"Explosive" percolation transitions

(tomorrow: cascades on interdependent networks)

Raissa D'Souza
 University of California, Davis

Dept of Mech. and Aero. Eng., Dept of CS
Complexity Sciences Center External Professor, Santa Fe Institute

Networks are increasingly ubiquitous:

(Network: a collection of discrete nodes/vertices connected to others by edges)

The past decade, a "Science of Networks":
 (Physical, Biological, Social)

- Geometric versus virtual (Internet versus WWW).
- Natural /spontaneously arising versus engineered /built.
- Each network may optimize something unique.
- Fundamental similarities and differences to guide design/understanding/control.
- Interplay of topology and function?
- Up until now, studied largely as individual networks in isolation .

NRC, 2005

Achievements of Single Network View

(Goal : Intuition, prediction, design, control)

- Power law (broad scale) degree distributions ubiquitous.
- Small world effect (small diameter and local clusters).
- Vulnerability to "hub" removal resilience to random removal.
- Percolation, spreading and epidemics (phase transitions)
- Cascades.
- Synchronization.
- Random walks / Page rank.
- Communities / modules.

In reality a collection of interacting networks:

- E-commerce \rightarrow WWW \rightarrow Internet \rightarrow Power grid \rightarrow River networks.
- Biological virus \rightarrow Social contact network \rightarrow Transportation networks \rightarrow Communication networks \rightarrow Power grid \rightarrow River networks.

Modeling networks as random graphs

- Erdős and Rényi random graphs $(1959,1960)$. Phase transition.
- Configuration models (Bollobás 1980, Molloy \& Reed RSA 1995).

Node degree is number of edges.

- Preferential attachment (Barbási-Albert 1999, etc.)
- Growth by copying (Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins, Upfal FOCS 2000), including duplication/mutation (Vazquez, Flammini, Maritan, Vespignani, ComPlexUs 2003)
- Random graphs analysis considers the ensemble of all graphs that can be constructed consistent with specified properties.

Configuration models

- (Bollobás 1980, Molloy \& Reed RSA 1995).
- Enumerating over the ensemble of all networks with specified degree distribution. $\left\{p_{k}\right\}$ is fraction of nodes with degree k.
- To generate an instance: Begin with isolated nodes with halfedges and do a random matching. (Self-edges \& multiple edges possible).

Node degrees sampled from p_{k}.

- Probability generating functions $G(x)=\sum_{k} p_{k} x^{k}$, allow us to calculate moments/properties of the ensemble.
c.f. Newman, Watts, Strogatz, "Random graphs with arbitrary degree distributions and their applications" PRE 2001.

Does a random graph really model an individual engineered or biological system?

- Ensemble (mean-field) not necessarily representative! Doyle, et. al., PNAS 102 (4)2005.

All these have same deg dist, p_{i} :

- Neglects design principles: Redundancy, degree correlations, local optimization (Although D'Souza, et. al. PNAS 2007), ...
- M. E. J. Newman PRL 103 (2009) - Augment degree by adding in small motifs (i.e., triangles). See also work by J. Gleeson.

The "classic" random graph, $G(n, p)$

- P. Erdős and A. Rényi, "On random graphs", Publ. Math. Debrecen. 1959.
- P. Erdős and A. Rényi, "On the evolution of random graphs", Publ. Math. Inst. Hungar. Acad. Sci. 1960.
- E. N. Gilbert, "Random graphs", Annals of Mathematical Statistics, 1959.

- Start with n isolated vertices.
- Consider each possible edge, and add it with probability p.

What does the resulting graph look like?

