
Math 4310 Homework 3 Solutions

Problem 1. (a) This is a subspace. We check:

• It’s nonempty because it contains the zero vector (0, . . . , 0).

• If (x1, . . . , xn) is in the set then x1+· · ·+xn = 0, and multiplying by any scalar a we get ax1+· · ·+axn =
0 so a(x1, . . . , xn) = (ax1, . . . , axn) is in the set.

• If (x1, . . . , xn) and (y1, . . . , yn) are in the set then adding the equations x1 + · · · + xn = 0 and y1 +
· · ·+ yn = 0 and rearranging tells us (x1 + y1, . . . , xn + yn) is in the set.

(b) This is a subspace. It certainly contains the zero polynomial, and is closed under scalar multiplication
and addition because those are done coefficientwise and if we start with the x coefficient equal to zero we’ll
end up with that as well.

(c) This is not a subspace. It’s not closed under scalar multiplication or addition: we have x2 is in the set
but 2 · x2 = x2 + x2 is not.

Problem 2. (a) We can prove this by induction on n. The base case of n = 0 is trivial; P0(F ) is the space
of constant polynomials, so the set {1} is linearly independent (because 1 is nonzero) and spans (because
any constant polynomial is a multiple of 1).

For the inductive step, assume that n > 1 and that we know the result for Pn−1(F ). To see the set spans,
consider an arbitrary polynomial f(x) ∈ Pn(F ). If an is the coefficient of xn in f(x), then f(x)− an(x+1)n

has 0 as the coefficient of xn and thus is a polynomial of degree at most n − 1; by inductive hypothesis it
can be written as a linear combination of 1, (x+ 1), . . . , (x+ 1)n−1. Rearranging we have f(x) written as a
linear combination of 1, (x+ 1), . . . , (x+ 1)n, proving that it spans.

Similarly, for linear independence assume we have a dependence relation

0 = a0 · 1 + a1(x+ 1) + · · ·+ an−1(x+ 1)n−1 + an(x+ 1)n.

Comparing coefficients of xn for both sides we get that 0 = an, and thus we actually have a dependence
relation of the form

0 = a0 · 1 + a1(x+ 1) + · · ·+ an−1(x+ 1)n−1

in Pn−1(F ); by induction all of the coefficients must be zero, so the dependence relation is trivial.

(b) This is essentially immediate from the definition. A polynomial is a finite sum of the form a0+a1x+ · · ·+
anx

n, i.e. a linear combination from the set of monomials, so this set spans. Moreover, the set is linearly
independent because if we have an equality of polynomials 0 = a0 + a1x+ · · ·+ anx

n then by definition this
means the coefficients ai are all zero.

Problem 3. To prove E ∪W spans V , we need to show that for any v ∈ V we can write v as a linear
combination of elements in E. By assumption that E′ spans V/W , if we take the coset v +W we can write
v +W as a linear combination of elements of E′, i.e.

v +W = a1(e1 +W ) + · · ·+ an(en +W ) = (a1e1 + · · ·+ anen) +W

for ai ∈ F and ei +W ∈ E′ (so ei ∈ E). Then by definition of equality of cosets, this means we can write

v = (a1e1 + · · ·+ anen) + w = a1e1 + · · ·+ anen + 1 · w

for some w ∈W ; so we’ve written v as a linear combination in E ∪W as desired.
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Problem 4. As stated, this is a formal but somewhat tedious check; for the following we let (v, w), (v1, w1),
(v2, w2), and (v3, w3) denote an arbitrary element V ×W and a, b denote arbitrary elements of F .

1. (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) = (v2 + v1, w2 + w1) = (v2, w2) + (v1, w1).

2. [(v1, w1) + (v2, w2)] + (v3, w3) = (v1 + v2, w1 + w2) + (v3, w3) =
(
(v1 + v2) + v3, (w1 + w2) + w3

)
=
(
v1 + (v2 + v3), w1 + (w2 + w3)

)
= (v1, w1) + (v2 + v3, w2 + w3) = (v1, w1) + [(v2, w2) + (v3, w3)].

3. The additive identity is (0, 0) because (v, w) + (0, 0) = (v + 0, w + 0) = (v, w).

4. The additive inverse of (v, w) is (−v,−w) because (v + w) + (−v,−w) = (v − v, w − w) = (0, 0).

5. a
(
(v1, w1) + (v2, w2)

)
= a(v1 + v2, w1 + w2) = (a(v1 + v2), a(w1 + w2)) = (av1 + av2, aw1 + aw2)

= (av1, aw1) + (av2, aw2) = a(v1, w1) + a(v2, w2).

6. (a+ b)(v, w) = ((a+ b)v, (a+ b)w) = (av + bv, aw + bw) = (av, aw) + (bv, bw) = a(v, w) + b(v, w).

7. a
(
b(v, w)

)
= a(bv, bw) = (a(bv), a(bw)) = ((ab)v, (ab)w) = (ab) · (v, w).

8. 1 · (v, w) = (1 · v, 1 · w) = (v, w).

Problem 5. (a) The set `∞(R) is nonempty because the zero sequence is certainly uniformly bounded
(say, by M = 1). It’s closed under scalar multiplication because if (ai) is a sequence uniformly bounded by
some constant M , and b is a scalar in R, then b · (ai) = (b ·ai) is uniformly bounded by |b|M +1 (if |ai| < M
for all i, then |bai| < |b|M for all M , except in the trivial case b = 0). It’s closed under addition because if
(ai) is uniformly bounded by M and (bi) is uniformly bounded by N , then (ai)+(bi) = (ai+ bi) is uniformly
bounded by M +N (we have |ai + bi| ≤ |ai|+ |bi| < M +N).

(b) Again, the zero sequence is in `1(R) since
∑∞

n=0 0 converges. This set is closed under scalar multiplication
because we know if

∑
|an| converges then so does

∑
b|an| for any scalar b, and closed under addition because

if
∑
|an| and

∑
|bn| converge then so does

∑
(|an| + |bn|) and thus so does

∑
|an + bn| by the comparison

test.

Problem 6. (a) First of all,
⊕∞

i=1 Vi is nonempty because it contains the vector of all zeros (since all of its
coordinates are equal to zero, so certainly all but finitely many are). It’s closed under scalar multiplication
because of all but finitely many coordinates of (vi) are zero, then the same entries of a · (vi) = (avi) are zero.
It’s closed under addition because if all but finitely many coordinates of both (vi) and (wi) are zero, then so
are all but finitely many coordinates of (vi) + (wi) = (vi + wi) (certainly the only coordinates that can be
nonzero are the finitely many where at least one of vi 6= 0 or wi 6= 0).

(b) A bijective correspondence between
∏∞

n=1 F and F JxK can be given by having a sequence (ai) correspond
to the formal power series

∑∞
n=0 an+1x

n. (We need to use this shift because I wrote my infinite product
starting at n = 1, but the power series starts at n = 0). This is certainly a bijection because the power series
is exactly determined by its sequence of coefficients!

Moreover, under this bijection, the subspace
⊕∞

n=1 F corresponds to the subspace of polynomials F [x].
This is because a polynomial can be thought of as a formal power series with only finitely many terms - i.e.
such that all but finitely many of the coefficients are zero! So a sequence (an) is in the direct sum iff all but
finitely many of the coordinates are zero, iff all but finitely many of the associated power series

∑
anx

n are
zero, iff that power series is actually a polynomial.
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