Moduli in AG

Why study moduli problems? Two reasons...

(A) Classify geometric objects

(leads to deeper understanding of the structure of these objects

Ex: compact Lie groups we theory of root data

 \bigcirc Explosion of interest in moduli since 80's

New invariants in differential geometry:

pseudoholomorphic curves, gauge theory

Idea: Given a manifold X...

Associate a moduli problem M(X), then "count" $\pm M(X)$, objects up to isomorphism. When X is a projective variety, M(X) often has analogs in algebraic geometry

Deasier, thanks to language of stacks

First issue:

some objects are parameterized by continuous parameters

Ex: moduli of curves as an algebraic stack

=functor of points

For any scheme B,

An algebraic stack which is "Deligne-Mumford" (DM)

Gold standard

Thm (Keel-Mori): Any separated DM stack M has a coarse moduli space M > X

Ignore: space vs. scheme vs. quasi-projective scheme

This suggests a general approach:

- 1) Identify a functor of points
- 2) Show that it is an algebraic stack

La e.g. Artin's criteria

3) Check that it is separated and DM, and apply Keel-Mori theorem

Problem (for either goals A or B): Many stacks of interest are not DM, so (3) fails

Today: A version of this program which works for general algebraic stacks

Gold standard:

Fix smooth genus g curve, C

This is an algebraic stack

cohomology, open/closed substacks

Ex: a line bundle is a natural assignment

(maps
B > Bungd) - (line bundles)

on B

But doesn't help much with goal A, classification:

Bung is unbounded, non-separated (look at Legenerations of Ocho) & Och)

Donaldson theory

Thm (Harder-Narasimhan): Every bundle has a unique filtration $\mathcal{L} = \mathcal{E}_0 \not\supseteq \mathcal{E}_1 \not\supseteq \cdots \not\supseteq \mathcal{E}_p = 0$ such that



2) Ei/Ein has no sub-bundle of larger slope (i.e. semistable)

Thm (Shatz, Mumford): there exists a stratification by locally closed substacks

Also, $Bun_{r,l}$ represented by smooth projective scheme if r & d coprime (has "good moduli space" in general).

More interesting: sheaves on a surface S

Exact same structure, but HN stratification depends on an ample class $H \in NS(S)_{\mathbb{R}}$.

$$\mathcal{X}_{V} = \mathcal{X}_{V}^{H-55} \cup \bigcup_{\alpha} \mathcal{S}_{\alpha} \quad \text{and} \quad \alpha = \left\{ (V_{1}, \dots, V_{p}) \in \mathcal{K}_{\alpha}^{num}(S) \right\}$$

$$M_{V}^{H-55} \quad \text{modul'} \quad \text{space}$$

As H varies... My changes wall & chamber structure on NS(S)R

Donaldson invariants of S arise as "integrals"

Q: How do they depend on H?

Ex: Bridgeland semistable objects in $AcD^{b}(S)$

Good moduli spaces:

X is a finite type stack, affine diagonal

Def: a good moduli space (GMS) is a map to a

space $q: X \longrightarrow M \quad s.t.$

- i) $q_*: QCoh(X) \longrightarrow QCoh(M)$ is exact
- ii) $q_{*}(\mathcal{O}_{\mathfrak{X}}) = M$

Properties:

- 1) Fibers of q = "S-equivalence" dasses
- 2) Universal for maps to spaces (categorical)
- 3) Example: $\chi^{ss}/G \longrightarrow \chi^{ss}/G$, reductive GIT
- 4) If M is proper, dim $H^*(\mathcal{X}, E) < \infty$
- 5) Alper-Hall-Rydh '16: étale locally over M, looks like Spec(A)/G > Spec (AG)

Solving moduli problems

Stability

 χ =stack of coherent sheaves on S

Rees correspondence:

(2-weighted filtrations ">> Ew > Ewy) = ")

(c*-equiv, coherent sheaves on Sxc',)

flat over S

(maps of stacks $\Theta := C/C^* \longrightarrow X$)

Gives an intrinsic formulation of the HN filtration:

a cononial map f: 0 -> 2

How to find it? Use numerical invariant. Given $f: \Theta \rightarrow \mathcal{F}$, define: (assuming deg(v)=0)

$$\mu(f) = \frac{-\sum w \deg(\frac{\epsilon}{w}/\frac{\epsilon}{m+1})}{\sqrt{\sum w^2 \operatorname{rank}(\frac{\epsilon}{w}/\frac{\epsilon}{m+1})}}$$

Thm (HL, Hoskins, Zamora): Among all maps $f:\Theta \to X$, there one which maximizes M(F), unique up to ramified cover $O \xrightarrow{2^n} O$.

Now let X be arbitrary, and fix $\ell \in H^2(X)$ and $\ell \in H^4(X)$.

- 1) $p \in \mathcal{K}$ is semistable if $f^*(l) \leq 0$ in $H^2(\Theta) \cong \mathbb{Z}$ for all filtrations of p
- 2) [HN problem] For unstable $p \in \mathcal{L}$, find f which maximizes $\mu(f) = \frac{f^* \ell}{\sqrt{1+h}}$

Might lead to a Θ -stratification:

Som parameterize filtered objects

grant Day X

grant Day X

parameterize graded objects

Ziss an parameterize graded objects

Ideal solution to moduli problem:

B-stratification where XSS and Zas have GMS

Main theorem of GIT:

Let $q: X \to Y$ be a good moduli space, and fix a form $b \in H^4(X)$.

Thm: $orall ENS(X)_R$, numerical invariant $\mu = NN6$ defines a 0-stratification $\mathcal{X} = X^{s}(R) \circ S_0 \circ$

Also includes variation of GIT quotient:

if X is $Y^{s}(l) \subset X \supset X^{s}(l')$ irreducible, as l varies get birational modifications

Existence of Theta-stratifications

Meta-principal:

Birational geometry of moduli spaces should be understood as variation of stability in some larger moduli problem with good moduli space

Ex: Smyth classified all DM modular compactifications of $\widehat{\mathcal{M}}_{q,n}$

Ly Would be nice to run MMP on Man by varying stability on moduli of all curves

Ex: Bayer-Macri prove that if

We will use this in the next lecture to study the local structure of flops

Useful concept for constructing Θ -stratifications

Def: \bigstar is Θ -reductive if for any family over a discrete valuation ring, $S_{pec}(R) \rightarrow \bigstar$, any filtration over the generic fiber extends uniquely to the special fiber.

Thm A (HL): Let X be a Θ -reductive algebraic stack. Then a numerical invariant M defines a Θ -stratification if and only if

- 1) Every unstable point has a unique HN filtration
- 2) In a bounded family Spec(A) > &, only finitely many types of HN filtrations arise

Rem: main theorem of GIT is a special case

The notion of Θ -reductive stack is useful for constructing good moduli spaces as well

Thm B (Alper-HL-Heinloth): Let \times be locally finite type with affine diagonal. Then \times has a good moduli space if and only if

- 1) X is O-reductive,
- 2) closed points of X have reductive automorphism groups, and
 3) X has "unpunctured inertia"

These two theorems provide a program for analyzing general moduli problems, analogous to Keel-Mori theorem

Next time: Discuss what thm B means, and applications to Bridgeland semistable complexes