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21. Explain why the following curious calculations hold:

1.9+ 2=11
12:94+ 3 =111
123.94+ 4 =1111
1234.9+4+ 5=11111
12345.94+ 6 =111111
123456 -9+ 7 ='1111111
1234567 -9+ 8 =11111111
12345678 -9+ 9 = 111111111
123456789 -9+ 10 = 1111111111

[Hint: Show that

(mm4+2-mmﬂ+3.w%3+~-+m00—n
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22. An old and somewhat illegible invoice shows that 72 canned hams were purchased for
$x 67.9y. Find the missing digits.

23. If 792 divides the integer 13xy 45z, find the digits x, y, and z.
[Hint: By Problem 15, 8|45z.]

24. For any prime p > 3 prove that 13 divides 102” — 107 + 1.
[Hint: By Problem 16(a), 10° = 1 (mod 13).]
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44 LINEAR CONGRUENCES

This is a convenient place in our development of number theory at which to inves-
tigate the theory of linear congruences: An equation of the form ax = b (mod n)
is called a linear congruence, and by a solution of such an equation we mean an
integer xo for which axg = b (mod n). By definition, axy = b (mod n) if and only
if n|axy — b or, what amounts to the same thing, if and only if axq — b = ny, for
some integer yo. Thus, the problem of finding all integers that will satisfy the linear
congruence ax = b (mod n) is identical with that of obtaining all solutions of the
linear Diophantine equation ax — ny = b. This allows us to bring the results of
Chapter 2 into play. )

It is convenient to treat two solutions of ax = b (mod n) that are congruent
modulo n as being “equal” even though they are not equal in the usual sense. For
instance, x = 3 and x = —9 both satisfy the congruence 3x = 9 (mod 12); because
3 = —9 (mod 12), they are not counted as different solutions. In short: When we refer
to the number of solutions of ax = b(mod n), we mean the number of incongruent
integers satisfying this congruence.

With these remarks in mind, the principal result is easy to state.

Theorem 4.7. The linear congruence ax = b (mod n) has a solution if and only if d | b,
where d = ged(a, n). If d | b, then it has d mutually incongruent solutions modulo 7.
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Proof. We already have observed that the given congruence is equivalent to the linear
Diophantine equation ax — ny = b. From Theorem 2.9, it is known that the latter
equation can be solved if and only if d | b; moreover, if it is solvable and xq, y, is one
specific solution, then any other solution has the form
n a
X=X+t y=yo+ ot
for some choice of 7.
Among the various integers satisfying the first of these formulas, consider those

that occur when ¢ takes on the successive values t =0,1,2,...,d — 1:
n n + 2n 4 d—-1n
X0, X =, X T e ey X _—
X0, X0 d 0 d 0 4

We claim that these integers are incongruent modulo n, and all other such integers x
are congruent to some one of them. If it happened that

X0 + gtl =x0+ ?—Zl‘z (mod n)

where 0 < #; <t <d — 1, then we would have
n n
—f = —t d
Jh=gn (mod n)

Now ged(n/d ,n) = n/d, and therefore by Theorem 4.3 the factor n/d could be
canceled to arrive at the congruence

t; = tp (mod d)
which is to say that d|#, — 7. But this is impossible in view of the inequality
O0<th—1 <d.

It remains to argue that any other solution xq + (1/d)t is congruent modulo n
to one of the d integers listed above. The Division Algorithm permits us to write ¢ as
t =qd+r,where 0 <r <d — 1. Hence
n

xo—l—d

n
t=x0+g(qd+r)
n
=x0+nq+3r

=x0+ Er (mod n)
d
with xo + (n/d)r being one of our d selected solutions. This ends the proof.

The argument that we gave in Theorem 4.7 brings out a point worth stating ex-
plicitly: If xo is any solution of ax = b (mod n), thenthed = gcd(a, n) incongruent
solutions are given by

n n n
xQ,xO—f-E,Xo+2<2>,...,XQ—|—(a’—1)(;{-)

For the reader’s convenience, let us also record the form Theorem 4.7 takes in
the special case in which @ and n are assumed to be relatively prime.

Corollary. If gcd(a , n) = 1, then the linear congruence ax = b (mod ) has a unique
solution modulo 7.
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We now pause to look at two concrete examples.

