21. Explain why the following curious calculations hold:

$$1 \cdot 9 + 2 = 11$$

$$12 \cdot 9 + 3 = 111$$

$$123 \cdot 9 + 4 = 1111$$

$$1234 \cdot 9 + 5 = 11111$$

$$12345 \cdot 9 + 6 = 111111$$

$$123456 \cdot 9 + 7 = 1111111$$

$$12345678 \cdot 9 + 8 = 111111111$$

$$123456789 \cdot 9 + 9 = 111111111$$

$$123456789 \cdot 9 + 10 = 1111111111$$

[Hint: Show that

$$(10^{n-1} + 2 \cdot 10^{n-2} + 3 \cdot 10^{n-3} + \dots + n)(10 - 1) + (n+1) = \frac{10^{n+1} - 1}{9}.$$

- 22. An old and somewhat illegible invoice shows that 72 canned hams were purchased for x 67.9y. Find the missing digits.
- 23. If 792 divides the integer 13xy 45z, find the digits x, y, and z. [*Hint*: By Problem 15, 8 | 45z.]
- **24.** For any prime p > 3 prove that 13 divides  $10^{2p} 10^p + 1$ . [*Hint*: By Problem 16(a),  $10^6 \equiv 1 \pmod{13}$ .]

## 4.4 LINEAR CONGRUENCES

This is a convenient place in our development of number theory at which to investigate the theory of linear congruences: An equation of the form  $ax \equiv b \pmod{n}$  is called a *linear congruence*, and by a solution of such an equation we mean an integer  $x_0$  for which  $ax_0 \equiv b \pmod{n}$ . By definition,  $ax_0 \equiv b \pmod{n}$  if and only if  $n \mid ax_0 - b$  or, what amounts to the same thing, if and only if  $ax_0 - b = ny_0$  for some integer  $y_0$ . Thus, the problem of finding all integers that will satisfy the linear congruence  $ax \equiv b \pmod{n}$  is identical with that of obtaining all solutions of the linear Diophantine equation ax - ny = b. This allows us to bring the results of Chapter 2 into play.

It is convenient to treat two solutions of  $ax \equiv b \pmod{n}$  that are congruent modulo n as being "equal" even though they are not equal in the usual sense. For instance, x = 3 and x = -9 both satisfy the congruence  $3x \equiv 9 \pmod{12}$ ; because  $3 \equiv -9 \pmod{12}$ , they are not counted as different solutions. In short: When we refer to the number of solutions of  $ax \equiv b \pmod{n}$ , we mean the number of incongruent integers satisfying this congruence.

With these remarks in mind, the principal result is easy to state.

**Theorem 4.7.** The linear congruence  $ax \equiv b \pmod{n}$  has a solution if and only if  $d \mid b$ , where  $d = \gcd(a, n)$ . If  $d \mid b$ , then it has d mutually incongruent solutions modulo n.

**Proof.** We already have observed that the given congruence is equivalent to the linear Diophantine equation ax - ny = b. From Theorem 2.9, it is known that the latter equation can be solved if and only if  $d \mid b$ ; moreover, if it is solvable and  $x_0$ ,  $y_0$  is one specific solution, then any other solution has the form

$$x = x_0 + \frac{n}{d}t \qquad y = y_0 + \frac{a}{d}t$$

for some choice of t.

Among the various integers satisfying the first of these formulas, consider those that occur when t takes on the successive values t = 0, 1, 2, ..., d - 1:

$$x_0, x_0 + \frac{n}{d}, x_0 + \frac{2n}{d}, \dots, x_0 + \frac{(d-1)n}{d}$$

We claim that these integers are incongruent modulo n, and all other such integers x are congruent to some one of them. If it happened that

$$x_0 + \frac{n}{d}t_1 \equiv x_0 + \frac{n}{d}t_2 \pmod{n}$$

where  $0 \le t_1 < t_2 \le d - 1$ , then we would have

$$\frac{n}{d}t_1 \equiv \frac{n}{d}t_2 \; (\bmod \; n)$$

Now gcd(n/d, n) = n/d, and therefore by Theorem 4.3 the factor n/d could be canceled to arrive at the congruence

$$t_1 \equiv t_2 \pmod{d}$$

which is to say that  $d \mid t_2 - t_1$ . But this is impossible in view of the inequality  $0 < t_2 - t_1 < d$ .