(Typical member of the ensemble)

$G(n=300, p)$

$p=1 / 400=0.0025$

$p=1 / 200=0.005$

Emergence of a unique "giant component" Phase transition in connectivity

- $p_{c}=1 / n$.
- $p<p_{c}, C_{\max } \sim \log (n)$
- $p=p_{c}, \quad C_{\max } \sim n^{2 / 3}$
- $p>p_{c}, \quad C_{\max } \sim A \cdot n$

Expected \# of edges per node
$t=e / n=p(n-1) / 2$

$$
\text { so } t_{c}=1 / 2
$$

Erdős-Rényi: unique "giant component"

- $t<1 / 2, \quad C_{\max } \sim \mathrm{O}(\ln n)$
- $t=1 / 2, \quad C_{\text {max }}=n^{2 / 3}$
- $t>1 / 2, \quad C_{\max } \sim A n, \quad$ with $A>1$
- The critical window

Bollobás, Trans. Amer. Math. Soc., 286 (1984).
 Luczak, Random Structures and Algorithms, 1 (1990).

$$
t=1+\lambda n^{-1 / 3} \quad(\text { where } t=2 e / n)
$$

- Mean field critical exponents
e.g., Grimmett, Percolation. 2nd Edition. Springer-Verlag. 1999.

$$
\chi \sim\left(t_{c}-t\right)^{-\gamma}, \quad \text { with } \gamma=1
$$

where χ is the expected size of the component to which an arbitrarily chosen vertex belongs.

Is connectivity a good thing?
 (Context dependence)

- Communications, Transportation, Synchronization, ... versus
- Spread of human or computer viruses

Can any limited perturbation change the phase transition?
[Bohman, Frieze, RSA 19, 2001]
[Achlioptas, D'Souza, Spencer, Science 323, 2009]

- Possible to Enhance or Delay the onset?
- The "Product Rule"
- Choose two edges at random each step.
- Add only the desirable edge and discard the other.

- The Power of Two Choices in randomized algorithms. Azar; Broder; Mitzenmacher; Upfal; Karlin;

ProdRule: Explicit example

- Prod $e_{1}=(7) \times(2)=14$
- $\operatorname{Prod} e_{2}=(4) \times(4)=16$
- To enhance choose e_{2}. To delay choose e_{1}.

Product Rule

- Delay -

Extremely abrupt

The scaling window, Δ from $n^{1 / 2}$ to $0.5 n$

- Let e_{0} denote the last edge added for which $C_{\max }<n^{1 / 2}$. (Recall ER has $n^{2 / 3}$ at t_{c}.)
- Let e_{1} denote the first edge added for which $C_{\max }>0.5 n$.
- Let $\Delta=e_{1}-e_{0}$.

(A)
$\mathrm{ER}($ and BF$) \Delta \sim n$

(B)

PR $\Delta \sim n^{2 / 3}$.

PR From $n^{1 / 2}$ to $0.5 n$ in number of edges that is sublinear in n.

In terms of edge density or "time", t_{c}, where $t=e / n$

 (Note, for ER, $t_{c}=1 / 2$)- For $t<t_{c}, C_{\max }<n^{1 / 2}$.
- For $t>t_{c}, C_{\max }>0.5 n$.

Jumps "instantaneously" from $C_{\max }=n^{1 / 2}$ to $0.5 n$.

Why this is surprising

Percolation theory on networks and lattices serves as a theoretical underpinning for :

- Onset of epidemic spreading
- Flow through porous media / random transport
- Vulnerability and resilience of networks
- Many prior variants (bond, site, directed, ...) on many types of networks and lattices; All continuous transitions.
- Continuous phase transitions are accompanied by critical scaling which can provide warning signs.

"Explosive Percolation in Random Networks"

From n^{γ} to greater than $0.6 n$ "instantaneously" (Compelling evidence that the transition is discontinuous)
$C_{\text {max }}$ jumps from sublinear n^{γ} to $\geq 0.5 n$ in n^{β} edges, with $\beta, \gamma<1$.