Example 4.6. First consider the linear congruence 18x = 30 (mod 42). Because
ged(18, 42) = 6 and 6 surely divides 30, Theorem 4.7 guarantees the existence of
exactly six solutions, which are incongruent modulo 42. By inspection, one solution
is found to be x = 4. Our analysis tells us that the six solutions are as follows:

x=4+42/6)t =447t (mod42) +r=0,1,...,5
or, plainly enumerated,

x =4,11, 18, 25,32, 39 (mod 42)

Example 4.7. Let us solve the linear congruence 9x = 21 (mod 30). At the outset,
because gcd(9,30) = 3 and 3|21, we know that there must be three incongruent
solutions.

One way to find these solutions is to divide the given congruence through by
3, thereby replacing it by the equivalent congruence 3x = 7 (mod 10). The relative
primeness of 3 and 10 implies that the latter congruence admits a unique solution
modulo 10. Although it is not the most efficient method, we could test the integers 0, 1,
2,...,9 in turn until the solution is obtained. A better way is this: Multiply both sides
of the congruence 3x = 7 (mod 10) by 7 to get

21x =49 (mod 10)

which reduces to x = 9 (mod 10). (This sifnpliﬁcation is no accident, for the multiples
0-3,1-3,2-3,...,9 -3 form a complete set of residues modulo 10; hence, one
of them is necessarily congruent to 1 modulo 10.) But the original congruence was
given modulo 30, so that its incongruent solutions are sought among the integers 0, 1,
2,...,29. Taking t = 0, 1, 2, in the formula

x =94 10¢
we obtain 9, 19, 29, whence
x=9(mod30) x =19 (mod30) x =29 (mod 30)

are the required three solutions of 9x = 21 (mod 30).

A different approach to the problem is to use the method that is suggested in the
proof of Theorem 4.7. Because the congruence 9x = 21(mod 30) is equivalent to the
linear Diophantine equation

- 9x — 30y =21

we begin by expressing 3 = gcd(9, 30) as alinear combination of 9 and 30. It is found,
either by inspection or by using the Euclidean Algorithm, that 3 = 9(—3) 4-30- 1, so
that

21 =7-3=9(-21) —30(-7)

Thus, x = —21, y = —7 satisfy the Diophantine equation and, in consequence, all
solutions of the congruence in question are to be found from the formula

x =-=214(30/3)t = —21 4+ 10¢
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The integers x = —21 + 10z, where t = 0, 1, 2, are incongruent modulo 30 (but all
are congruent modulo 10); thus, we end up with the incongruent solutions

x = —21 (mod 30) = —11 (mod 30) x = —1 (mod 30)

or, if one prefers positive numbers, x =9, 19, 29 (mod 30).

Having considered a single linear congruence, it is natural to turn to the problem
of solving a system of simultaneous linear congruences:

a1x = by (mod m), axx = by (mod my), ..., a,x = b, (mod m,)

We shall assume that the moduli m;, are relatively prime in pairs. Evidently, the
system will admit no solution unless each individual congruence is solvable; that
is, unless dj | by for each k, where d; = gcd(ay , mi). When these conditions are
satisfied, the factor dj can be canceled in the kth congruence to produce a new system
having the same set of solutions as the original one:

ajx = b} (mod ny), ayx = by (mod ny), ..., alx = b). (mod n,)

where n; = my/dy and ged(n; ,n;) = 1 fori # j;in addition, ged(a), ny) =
The solutions of the individual congruences assume the form

x = c¢; (mod n1), x = ¢ (mod ny), ...,x = ¢, (mod n;)

Thus, the problem is reduced to one of finding a simultaneous solution of a system
of congruences of this simpler type.

The kind of p10blem that can be solved by simultaneous congruences has a
long history, appearing in the Chinese literature as early as the 1st century A.D. Sun-
Tsu asked: Find a number that leaves the remainders 2, 3, 2 when divided by 3, 5,
7, respectively. (Such mathematical puzzles are by no means confined to a single
cultural sphere; indeed, the same problem occurs in the Introductio Arithmeticae
of the Greek mathematician Nicomachus, circa 100 A.D.) In honor of their early
contributions, the rule for obtaining a solution usually goes by the name of the
Chinese Remainder Theorem.

