{T}_n$ ?
- Assume stabilizes to some  $p_0$

- Pick a vertex uniformly at random: Chance it is a leaf in  $\mathcal{T}_n$ ?
- Assume stabilizes to some  $p_0$
- Number of times queried: Poisson with mean

$$\sum_{i=N+1}^{n} \frac{2}{i} \sim -2\log\frac{N}{n} \approx 2\exp(1)$$

- Pick a vertex uniformly at random: Chance it is a leaf in  $\mathcal{T}_n$ ?
- Assume stabilizes to some  $p_0$
- Number of times queried: Poisson with mean

$$\sum_{i=N+1}^{n} \frac{2}{i} \sim -2\log\frac{N}{n} \approx 2\exp(1)$$

- So have interval [0,T] with  $T \sim \exp(1/2)$  where queries come at uniform times
- If still a leaf, for each query, no connection made which happens with probability  $1 p_0 + p_0/2 = 1 p_0/2$ .

- Pick a vertex uniformly at random: Chance it is a leaf in  $\mathcal{T}_n$ ?
- Assume stabilizes to some  $p_0$
- Number of times queried: Poisson with mean

$$\sum_{i=N+1}^{n} \frac{2}{i} \sim -2\log\frac{N}{n} \approx 2\exp(1)$$

- So have interval [0,T] with  $T \sim \exp(1/2)$  where queries come at uniform times
- If still a leaf, for each query, no connection made which happens with probability  $1 p_0 + p_0/2 = 1 p_0/2$ .
- Rate one poisson process, marking each with probability  $p_0/2$ , time of first point:  $X_0 \sim \exp(p_0/2)$
- So probability not a leaf:  $1 p_0 = \mathbb{P}(T > X_0)$

## Description of the limit tree

#### Recursive construction of the degree

- Let  $p_0$  limiting fraction of leaves
- Define  $q_0 = p_0/2$
- Then  $p_0$  obtained by doing the following: Let  $T \sim \exp(1/2)$  and  $X_0 \sim \exp(q_0)$ . Then

$$1 - p_0 = \mathbb{P}(T > X_0)$$

0

$$p_0 = \frac{\sqrt{5} - 1}{2}$$

• General, having obtained  $p_k$ , get  $p_{k+1}$  by solving

$$1 - (p_0 + \dots + p_{k+1}) = \mathbb{P}(X_0 + \dots + X_{k+1}) > T$$

where

$$X_{k+1} \sim \exp(p_0 + \dots + p_k + \frac{p_{k+1}}{2})$$

# Description of $\mathcal{T}_{\infty}$

- After having obtained  $p_i$ , let  $L_i = \sum_{j=0}^i X_j$
- Consider the point process  $\mathcal{P}_{\max} = (L_0, L_1, \ldots)$
- Define

$$\mu_{\max}(0,t) = \mathbb{E}(\#i : L_i < t)$$

$$\nu_{\max}(dx) = \exp(-\frac{x}{2})\mu(dx)$$

# Description of $\mathcal{T}_{\infty}$

- After having obtained  $p_i$ , let  $L_i = \sum_{j=0}^i X_j$
- Consider the point process  $\mathcal{P}_{\max} = (L_0, L_1, \ldots)$
- Define

$$\mu_{\max}(0,t) = \mathbb{E}(\#i : L_i < t)$$

$$\nu_{\max}(dx) = \exp(-\frac{x}{2})\mu(dx)$$

#### **Theorem**

- Then  $\mathcal{T}_{\infty}$  is the Jagers-Nerman stable age distribution tree with offspring distribution  $\mathcal{P}_{\max}$ , age distribution  $\exp(1/2)$  and time to nearest ancestor  $\nu_{\max}$
- Implies convergence of global functionals as well such as the spectral distribution of adjacency matrix

