
Math 4310 Homework 11 Solutions

Problem 1. We prove the cycle of implications (1) =⇒ (2) =⇒ (3) =⇒ (1).
(1) implies (2). Assume that the natural mapW1×· · ·×Wn → V is an isomorphism. Then every element

in V can be written as w1 + · · ·+wn (by surjectivity of this map), so
∑
Wi = V by definition. Moreover, if

−wk =
∑

i 6=k wi is an element of Wk∩
∑

i6=kWi (written simultaneously as an element of Wk and an element
of

∑
i6=kWi), then (w1, . . . , wk, . . . , wn) is in the kernel of our isomorphism; thus our element wk is zero.

(2) implies (3). By definition, v ∈ V =
∑
Wi means that any element v can be written as a sum

w1 + · · ·+ wn. For uniqueness, if v = w′1 + · · ·+ w′n then we have

0 = v − v = (w1 − w′1) + · · ·+ (wn − w′n);

for each k, this sum lets us say that wk − w′k ∈ Wk and also wk − w′k ∈
∑

i 6=kWi. Since the intersection is
zero by (2), wk − w′k = 0 and thus wk = w′k. This proves uniqueness.

(3) implies (1). Saying that every element can be uniquely written as such a sum is saying that the linear
transformation (w1, . . . , wn) 7→ w1 + · · ·+ wn is injective and surjective, and thus is an isomorphism.

Problem 2. (a) To see W ∩W ′ is T -invariant, note that if u ∈ W ∩W ′ then u ∈ W and u ∈ W ′ mean
T (u) ∈ W and T (u) ∈ W ′; thus T (u) ∈ W ∩W ′. Similarly, an element of W +W ′ is of the form w + w′,
and T (w + w′) = T (w) + T (w′) ∈W +W ′.

(b) If W is T -invariant, then any element of S[W ] is of the form S(w) for some W ∈W ; we have T (S(w)) =
S(T (w)) ∈ S[W ] because T (w) ∈W .

Problem 3. We look dimension-by-dimension here at the possible subspaces. The only 0-dimensional
subspaceW = 0 is trivially invariant, and the only 3-dimensional subspaceW = R3 is also trivially invariant.
For intermediate dimensions we need to look a bit more carefully:

Dimension 1 subspaces. We know that a dimension-1 subspace W , spanned by a nonzero vector w, is
invariant iff w is an eigenvector. Evidently the eigenvectors of A all have eigenvalue 1, and consist of all linear
combinations of e1 and e3. So the 1-dimensional invariant subspaces are W = L(e1) and W = L(ye1 + e3)
for any y ∈ R (and when written this way everything on the list is distinct!).

Dimension 2 subspaces. There are two obvious dimension-2 invariant subspaces: L(e1, e2) (corresponding
to the upper 2 × 2 block) and L(e1, e3) (the eigenspace for λ = 1). Trying things out you can find that
there’s actually a bunch more: anything of the form L(e1, ye2 + ze3) (with ye2 + ze3 6= 0) is T -invariant
because T (e1) = e1 and T (ye2 + ze3) = ye1 + (ye2 + ze3). We claim that no other 2-dimensional subspace
can be invariant.

To prove this, it’s sufficient to show that any 2-dimensional invariant subspace needs to contain e1; in fact
we’ve listed every 2-dimensional subspace W of V with e1 ∈ W ! To see this, suppose W is a 2-dimensional
invariant subspace. If every vector

v =

 x
y
z


has y = 0, then W is necessarily L(e1, e3). If not, then W contains T (v) by assumption, and thus

1

y
(T (v)− v) = 1

y

 x+ y
y
z

−
 x
y
z

 = e1.