Nontrivial Scaling behaviors

$$
\gamma+1.2 \beta=1.3 \text { for } A \in[0.1,0.6]
$$

Achlioptas, D’Souza, Spencer, Science, 323 (5920), 2009

Many more EP systems and mechanisms now discovered

(Condensed list here)
Lattice percolation, power law graphs, cluster aggregation:

- R. Ziff, Phys. Rev. Lett. 103, 045701 (2009).
- Y. S. Cho, J. S. Kim, J. Park, B. Kahng, D. Kim, Phys. Rev. Lett. 103, 135702 (2009).
- F. Radicchi, S. Fortunato, Phys. Rev. Lett. 103, 168701 (2009).
- E. J. Friedman, A. S. Landsberg, Phys. Rev. Lett. 103, 255701 (2009).
- Y.S. Cho, B. Kahng, D. Kim, Phys. Rev. E (R), 2010.
- R. M. D'Souza, M. Mitzenmacher, Phys. Rev. Lett. 104, 195702 (2010).
- Araújo, Andrade Jr, Ziff, Herrmann, Phys. Rev. Lett. 106, 095703 (2011).
- Hooyberghs, Van Schaeybroeck, Phys. Rev. E 83, 032101 (2011).
- Gomez-Gardenes, Gomez, Arenas, Moreno, Phys. Rev. Lett. in press.

Observed in real world:

- Rozenfeld, Gallos, Makse; Eur. Phys. J. B, 75, 305-310, (2010). (PHN)
- Pan, Kivelä, Jari Saramäki, Kaski, Kertész, Phys. Rev. E 83, (2011). (Communities)
- Y. Kim, Y.-k. Yun, and S.-H. Yook, Phys. Rev. E 82, 061105 (2010). (Nanotubes)
- Growth of Wikipedias (Bounova, personal communication.)

Alternate mechanisms (with out competition):

- Araújo, Herrmann, Phys. Rev. Lett. 105, 035701 (2010).
- W. Chen, R. M. D'Souza, Phys. Rev. Lett. 106, 115701 (2011).

Beyond "Product Rule": Models with fixed choice

- "Achlioptas process": examine fixed number of edges, add the one that optimizes a pre-set criterion.
"Sum rule", Adjacent edge, Triangle rule, k-clique rule, etc., all also work.
- Novel subcritical behavior : components are similar in size; many almost linear size components

Rank-size top 1000 at t=t_c

- Applications: Community detection, Minimizing interference in wireless networks, Wikipedia growth....

"Explosive Percolation": Some caveats

- "Weakly discontinuous" :
$\Delta C_{\text {max }}$, the biggest change in C_{1} due to addition of a single edge, decays with system size. (Nagler, et. al, Nature Physics, 2011).
- In limit $n \rightarrow \infty$, fixed choice rules are continuous!
- da Costa, Dorogovtsev, Goltsev, Mendes, Phys. Rev. Lett. 105, (2010).
- Riordan and Warnke, Science 333, (2011).
- Infinite choice : if number of choices $k \rightarrow \infty$ as number of nodes $n \rightarrow \infty$, this is sufficient for discontinuous transition.
e.g. $k=\log (n)$.
- As $n \rightarrow \infty$, jump $\Delta C_{\text {max }} \rightarrow 0$, but for $n \sim 10^{18}, \Delta C_{\max }$ can be of size 0.1 n .

The $n \rightarrow \infty$ limit is not the regime of real-world networks.
e.g., social networks $n \leq 10^{10}$

Percolation as cluster aggregation models

- Excellent review on percolation as cluster aggregation:
D. J. Aldous, "Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists", Bernoulli, 5(1): 348, 1999.
(Scientific Modeling (SM) mathematics rather than Theorem-Proof (TP) mathematics.)
- Assume each edge merges two previously distinct components, with probability of connecting a component of size x and one of size y, proportional to kernel $K(x, y)$.