It remains to argue that any other solution  $x_0 + (n/d)t$  is congruent modulo n to one of the d integers listed above. The Division Algorithm permits us to write t as t = qd + r, where  $0 \le r \le d - 1$ . Hence

$$x_0 + \frac{n}{d}t = x_0 + \frac{n}{d}(qd + r)$$
$$= x_0 + nq + \frac{n}{d}r$$
$$\equiv x_0 + \frac{n}{d}r \pmod{n}$$

with  $x_0 + (n/d)r$  being one of our d selected solutions. This ends the proof.

The argument that we gave in Theorem 4.7 brings out a point worth stating explicitly: If  $x_0$  is any solution of  $ax \equiv b \pmod{n}$ , then the  $d = \gcd(a, n)$  incongruent solutions are given by

$$x_0, x_0 + \frac{n}{d}, x_0 + 2\left(\frac{n}{d}\right), \dots, x_0 + (d-1)\left(\frac{n}{d}\right)$$

For the reader's convenience, let us also record the form Theorem 4.7 takes in the special case in which a and n are assumed to be relatively prime.

**Corollary.** If gcd(a, n) = 1, then the linear congruence  $ax \equiv b \pmod{n}$  has a unique solution modulo n.

We now pause to look at two concrete examples.

**Example 4.6.** First consider the linear congruence  $18x \equiv 30 \pmod{42}$ . Because  $\gcd(18, 42) = 6$  and 6 surely divides 30, Theorem 4.7 guarantees the existence of exactly six solutions, which are incongruent modulo 42. By inspection, one solution is found to be x = 4. Our analysis tells us that the six solutions are as follows:

$$x \equiv 4 + (42/6)t \equiv 4 + 7t \pmod{42}$$
  $t = 0, 1, \dots, 5$ 

or, plainly enumerated,

$$x \equiv 4, 11, 18, 25, 32, 39 \pmod{42}$$

**Example 4.7.** Let us solve the linear congruence  $9x \equiv 21 \pmod{30}$ . At the outset, because gcd(9, 30) = 3 and  $3 \mid 21$ , we know that there must be three incongruent solutions.

One way to find these solutions is to divide the given congruence through by 3, thereby replacing it by the equivalent congruence  $3x \equiv 7 \pmod{10}$ . The relative primeness of 3 and 10 implies that the latter congruence admits a unique solution modulo 10. Although it is not the most efficient method, we could test the integers 0, 1, 2, ..., 9 in turn until the solution is obtained. A better way is this: Multiply both sides of the congruence  $3x \equiv 7 \pmod{10}$  by 7 to get

$$21x \equiv 49 \pmod{10}$$

which reduces to  $x \equiv 9 \pmod{10}$ . (This simplification is no accident, for the multiples  $0 \cdot 3, 1 \cdot 3, 2 \cdot 3, \ldots, 9 \cdot 3$  form a complete set of residues modulo 10; hence, one of them is necessarily congruent to 1 modulo 10.) But the original congruence was given modulo 30, so that its incongruent solutions are sought among the integers 0, 1, 2, ..., 29. Taking t = 0, 1, 2, in the formula

$$x = 9 + 10t$$

we obtain 9, 19, 29, whence

$$x \equiv 9 \pmod{30}$$
  $x \equiv 19 \pmod{30}$   $x \equiv 29 \pmod{30}$ 

are the required three solutions of  $9x \equiv 21 \pmod{30}$ .

A different approach to the problem is to use the method that is suggested in the proof of Theorem 4.7. Because the congruence  $9x \equiv 21 \pmod{30}$  is equivalent to the linear Diophantine equation

$$9x - 30y = 21$$

we begin by expressing  $3 = \gcd(9, 30)$  as a linear combination of 9 and 30. It is found, either by inspection or by using the Euclidean Algorithm, that  $3 = 9(-3) + 30 \cdot 1$ , so that

$$21 = 7 \cdot 3 = 9(-21) - 30(-7)$$

Thus, x = -21, y = -7 satisfy the Diophantine equation and, in consequence, all solutions of the congruence in question are to be found from the formula

$$x = -21 + (30/3)t = -21 + 10t$$

The integers x = -21 + 10t, where t = 0, 1, 2, are incongruent modulo 30 (but all are congruent modulo 10); thus, we end up with the incongruent solutions

$$x \equiv -21 \pmod{30}$$
  $x \equiv -11 \pmod{30}$   $x \equiv -1 \pmod{30}$ 

or, if one prefers positive numbers,  $x \equiv 9, 19, 29 \pmod{30}$ .