Problem 4. We know each nilpotent 6×6 matrix is similar to a Jordan canonical form with eigenvalues 0,
and two such Jordan canonical forms are similar if and only if they have the same unordered list of Jordan
blocks. Giving all distinct lists of Jordan blocks amounts to giving a partition of the integer 6: we just need
to see how many different ways we can write 6 as a sum of positive integers, and each of these gives us a
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distinct Jordan canonical form. The correct number is eleven similarity classes (the value of the “partition
function” for n = 6):

1. One class for the JCF with a 6× 6 Jordan block J6(0).

2. One class for the JCF with Jordan blocks J5(0) and J1(0).

3. One class for the JCF with Jordan blocks J4(0) and J2(0).

4. One class for the JCF with Jordan blocks J4(0) and J1(0), and J1(0).

5. One class for the JCF with two Jordan blocks J3(0).

6. One class for the JCF with Jordan blocks J3(0), J2(0), and J1(0).

7. One class for the JCF with the Jordan block J3(0) and three Jordan blocks J1(0).

8. One class for the JCF with three Jordan blocks J2(0).

9. One class for the JCF with two Jordan blocks J2(0) and two Jordan blocks J1(0).

10. One class for the JCF with one Jordan blocks J2(0) and four Jordan blocks J1(0).

11. One class for the JCF with six Jordan blocks J1(0) (i.e. the zero matrix).

Problem 5. (a) If v ∈ W⊥, then by definition 〈v, w〉 = 0 for any w ∈ W . Then we have 〈T ∗(v), w〉 =
〈v, T (w)〉 = 0 for any w ∈W , with the first equality by definition of the adjoint and the second by assumption
that W is T -invariant (so T (w) ∈W ). So T ∗(v) ∈W⊥ by definition, and thus W⊥ is T ∗-invariant.

(b) To check (T − λI)∗ = T ∗ − λI, we need to check that we have the identity

〈(T − λI)(v), w〉 = 〈v, (T ∗ − λI)(w)〉

for every v, w; but indeed this holds because we can expand each expression and get

〈(T − λI)(v), w〉 = 〈T (v)− λv,w〉 = 〈T (v), w〉 − λ〈v, w〉

and
〈v, (T ∗ − λI)(w)〉 = 〈v, T ∗(w)− λw〉 = 〈v, T ∗(w)〉 − λ〈v, w〉

and these are equal by definition of T ∗. Then to see T − λI is normal is just another comparison of two
things we need to be equal:

(T − λI) ◦ (T − λI)∗ = (T − λI) ◦ (T ∗ − λI) = T ◦ T ∗ − λT ∗ − λT − λλI,

(T − λI)∗ ◦ (T − λI) = (T ∗ − λI) ◦ (T − λI) = T ∗ ◦ T − λT ∗ − λT − λλI,

and these are equal by normality of T .

(c) In general we can write
‖T (v)‖2 = 〈T (v), T (v)〉 = 〈v, T ∗(T (v))〉.

By the assumption that T is normal we can swap the order of T ∗ ◦ T here and continue

‖T (v)‖2 = 〈T (v), T (v)〉 = 〈v, T ∗(T (v))〉 = 〈v, T (T ∗(v))〉 = 〈T ∗(v), T ∗(v)〉 = ‖T ∗(v)‖2.

Taking square roots gives the first statement we want. For the second statement, note v ∈ kerT iff T (v) = 0
iff ‖T (v)‖ = 0. By what we just showed this happens iff ‖T ∗(v)‖ = 0, which is iff v ∈ kerT ∗ by the same
logic. So kerT = kerT ∗.
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Then, if T is normal and v is an eigenvector with eigenvalue λ, we know v is in the kernel of the normal
operator T − λI. This means v is also in the kernel of (T − λI)∗ = T ∗ − λI, i.e. v is an eigenvector of T ∗
with eigenvalue λ.

(d) As suggested, we prove the theorem by induction on the dimension of V ; we can take the base case to
be the vacuous one of dimV = 0. For the inductive step, if dimV ≥ 1 then the characteristic polynomial
cT (x) is a polynomial over C of degree at least 1, so has a root λ, and therefore T has an eigenvalue v with
eigenvector λ (since det(T − λI) = 0 there must be something in the kernel). By part (c) we know that v is
also an eigenvector of T ∗. So the subspace L(v) is both T -invariant and T ∗-invariant; by part (a) we conclude
that the orthogonal complement L(v)⊥ is both T ∗-invariant and T ∗∗ = T -invariant. Since W = L(v)⊥ is
T -invariant, we can restrict T to a normal operator T |W :W →W and by induction conclude W has a basis
of eigenvectors for T as well. Adding v to this basis gives a basis of V consisting of eigenvectors of T , which
is what we wanted. (Note what was really important here was that L(v) had a T -invariant complementary
subspace, and that’s what normality ultimately got for us! This is what may fail for non-diagonalizable
matrices.)
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