$$
\begin{array}{ll}
K(x, y)=1 & \text { uniform attachment / size independent } \\
K(x, y)=x y & \text { "gravitational attraction" / this is Erdős-Rényi. }
\end{array}
$$

$$
\left(F_{\text {gravity }}=-M_{1} M_{2} / r_{12}^{2}\right)
$$

Smoluchowski family of coagulation equations

- Given kernel $K(x, y)$
- Evolution of $n(x, t)$, the expected number of clusters of size x at time t.
- Mean-field over all graphs (ensemble properties)

$$
\frac{d}{d t} n(x, t)=\frac{1}{2} \sum_{y=1}^{x-1} K(y, x-y) n(y, t) n(x-y, t)-n(x, t) \sum_{y=1}^{\infty} K(x, y) n(y, t)
$$

Smoluchowski approach to "Explosive Percolation"

- Y.S. Cho, B. Kahng, D. Kim; Phys. Rev. E 81, 030103(R), 2010. "Cluster aggregation model for discontinuous percolation transition"
- R.D. and M. Mitzenmacher, "Local cluster aggregation models of explosive percolation", Phys. Rev. Lett., 104, 2010.

Adjacent edge: Let $x_{i}=i n(i, t)$ (fraction of nodes) $\frac{d x_{i}}{d t}=-i x_{i}-i\left(2 x_{i} S_{i}-x_{i}^{2}\right)+i \sum_{j+k=i} x_{j}\left(2 x_{k} S_{k}-x_{k}^{2}\right)$

- S. S. Manna and Arnab Chatterjee "A new route to Explosive Percolation", Physica A 390, 177182 (2011).
- R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, "'Explosive Percolation' Transition is Actually Continuous", Phys. Rev. Lett. 105, 255701 (2010).

da Costa, et al PRL 2010

- Define $P(s, t)=s n(s, t) /\langle s\rangle$, distribution of finite component sizes to which a randomly chosen vertex belongs.
- Use a (mean-field) Smoluchowski-type eqn:

$$
\frac{\partial P(s, t)}{\partial t}=s \sum_{u+v=s} Q(u, t) Q(v, t)-2 s Q(s, t)
$$

- Size of largest component, $S(t)=1-\sum_{i} P(s, t) \cong 1-\sum_{i=1}^{10^{6}} P(s, t)$.
- If assume $P\left(s, t_{c}\right)$ is distributed according to a power law, obtain the main result: critical behavior, $S(t) \sim\left(t-t_{c}\right)^{\beta}$, with $\beta=0.0555 \approx 1 / 18$.
- Jump: $\Delta S=S\left(t_{c}^{+}\right)-S\left(t_{c}\right)=S\left(t_{c}^{+}\right)-o(n) \sim\left(t_{c}^{+}-t_{c}\right)^{\beta}=(1 / n)^{\beta}$
- If $n=10^{18}$, jump $=0.1 \mathrm{n} \ldots$ ten percent of system!

Are any real social or technological networks of size $n \sim 10^{18} \boldsymbol{?}$

Riordan and Warnke, Science 2011

- Rigorous proof: Any fixed choice process ultimately continuous!
- Proof by contradiction. ("The vanishing 'powder keg'")
- Δ, the scaling window from our PR simulations, will ultimately crossover to linear in n, but no estimate of crossover length from these arguments.
- Moreover, AP's can be nonconvergent (no scaling limit). (arXiv.1111.6177) Typically assume $\lim _{n \rightarrow \infty} C_{1}=A(t) n$ once $t>t_{c}$
(That there is a function $A(t)$ that describes the growth of C_{1} in the supercritical regime.)
translated into physics terminology:

