Math 4310 Homework 4 Solutions

Problem 1. (a) By adding and subtracting the equations, you can see that any element (x, y, z) satisfying both equations satisfies $z = 2x$ and $y = -3x$, and conversely any vector $(x, -3x, 2x)$ satisfies both. The one-element set $\{(1, -3, 2)\}\$ is a basis for the space of such vectors.

(b) An arbitrary polynomial in $\mathcal{P}_4(\mathbb{R})$ is of the form $f(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$; computing $x^4 f(1/x)$ for this and setting it equal to $f(x)$ we find the requirement for being in the subspace is

$$
a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = a_0x^4 + a_1x^3 + a_2x^2 + a_3x + a_4,
$$

i.e. $a_4 = a_0$ and $a_3 = a_1$. Thus we can take a basis to be $\{x^4 + 1, x^3 + x, x^2\}$.

(c) We can take a basis to be the one-element set $\{(1,0)+W\}$. This coset is a nonzero vector in V/W because $(1,0) \notin W$, and any set with one nonzero element is linearly independent. To see it spans, note that an arbitrary element $(x, y) + W$ of V/W can be written as $(x - y, 0) + W$ (by picking a different representative) and thus is a scalar multiple $(x - y) \cdot [(1, 0) + W)].$

Problem 2. Let $\{w_1, \ldots, w_m\}$ be a basis of W; as a linearly independent set in V the basis extension theorem lets us extend it to a basis

$$
\{w_1,\ldots,w_m,w'_1,\ldots,w'_k\}
$$

of V. Take $W' = L(w'_1, \ldots, w'_k)$. Then $W + W' = V$ because any element of V can be written as a linear combination

$$
v = (a_1w_1 + \dots + a_mw_m) + (b_1w'_1 + \dots + b_kw'_k) \in W + W',
$$

and $W \cap W' = 0$ because any element in both can be simultaneously written as a linear combination in $\{w_1, \ldots, w_m\}$ and $\{w'_1, \ldots, w'_k\}$; if the linear combinations were anything other than zero then subtracting one from the other would give a nontrivial dependence relation.

Problem 3. (a) By definition, $\Phi_i(a_i) = 0$ for $j \neq i$ and $\Phi_i(a_i) = 1$. So, if we have any dependence relation

$$
\alpha_0 \Phi_0 + \dots + \alpha_n \Phi_n = 0,
$$

this is an equality of polynomials and we can evaluate both sides at $x = a_i$ to get

$$
\alpha_0 \Phi_0(a_i) + \cdots + \alpha_n \Phi_n(a_i) = 0,
$$

and the LHS here is $\alpha_i \cdot 1$. So we conclude $\alpha_i = 0$ and thus the set is linearly independent. Since it consists of $n + 1$ linearly independent vectors in a dimension- $n + 1$ space, it is a basis.

(b) The polynomials you get are

$$
\Phi_0(x) = \frac{-1}{6}(x^3 - 6x^2 + 11x - 6) \qquad \Phi_1(x) = \frac{1}{2}(x^3 - 5x^2 + 6x)
$$

$$
\Phi_2(x) = \frac{-1}{2}(x^3 - 4x^2 + 3x) \qquad \Phi_3(x) = \frac{1}{6}(x^3 - 3x^2 + 2x)
$$

(c) To check that the polynomial $f(x) = x^p - x \in \mathbb{F}_p[x]$ always takes the value zero, we need to go back to how we defined $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$: it consists of all cosets $[a] = a + p\mathbb{Z}$ for $a \in \mathbb{Z}$. Then, showing $f([a]) = 0$ is asking that $[a]^p - [a] = [a^p - a] = 0$ in $\mathbb{Z}/p\mathbb{Z}$, i.e. that $a^p - a \equiv 0 \pmod{p}$ for any a. But if $p|a$ this is clear, and if $p \nmid a$ then "Fermat's little theorem" tells us $a^{p-1} \equiv 1 \pmod{p}$ and we can multiply by a and rearrange to get $a^p - a \equiv 0 \pmod{p}$.

Problem 4. (a) In this case, take $\{s_1, \ldots, s_m\}$ to be a basis of S and $\{t_1, \ldots, t_n\}$ to be a basis of T; we claim that $\{s_1, \ldots, s_m, t_1, \ldots, t_n\}$ is a basis of $S + T$ (which proves the claim by looking at the sizes of these sets). It certainly spans, so the only thing we need to check is linear independence. But if we have a dependence relation

$$
\sum a_i s_i + \sum b_j t_j = 0,
$$

rearranging we get $(\sum a_i s_i) = -(\sum b_j t_j)$; since $\sum a_i s_i \in S$ and $\sum b_j t_j \in T$, if they're equal their common value is in $S \cap T$ and thus is zero. So $\sum a_i s_i = \sum b_j t_j = 0$, and linear independence of both sets implies all of the coefficients are zero.

(b) This time, let u_1, \ldots, u_r be a basis for $S \cap T$, and then use the basis extension theorem to extend it to bases $\{u_1, \ldots, u_r, s_1, \ldots, s_m\}$ of S and $\{u_1, \ldots, u_r, t_1, \ldots, t_n\}$ of T. We claim

$$
\{u_1,\ldots,u_r,s_1,\ldots,s_m,t_1,\ldots,t_n\}
$$

is a basis of $S + T$; looking at the sizes of these sets we conclude

$$
\dim(S+T) = r + m + n = (m+r) + (n+r) - r = \dim(S) + \dim(T) - \dim(S \cap T).
$$

Again, it's easy to see this set spans $S + T$: it contains sets that span both S and T. For linear independence, suppose that we have a dependence relation

$$
\sum a_i s_i + \sum b_j t_j + \sum c_k u_k = 0.
$$

Rearranging gives

$$
\sum a_i s_i + \sum c_k u_k = -\sum b_j t_j,
$$

with the LHS in S and the RHS in T and thus both sides in $S \cap T$. Then the RHS $-\sum b_j t_j$ is a linear combination of $\{t_1, \ldots, t_n\}$ that lies in the span of $\{u_1, \ldots, u_r\}$; but $L(t_1, \ldots, t_n) \cap L(u_1, \ldots, u_r) = 0$ because these sets are disjoint and combine to form a basis. So $-\sum b_j t_j = 0$ and thus each b_j individually is zero. Looking at the LHS we get $\sum a_i s_i + \sum c_k u_k = 0$, and thus each a_i and c_k is zero because the set of all s_j and u_k is linearly independent.

(c) As suggested, take $V = \mathbb{R}^2$, and take S, T, U to be three distinct lines through the origin. (You're almost forced to choose this if you want anything interesting to happen - if you want to get into a "bad" situation that doesn't reduce to the previous part, you need S, T, U to all be different and also you don't want to choose the "trivial" subspaces 0 or \mathbb{R}^2). Any two distinct lines span \mathbb{R}^2 , so certainly three distinct lines do, so $S + T + U = \mathbb{R}^2$ and $\dim(S + T + U) = 2$. On the other hand, since they're distinct lines all of the intersections are trivial: $S \cap T = S \cap U = T \cap U = S \cap T \cap U = 0$. Then we compute

$$
\dim(S) + \dim(T) + \dim(U) - \dim(S \cap T) - \dim(S \cap U) - \dim(T \cap U) + \dim(S \cap T \cap U)
$$

= 1 + 1 + 1 - 0 - 0 - 0 + 0 = 3,

which is different from $\dim(S+T+U)$.