
Math 4310 Homework 12 Solutions

Problem 1. (a) We start off by computing the characteristic polynomial; since A is a block matrix we can
split up the determinant we get as a product of 2× 2 determinants.

det(A− xI) = det


−x 1 1 0
−1 −x 0 1
0 0 −x 1
0 0 −1 −x

 = (x2 + 1)2.

So the characteristic polynomial factors as (x+ i)2(x− i)2.
The next step in finding the Jordan form is to look at the eigenspaces. The eigenspace for λ = i is

2-dimensional, and we can work out that

A− iI = det


−i 1 1 0
−1 −i 0 1
0 0 −i 1
0 0 −1 −i

 (A− iI)2 = det


−2 −2i −2i 2
2i −2 −2 −2i
0 0 −2 −2i
0 0 2i −2

 .
We can see that (A− iI)2 has a 2-dimensional kernel spanned by

v1 =


1
i
0
0

 v2 =


0
0
1
i

 .
Moreover, v1 is not in the kernel of (A− iI), and we have v2 = (A− iI)v1. So we get a 2× 2 Jordan block
with eigenvalue i, corresponding to the generalized eigenspace spanned by these two vectors.

An identical computation gives that there is also a 2 × 2 Jordan block with eigenvalue −i, spanned by
the vectors

v3 =


1
−i
0
0

 v4 =


0
0
1
−i

 ,
which satisfy (A+ iI)v3 = v4. Thus the Jordan canonical form for A is the matrix

J =


i 1 0 0
0 i 0 0
0 0 −i 1
0 0 0 −i

 .
Actually we can say a bit more (to be useful in the second part) - in particular we have A = PJP−1 for

P = [v1 v2 v3 v4] =


1 0 1 0
i 0 −i 0
0 1 0 1
0 i 0 −i

 .

(b) By what we did in part (a), we can find a square root for A by taking a square root of J and conjugating.
In particular for our J we need to find square roots of the Jordan blocks

J1 =

[
i 1
0 i

]
J2 =

[
−i 1
0 −i

]
.
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The Jordan block J1 can be written as a (commuting) product of a scalar matrix times a nilpotent matrix:

J1 =

[
i 0
0 i

] [
1 −i
0 1

]
.

It’s then easy to find (commuting) square roots of these individual pieces, namely

√
J1 =

[
ζ8 0
0 ζ8

] [
1 −i/2
0 1

]
=

[
ζ8 ζ78/2
0 ζ8

]
.

where ζ8 = exp(πi/4) =
√
2
2 +

√
2
2 i is the usual 8th root of unity (which satisfies ζ28 = i, ζ48 = −1, ζ68 = −i,

and ζ88 = 1). Similarly ζ38 is a square root of −i so we can find

√
J2 =

[
ζ38 ζ58/2
0 ζ38

]
.

Putting these together, a square root for J is

√
J =


ζ8 ζ78/2 0 0
0 ζ8 0 0
0 0 ζ38 ζ58/2
0 0 0 ζ38

 .
Finally, we get a square root of A as

√
A = P

√
JP−1:

√
A =


1 0 1 0
i 0 −i 0
0 1 0 1
0 i 0 −i

 ·

ζ8 ζ78/2 0 0
0 ζ8 0 0
0 0 ζ38 ζ58/2
0 0 0 ζ38

 · 1

2


1 −i 0 0
0 0 1 −i
1 i 0 0
0 0 1 i

 .
Computing this out in terms of ζ8, and then simplifying (using that ζ8+ζ38 = 1

2 (
√

2+
√

2i)+ 1
2 (−
√

2+
√

2i) =√
2i and similarly ζ58 + ζ78 = −

√
2i) we get:

√
A =

1

2


ζ8 + ζ38 ζ58 + ζ78

ζ58+ζ
7
8

2
ζ58+ζ

7
8

2

ζ8 + ζ38 ζ8 + ζ38
ζ8+ζ

3
8

2
ζ58+ζ

7
8

2
0 0 ζ8 + ζ38 ζ58 + ζ78
0 0 ζ8 + ζ38 ζ8 + ζ38

 =


i
√

2/2 −i
√

2/2 −i
√

2/4 −i
√

2/4

i
√

2/2 i
√

2/2 i
√

2/4 −i
√

2/4

0 0 i
√

2/2 −i
√

2/2

0 0 i
√

2/2 i
√

2/2

 .

Problem 2. (a) We start by computing the characteristic polynomial:

cA(x) = det(A− xI) = det

 −x 0 1
0 2− x 0
−4 0 4− x

 = −x(2− x)(4− x)− (2− x) · (−4).

Simplifying this we find
cA(x) = (x− 2)(−x2 + 4x− 4) = −(x− 2)3.

So 2 is the only eigenvalue. To find the Jordan canonical form, then, we need to look at powers of A− 2I:

A− 2I =

 −2 0 1
0 0 0
−4 0 2

 .
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It’s straightforward to see that ker(A − 2I) has dimension 2; this means A has two Jordan blocks with
eigenvalue 2. Since A is 3 × 3 the only possibility is that one Jordan block is 1 × 1 and the other is 2 × 2;
thus a JCF for A is  2 1 0

0 2 0
0 0 2

 .
(b) We have (A− 2I)2 = 0 (which we can see either from squaring the matrix A− 2I above, or reading off
from the Jordan blocks). Thus the minimal polynomial divides (x− 2)2. Furthermore it can’t be x− 2 itself
since we computed A− 2I 6= 0; so the only possibility is that the minimal polynomial is (x− 2)2.