"Achlioptas processes are not always self-averaging", to appear PRE

Beyond choice and competition: Discontinuous percolation other mechanisms

- Control only of the largest cluster
- Araujo, N. A. M. \& Herrmann, H. J. Explosive percolation via control of the largest cluster. Phys. Rev. Lett. 105, 035701 (2010).
- Araujo, et. al. Tricritical point in explosive percolation. Phys. Rev. Lett. 106, (2011). ('tri-critical" points separate region of 1st order (discontinuous) from 2nd order (continuous) transitions).
- W. Chen and R.D. Phys. Rev. Lett. 83 (2011).
- Cooperative phenomena
- Bhizani, Paczuski, Grassberger "Discontinuous percolation transitions in epidemic processes, surface deppining in random media and Hamiltonian graphs". in press PRE
- Correlated percolation
- L. Cao, J. M. Schwarz, "Correlated percolation and tricriticality", arXiv:1206.1028
- Dressing up a simple structure (one-dim lattice with hierarchy of longrange bonds) Boettcher, Singh, Ziff, Nature Communications, 3:787 (2012).
- Restricted Erdős-Rényi: Choose one node at random, one from restricted set. Panagiotou, et. al. Elec. Notes. Disc. Math. 2011.

A deterministic model

Friedman, Landsberg PRL (2009); Rozenfeld, et. al. EPJB (2010); Nagler, Levina, Timme, Nature Phys. (2011)

- (a) Phase $k=2$, merge all isolated nodes into pairs.
- (b) Phase $k=4$, merge pairs into size 4 components.
- (c) Phase $k=8$, merge pairs of 4's into 8's.
- etc.

- At edge $e=n$ (time $t=1$) one giant of size n emerges
(Giant emerges when only one component remains)

Re-visiting the Bohman Frieze Wormald model (BFW)

(Random Structures \& Algorithms, 25(4):432-449, (2004))

- A stochastic model, which exams a single-edge at a time.
- Like deterministic, start with n isolated vertices, and stage $k=2$.
- Sample edges uniformly at random from the complete graph on n nodes.
- Can reject edges provided the fraction of accepted remains greater than a function decaying with phase k. Let:
u be number of edges sampled, t be the number accepted:

Fraction of accepted edges,

$$
t / u \geq g(k)=1 / 2+(2 k)^{-1 / 2}
$$

(Note: $\lim _{k \rightarrow \infty} g(k) \rightarrow 1 / 2$)

The BFW model

- Start with n isolated vertices, and cap on maximum component set to $k=2$.
- Examine an edge selected uniformly at random from the complete graph:

1. If the resulting component size $\leq k$, accept the edge.
2. Otherwise reject that edge if possible (meaning the fraction of accepted edges $t / u \geq g(k)$).
3. Else augment $k \rightarrow k+1$, and repeat (1) and (2), with (3) if necessary. (Step 3 executes for "troubling edge")

When troubling edge encountered, $k \rightarrow k+1$ until either:

- The edge can be rejected due to sufficient decrease of $g(k)$
- The edge can be accepted due to k large enough.

The BFW model stated formally

- Initially n isolated nodes with cap on maximum size set to $k=2$.
- Let u denote the total number of edges sampled
- A the set of accepted edges (initially $A=\emptyset$)
- $t=|A|$ the number of accepted edges.

At each step u, select edge e_{u} uniformly at random from complete graph, and apply the following loop:

```
Set \(l=\) maximum size component in \(A \cup\left\{e_{u}\right\}\)
    if \((l \leq k)\{\)
    \(A \leftarrow A \cup\left\{e_{u}\right\}\)
    \(u \leftarrow u+1\}\)
    else if \((t / u<g(k))\{k \leftarrow k+1\}\)
    else \(\{u \leftarrow u+1\}\)
```

- If the edge e_{u} is troubling and $t / u<g(k)$, augment k repeatedly until either:
(i) k increases sufficiently that e_{u} is accepted or
(ii) $g(k)$ decreases sufficiently that e_{u} is rejected.

Simultaneous emergence of multiple stable giants in a strongly discontinuous transition (Wei Chen and R.D. Phys. Rev. Lett. 83 (2011).)

