I learned this computation from A. J. de Jong.

Theorem. Let n and d be integers, and suppose that $n \geq 1$. Then

$$H^{0}(\mathbb{P}^{n}_{\mathbb{C}}, \mathcal{O}(d)) = \mathbb{C}[x_{0}, \dots, x_{n}]_{d}
H^{i}(\mathbb{P}^{n}_{\mathbb{C}}, \mathcal{O}(d)) = 0 , 1 \leq i \leq n-1
H^{n}(\mathbb{P}^{n}_{\mathbb{C}}, \mathcal{O}(d)) = \left(\frac{1}{x_{0} \cdot \dots \cdot x_{n}} \mathbb{C}[x_{0}^{-1}, \dots, x_{n}^{-1}]\right)_{d}$$

Remark. In the above statement and in the proof below, \mathbb{C} stands for any commutative ring with unit. It is not required to be noetherian.

Proof. Let $\mathcal{F} := \bigoplus_{d \in \mathbb{Z}} \mathcal{O}_{\mathbb{P}^n}(d)$. Clearly, \mathcal{F} is a quasi-coherent sheaf on \mathbb{P}^n . Let $\mathcal{U} = \{U_i\}_{i=0}^n$ be the open affine cover of \mathbb{P}^n such that $U_i = \mathbb{P}^n \setminus V(x_i)$.

Fact. Open affine covers are acyclic for the global section cohomology and thus the Čech complex associated to \mathcal{U} actually computes $H^i(\mathbb{P}^n, \mathcal{F})$.

We have

$$\mathcal{C}^{m}(\mathcal{U},\mathcal{F}) =$$

$$= \bigoplus_{d} \bigoplus_{i_{0} < \dots < i_{m}} \left(\mathbb{C}[x_{0}, \dots, x_{n}, \frac{1}{x_{i_{0}} \dots x_{i_{m}}}] \right)_{d} =$$

$$= \bigoplus_{i_{0} < \dots < i_{m}} \mathbb{C}[x_{0}, \dots, x_{n}, \frac{1}{x_{i_{0}} \dots x_{i_{m}}}]$$

and there is a natural \mathbb{Z}^{n+1} -grading, where the monomial $x_0^{e_0} \cdot \ldots \cdot x_n^{e_n}$ has degree (e_0, \ldots, e_n) . Moreover, it is clear that the differential respects the grading; this allows us to forget the grading for now and recover all the information later. We have

$$\mathcal{C}^mig(\mathcal{U},\mathcal{F}ig) = igoplus_{e \in \mathbb{Z}^{n+1}} K^m_{\underline{e}}$$

where of course $K_{\underline{e}}^m$ is the direct sum of all terms involving monomials of degree \underline{e} . Let $p(\underline{e}) = \#\{i \in \{0,\ldots,n\} | e_i < 0\} - 1$. If $m < p(\underline{e})$, then $K_{\underline{e}}^m = 0$, since monomials in $\mathcal{C}^m(\mathcal{U},\mathcal{F})$ are allowed exactly m+1 negative exponents. We can write:

$$K_{\underline{e}}^{\bullet}: \qquad \cdots \longrightarrow 0 \longrightarrow \mathbb{C} \longrightarrow \mathbb{C}^{n-p(\underline{e})} \longrightarrow \mathbb{C}^{\binom{n-p(\underline{e})}{2}} \longrightarrow \cdots \longrightarrow \mathbb{C} \longrightarrow 0 \longrightarrow \cdots$$

$$p(\underline{e})-1 \qquad p(\underline{e}) \qquad p(\underline{e})+1 \qquad p(\underline{e})+2 \qquad \qquad n \qquad n+1$$

where a generator for the first non-zero group from the left is $\underline{x}^{\underline{e}}$, as a section on the largest intersection $U_{\underline{e}}$ of open sets in \mathcal{U} where it is regular; generators for the second non-zero group from the left are $\underline{x}^{\underline{e}}$, as sections on the intersection $U_{\underline{e}} \cap U_i$, with U_i not already appearing in $U_{\underline{e}}$, ... Thus $K_{\underline{e}}^{\bullet}$ is the standard Koszul complex which only has cohomology if $p(\underline{e}) = -1$ or $p(\underline{e}) = n$:

$$p(\underline{e}) = 0$$
 $K_{\underline{e}}^{\bullet}:$ $\mathbb{C}^{--} \rightarrow \mathbb{C}^{n-p(\underline{e})} \longrightarrow \mathbb{C}^{\binom{n-p(\underline{e})}{2}} \longrightarrow \cdots$

 $p(\underline{e}) = n \qquad K_{\underline{e}}^{\bullet}: \qquad \cdots \longrightarrow 0 \longrightarrow \mathbb{C} \longrightarrow 0 \longrightarrow n+1$ This completes the proof.