Having considered a single linear congruence, it is natural to turn to the problem of solving a system of simultaneous linear congruences:

$$a_1x \equiv b_1 \pmod{m_1}, a_2x \equiv b_2 \pmod{m_2}, \dots, a_rx \equiv b_r \pmod{m_r}$$

We shall assume that the moduli  $m_k$  are relatively prime in pairs. Evidently, the system will admit no solution unless each individual congruence is solvable; that is, unless  $d_k \mid b_k$  for each k, where  $d_k = \gcd(a_k, m_k)$ . When these conditions are satisfied, the factor  $d_k$  can be canceled in the kth congruence to produce a new system having the same set of solutions as the original one:

$$a_1'x \equiv b_1' \pmod{n_1}, a_2'x \equiv b_2' \pmod{n_2}, \dots, a_r'x \equiv b_r' \pmod{n_r}$$

where  $n_k = m_k/d_k$  and  $gcd(n_i, n_j) = 1$  for  $i \neq j$ ; in addition,  $gcd(a'_i, n_i) = 1$ . The solutions of the individual congruences assume the form

$$x \equiv c_1 \pmod{n_1}, x \equiv c_2 \pmod{n_2}, \dots, x \equiv c_r \pmod{n_r}$$

Thus, the problem is reduced to one of finding a simultaneous solution of a system of congruences of this simpler type.

The kind of problem that can be solved by simultaneous congruences has a long history, appearing in the Chinese literature as early as the 1st century A.D. Sun-Tsu asked: Find a number that leaves the remainders 2, 3, 2 when divided by 3, 5, 7, respectively. (Such mathematical puzzles are by no means confined to a single cultural sphere; indeed, the same problem occurs in the *Introductio Arithmeticae* of the Greek mathematician Nicomachus, circa 100 A.D.) In honor of their early contributions, the rule for obtaining a solution usually goes by the name of the Chinese Remainder Theorem.

**Theorem 4.8 Chinese Remainder Theorem.** Let  $n_1, n_2, \ldots, n_r$  be positive integers such that  $gcd(n_i, n_j) = 1$  for  $i \neq j$ . Then the system of linear congruences

$$x \equiv a_1 \pmod{n_1}$$

$$x \equiv a_2 \pmod{n_2}$$

$$\vdots$$

$$x \equiv a_r \pmod{n_r}$$

has a simultaneous solution, which is unique modulo the integer  $n_1 n_2 \cdots n_r$ .

**Proof.** We start by forming the product  $n = n_1 n_2 \cdots n_r$ . For each  $k = 1, 2, \dots, r$ , let

$$N_k = \frac{n}{n_k} = n_1 \cdots n_{k-1} n_{k+1} \cdots n_r$$

In words,  $N_k$  is the product of all the integers  $n_i$  with the factor  $n_k$  omitted. By hypothesis, the  $n_i$  are relatively prime in pairs, so that  $gcd(N_k, n_k) = 1$ . According to the theory of a single linear congruence, it is therefore possible to solve the congruence  $N_k x \equiv 1 \pmod{n_k}$ ; call the unique solution  $x_k$ . Our aim is to prove that the integer

$$\bar{x} = a_1 N_1 x_1 + a_2 N_2 x_2 + \dots + a_r N_r x_r$$

is a simultaneous solution of the given system.

First, observe that  $N_i \equiv 0 \pmod{n_k}$  for  $i \neq k$ , because  $n_k \mid N_i$  in this case. The result is

$$\bar{x} = a_1 N_1 x_1 + \dots + a_r N_r x_r \equiv a_k N_k x_k \pmod{n_k}$$

But the integer  $x_k$  was chosen to satisfy the congruence  $N_k x \equiv 1 \pmod{n_k}$ , which forces

$$\bar{x} \equiv a_k \cdot 1 \equiv a_k \pmod{n_k}$$

This shows that a solution to the given system of congruences exists.