(c) The minimal polynomial being (x− 2)2 = x2 − 4x+ 4 tells us that we have

A2 − 4A+ 4I = 0.

Multiplying through by A−1 (which we know exists because all of the eigenvalues are nonzero!) and rear-
ranging we get

A−1 =
1

4
(4I −A) =

1

4

 4 0 0
0 4 0
0 0 4

−
 0 0 1

0 2 0
−4 0 4

 =

 1 0 −1/4
0 1/2 0
1 0 0

 .
Problem 3. (a) We can actually compute the characteristic polynomial of A over Z and then reduce
modulo p to get the characteristic polynomial for any Fp. In particular

det(A− xI) = det

 −x 1 1
1 −x 1
1 1 −x

 = −x3 + 3x+ 2 = −(x3 − 3x− 2).

Thus the characteristic polynomial of A over F2 is the reduction of this modulo 2, and we can see

−(x3 − 3x− 2) ≡ −(x3 − x) ≡ −x(x2 − 1) ≡ −x(x− 1)2 (mod 2).

So the characteristic polynomial is what we specified, meaning that 0 is an eigenvalue of multiplicity 1 and
1 is an eigenvalue of multiplicity 2. We then know that the Jordan canonical form will have a 1× 1 Jordan
block with eigenvalue 0. For eigenvalue 1, we need to look at the kernel of

A− I =

 −1 1 1
1 −1 1
1 1 −1

 ≡
 1 1 1

1 1 1
1 1 1

 ;

this has rank 1 so ker(A− I) has dimension 2. This means there are two linearly independent eigenvectors
for λ = 1, and thus A is diagonalizable. So A ∈M3(F2) is similar to 1 0 0

0 1 0
0 0 0

 ∈M3(F2).

(b) As in part (a), we can get the characteristic polynomial over F3 by reducing the characteristic polynomial
over Z modulo 3:

−(x3 − 3x− 2) ≡ −(x3 − 2) ≡ −(x3 − 6x2 + 12x− 8) = −(x− 2)3.
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So there is just one eigenvalue, λ = 2, with multiplicity 3. We thus need to look at the kernel of A− 2I:

B − I =

 −2 1 1
1 −2 1
1 1 −2

 ≡
 1 1 1

1 1 1
1 1 1

 .
This matrix has 2-dimensional kernel again, so we can conclude that A will have two Jordan blocks. Since
it’s a 3× 3 matrix this means we have to have one 2× 2 Jordan block and one 1× 1 one, so B ∈M3(F3) is
similar to  2 0 0

1 2 0
0 0 2

 ∈M3(F3).

Problem 4. (a) If A satisfies A3 − I = 0, then that means it satisfies the polynomial x3 − 1, and thus the
minimal polynomial divides x3−1 = (x−1)(x− ζ)(x− ζ2). The minimal polynomial having distinct roots is
enough to force A to be diagonal: if J = Jp(λ) is a p× p Jordan block for p > 1 then J − λI is nonzero and
J − λ′I is invertible for any λ′ 6= λ, so (J − I)(J − ζI)(J − ζ2I) will be nonzero (and this will be a diagonal
block inside the product (A− I)(A− ζI)(A− ζ2I)).

(b) By the previous part, every Jordan canonical form is diagonal, and thus A is similar to some diagonal
matrix with diagonal entries 1, ζ, ζ2. There’s 27 such matrices, but ones with the same lists in different order
are similar to each other. Accounting for this our list is as follows, using the notation

∆(x, y, z) =

 x 0 0
0 y 0
0 0 z

 :

• ∆(1, 1, 1), with minimal polynomial x− 1.

• ∆(ζ, ζ, ζ), with minimal polynomial x− ζ.

• ∆(ζ2, ζ2, ζ2), with minimal polynomial x− ζ2.

• ∆(1, 1, ζ), with minimal polynomial (x− 1)(x− ζ).

• ∆(1, 1, ζ2), with minimal polynomial (x− 1)(x− ζ2).

• ∆(ζ, ζ, 1), with minimal polynomial (x− 1)(x− ζ).

• ∆(ζ, ζ, ζ2), with minimal polynomial (x− ζ)(x− ζ2).

• ∆(ζ2, ζ2, 1), with minimal polynomial (x− 1)(x− ζ2).

• ∆(ζ2, ζ2, ζ), with minimal polynomial (x− ζ)(x− ζ2).

• ∆(1, ζ, ζ2), with minimal polynomial (x− 1)(x− ζ)(x− ζ2).

Problem 5. We know that A is similar to some Jordan canonical form, i.e. A = PJP−1; transposing this
equation we get A> = (P>)−1J>P>, so A> is similar to J>. Since similarity is an equivalence relation, if
we can prove J and J> are similar to each other then we’re done.

To see this, we first note that any Jordan block Jp(λ) is similar to its transpose Jp(λ)>; if Jp(λ) represents
the transformation in terms of a basis {b1, b2, . . . , bp} then J ′p(λ) represents it in terms of the reversed basis
{bp, bp−1, . . . , b1}. Then if J is a Jordan canonical form, we can see that it is similar to J> by a change-of-basis
that does this individually for each Jordan block.
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