Theorem4.8 Chinese Remainder Theorem. Letny, ns, ..., n, be positive integers
such that ged(n; ,n;) = 1 for i # j. Then the system of linear congruences

x = a; (mod nyp)
x = ap (mod ny)

x = a, (mod n,)
has a simultaneous solution, which is unique modulo the integer niny - - - 1,
Proof. We start by forming the product n = nyny---n,. Foreachk =1,2,...,r,let

Nk:'—znl"'nk—lnk+1"'nr
ng
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In words, Ny is the product of all the integers 7; with the factor n; omitted. By hypoth-
esis, the n; are relatively prime in pairs, so that ged(Ny , nz) = 1. According to the
theory of a single linear congruence, it is therefore possible to solve the congruence
Nix = 1 (mod ny); call the unique solution x;. Our aim is to prove that the integer

X = aiNix; + ayNpxs + - - - +a, Ny x,

is a simultaneoussolution of the given system.

First, observe that N; = 0 (mod ng) for i # k, because ny, | N; in this case. The
result is ‘

X=aNix;+--+aNyx, = arNixy (mod ny)

But the integer x; was chosen to satisfy the congruence Nyx = 1 (mod ny), which
forces

X =ay -1 =a; (mod ny)

This shows that a solution to the given system of congruences exists.

As for the uniqueness assertion, suppose that x’ is any other integer that satisfies
these congruences. Then

Y=a =x"(modn) k=1,2,....r

and so ny | X —x’ for each value of k. Because ged(n; , nj) = 1, Corollary 2 to Theorem
2.4 supplies us with the crucial point that njny - - -n, | X — x’; hence ¥ = x’ (mod n).
With this, the Chinese Remainder Theorem is proven.

Example 4.8. The problem posed by Sun-Tsu corresponds to the system of three
congruences .

x =2 (mod 3)
x = 3 (mod 5)
x =2 (mod 7)

In the notation of Theorem 4.8, wehaven =3-5.7 = 105 and

Now the linear congruences
35x =1(mod3) 2lx=1 (mod 5)  15x =1 (mod7)

are satisfied by x; = 2, xp = 1, x5 = 1, respectively. Thus, a solution of the system is
given by

x=2-35-243.21-142-15-1=233
Modulo 105, we get the unique solution x = 233 = 23 (mod 105).

Example 4.9. For a second illustration, let us solve the linear congruence

17x = 9 (mod 276)
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Because 276 = 3 - 4 - 23, this is equivalent to finding a solution for the system of

congruences
17x = 9 (mod 3) or x =0 (mod 3)
17x = 9 (mod 4) x =1 (mod 4)
17x = 9 (mod 23) 17x = 9 (mod 23)

Note thatif x = 0 (mod 3), then x = 3k for any integer k. We substitute into the second
congruence of the system and obtain

3k =1 (mod 4)
Multiplication of both sides of this congruence by 3 gives us
k =9k =3 (mod 4)
so that k = 3 4 4, where j is an integer. Then
x=3034+4j)=9+12j
For x to satisfy the last congruence, we must have .
179 4+ 12j) = 9 (mod 23)

or 204j = —144 (mod 23), which reduces to 3j = 6 (mod 23); in consequence,
J = 2 (mod 23). This yields j = 2 4 23¢, with ¢ an integer, whence

x =9412(2 4 23¢) = 33 + 276¢

All'in all, x = 33 (mod 276) provides a solution to the system of congruences and, in
turn, a solution to 17x = 9 (mod 276).

We should say a few words about linear congruences in two variables; that is,
congruences of the form

ax + by = ¢ (mod n)

In analogy with Theorem 4.7, such a congruence has a solution if and only if
ged(a, b, n) divides c. The condition for solvability holds if either ged(a,n) = 1
or ged(b, n) = 1. Say ged(a, n) = 1. When the congruence is expressed as

ax = c¢ — by (mod n)

the corollary to Theorem 4.7 guarantees a unique solution x for each of the » in-
congruent values of y. Take as a simple illustration 7x 4+ 4y = 5 (mod 12), that
would be treated as 7x = 5 — 4y (mod 12). Substitution of y = 5 (mod 12)
gives 7x = —15 (mod 12); but this is equivalent to —5x = —15 (mod 12) so that
x = 3 (mod 12). It follows that x = 3 (mod 12),y = 5 (mod 12) is one of the 12
incongruent solutions of 7x + 4y = 5 (mod 12). Another solution having the same
value of x is x = 3 (mod 12),y = 8 (mod 12).

The focus of our concern here is how to solve a system of two linear congruences
in two variables with the same modulus. The proof of the coming theorem adopts
the familiar procedure of eliminating one of the unknowns.