As for the uniqueness assertion, suppose that x' is any other integer that satisfies these congruences. Then

$$\bar{x} \equiv a_k \equiv x' \pmod{n_k}$$
  $k = 1, 2, \dots, r$ 

and so  $n_k \mid \bar{x} - x'$  for each value of k. Because  $\gcd(n_i, n_j) = 1$ , Corollary 2 to Theorem 2.4 supplies us with the crucial point that  $n_1 n_2 \cdots n_r \mid \bar{x} - x'$ ; hence  $\bar{x} \equiv x' \pmod{n}$ . With this, the Chinese Remainder Theorem is proven.

**Example 4.8.** The problem posed by Sun-Tsu corresponds to the system of three congruences

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

In the notation of Theorem 4.8, we have  $n = 3 \cdot 5 \cdot 7 = 105$  and

$$N_1 = \frac{n}{3} = 35$$
  $N_2 = \frac{n}{5} = 21$   $N_3 = \frac{n}{7} = 15$ 

Now the linear congruences

$$35x \equiv 1 \pmod{3}$$
  $21x \equiv 1 \pmod{5}$   $15x \equiv 1 \pmod{7}$ 

are satisfied by  $x_1 = 2$ ,  $x_2 = 1$ ,  $x_3 = 1$ , respectively. Thus, a solution of the system is given by

$$x = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1 = 233$$

Modulo 105, we get the unique solution  $x = 233 \equiv 23 \pmod{105}$ .

Example 4.9. For a second illustration, let us solve the linear congruence

$$17x \equiv 9 \pmod{276}$$

Because  $276 = 3 \cdot 4 \cdot 23$ , this is equivalent to finding a solution for the system of congruences

$$17x \equiv 9 \pmod{3}$$
 or  $x \equiv 0 \pmod{3}$   
 $17x \equiv 9 \pmod{4}$   $x \equiv 1 \pmod{4}$   
 $17x \equiv 9 \pmod{23}$   $17x \equiv 9 \pmod{23}$ 

Note that if  $x \equiv 0 \pmod{3}$ , then x = 3k for any integer k. We substitute into the second congruence of the system and obtain

$$3k \equiv 1 \pmod{4}$$

Multiplication of both sides of this congruence by 3 gives us

$$k \equiv 9k \equiv 3 \pmod{4}$$

so that k = 3 + 4j, where j is an integer. Then

$$x = 3(3+4j) = 9+12j$$

For x to satisfy the last congruence, we must have

$$17(9+12j) \equiv 9 \pmod{23}$$

or  $204j \equiv -144 \pmod{23}$ , which reduces to  $3j \equiv 6 \pmod{23}$ ; in consequence,  $j \equiv 2 \pmod{23}$ . This yields j = 2 + 23t, with t an integer, whence

$$x = 9 + 12(2 + 23t) = 33 + 276t$$

All in all,  $x \equiv 33 \pmod{276}$  provides a solution to the system of congruences and, in turn, a solution to  $17x \equiv 9 \pmod{276}$ .

We should say a few words about linear congruences in two variables; that is, congruences of the form

$$ax + by \equiv c \pmod{n}$$

In analogy with Theorem 4.7, such a congruence has a solution if and only if gcd(a, b, n) divides c. The condition for solvability holds if either gcd(a, n) = 1 or gcd(b, n) = 1. Say gcd(a, n) = 1. When the congruence is expressed as

$$ax \equiv c - by \pmod{n}$$

the corollary to Theorem 4.7 guarantees a unique solution x for each of the n incongruent values of y. Take as a simple illustration  $7x + 4y \equiv 5 \pmod{12}$ , that would be treated as  $7x \equiv 5 - 4y \pmod{12}$ . Substitution of  $y \equiv 5 \pmod{12}$  gives  $7x \equiv -15 \pmod{12}$ ; but this is equivalent to  $-5x \equiv -15 \pmod{12}$  so that  $x \equiv 3 \pmod{12}$ . It follows that  $x \equiv 3 \pmod{12}$ ,  $y \equiv 5 \pmod{12}$  is one of the 12 incongruent solutions of  $7x + 4y \equiv 5 \pmod{12}$ . Another solution having the same value of x is  $x \equiv 3 \pmod{12}$ ,  $y \equiv 8 \pmod{12}$ .

The focus of our concern here is how to solve a system of two linear congruences in two variables with the same modulus. The proof of the coming theorem adopts the familiar procedure of eliminating one of the unknowns.