- Two stable giants!

$$
\left(C_{1}=0.570, C_{2}=0.405 .\right)
$$

- Fraction of internal cluster edges $>1 / 2$.
- (If restrict to sampling only edges that span clusters, only one giant ultimately.)

¿ "Strongly" discontinuous (gap independent of n)

$$
\Delta C_{1} \approx 0.165
$$

Tuning the number of stable giants

(Wei Chen and R.D. Phys. Rev. Lett. 83 (2011).)

- Now let $g(k)=\alpha+(2 k)^{-1 / 2}$. Smaller α more edges can be rejected. α determines number of stable giants!

- Multiple stable giants, not anticipated. ("uniqueness of the giant component" / gravitational coalescence of Smoluchowski kernel $K(x, y)=x y$)
- Applications for multiple giants? (Communications, epidemiology, building blocks for modular networks, polymerization (Krapivsky, Ben-Naim)...)

Evolution of component density for BFW

- For $\beta=0.5$ no scaling. Separates into components of size $O(n)$ and $<\log (n)$.
- For $\beta=0.5$ and $\beta=2.0$ no finite size effects in the location of the "hump" (inset), unlike for PR where location depends on n. (c.f. Lee, Kim, Park: data collapse)
- No scaling, no "early warning signs" (Scheffer, et. al. Nature (2009).

Deriving the underlying mechanism: Slow decay of $g(k)$ leads to growth by overtaking

(Wei Chen and R.D, arXiv:1106.2088)

- Instead of $g(k)=1 / 2+(2 k)^{-1 / 2}$ now let $g(k)=1 / 2+(2 k)^{-\beta}$
- Procedure: analyze by how much k must grow before $g(k)$ would decrease sufficiently to reject troubling edge.

- For $\beta \in(0.5,1]$, an increase in $k \sim n^{\beta}$ is always sufficient to reject a troubling edge. Slow increase in k means:
- Growth by overtaking*: two smaller components merge becoming new C_{1}. - Multiple components of size $O(n)$ before the largest jump.

- For $\beta>1$, once stage $k=n^{1 / \beta}$, troubling edges must be accepted at times, leading to large direct growth of C_{1}, and a weakly discontinuous transition.
* Consistent with Nagler, et. al., Nature Phys (2011), for direct growth forbidden.

More generally, macroscopic jump means: Multiple giants coexist in critical window

- Note, we define as the critical point t_{c}, the single edge who's addition causes the biggest change, ΔC_{1}. (Recall C_{1} is the fraction of nodes in the largest component.)
- If $\Delta C_{1}>0$ there necessarily existed another macroscopic component. e.g. If $\Delta C_{1}=0.1$ that means C_{1} merged with a component of size $\left|C_{j}\right|=0.1 n$.
- Let t_{c}^{\prime} denote emergence of giant.
- Let t_{c} denote largest jump in C_{1}
- Is $t_{c}=t_{c}^{\prime}$??

Is $t_{c}=t_{c}^{\prime}$?

"Explosive Percolation" Conclusions \& Future Directions:

- Delaying percolation leads to abrupt connectivity transition.
- Finite choice results in continuous transition for $n \rightarrow \infty$. But large jumps (e.g., 0.2 n to 0.5 n) for sizes of real-world networks ($\mathrm{n}=10^{10}$) Can we develop a rigorous finite size scaling theory?
- Is $t_{c}=t_{c}^{\prime}$?
- Mechanisms:
- $\log (n)$ choices (i.e. infinite choice)
- evolving cap on largest component,
- cooperation / correlations
- specialized structures (e.g., hierarchical small world 1-D lattices, restricted Erdős-Rényi)
- Applications based on keeping clusters distributed in space and of similar size - community structure detection, wireless networks, going viral through local community growth....

Tomorrow?

Methods

- Probability generating functions / configuration models
- Cluster aggregation evolution equations / Smoluchowski equations
- Multitype branching processes

Models

- Cascades on interconnected networks

