
Math 4310 Homework 4 Solutions

Problem 1. (a) By adding and subtracting the equations, you can see that any element (x, y, z) satisfying
both equations satisfies z = 2x and y = −3x, and conversely any vector (x,−3x, 2x) satisfies both. The
one-element set {(1,−3, 2)} is a basis for the space of such vectors.

(b) An arbitrary polynomial in P4(R) is of the form f(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0; computing

x4f(1/x) for this and setting it equal to f(x) we find the requirement for being in the subspace is

a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = a0x

4 + a1x
3 + a2x

2 + a3x+ a4,

i.e. a4 = a0 and a3 = a1. Thus we can take a basis to be {x4 + 1, x3 + x, x2}.

(c) We can take a basis to be the one-element set {(1, 0)+W}. This coset is a nonzero vector in V/W because
(1, 0) /∈ W , and any set with one nonzero element is linearly independent. To see it spans, note that an
arbitrary element (x, y) +W of V/W can be written as (x− y, 0) +W (by picking a different representative)
and thus is a scalar multiple (x− y) · [(1, 0) +W )].

Problem 2. Let {w1, . . . , wm} be a basis of W ; as a linearly independent set in V the basis extension
theorem lets us extend it to a basis

{w1, . . . , wm, w
′
1, . . . , w

′
k}

of V . Take W ′ = L(w′1, . . . , w
′
k). Then W + W ′ = V because any element of V can be written as a linear

combination
v = (a1w1 + · · ·+ amwm) + (b1w

′
1 + · · ·+ bkw

′
k) ∈W +W ′,

and W ∩W ′ = 0 because any element in both can be simultaneously written as a linear combination in
{w1, . . . , wm} and {w′1, . . . , w′k}; if the linear combinations were anything other than zero then subtracting
one from the other would give a nontrivial dependence relation.

Problem 3. (a) By definition, Φi(aj) = 0 for j 6= i and Φi(ai) = 1. So, if we have any dependence relation

α0Φ0 + · · ·+ αnΦn = 0,

this is an equality of polynomials and we can evaluate both sides at x = ai to get

α0Φ0(ai) + · · ·+ αnΦn(ai) = 0,

and the LHS here is αi · 1. So we conclude αi = 0 and thus the set is linearly independent. Since it consists
of n+ 1 linearly independent vectors in a dimension-n+ 1 space, it is a basis.

(b) The polynomials you get are

Φ0(x) =
−1

6
(x3 − 6x2 + 11x− 6) Φ1(x) =

1

2
(x3 − 5x2 + 6x)

Φ2(x) =
−1

2
(x3 − 4x2 + 3x) Φ3(x) =

1

6
(x3 − 3x2 + 2x)

(c) To check that the polynomial f(x) = xp − x ∈ Fp[x] always takes the value zero, we need to go back to
how we defined Fp = Z/pZ: it consists of all cosets [a] = a + pZ for a ∈ Z. Then, showing f([a]) = 0 is
asking that [a]p − [a] = [ap − a] = 0 in Z/pZ, i.e. that ap − a ≡ 0 (mod p) for any a. But if p|a this is clear,
and if p - a then “Fermat’s little theorem” tells us ap−1 ≡ 1 (mod p) and we can multiply by a and rearrange
to get ap − a ≡ 0 (mod p).
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Problem 4. (a) In this case, take {s1, . . . , sm} to be a basis of S and {t1, . . . , tn} to be a basis of T ;
we claim that {s1, . . . , sm, t1, . . . , tn} is a basis of S + T (which proves the claim by looking at the sizes of
these sets). It certainly spans, so the only thing we need to check is linear independence. But if we have a
dependence relation ∑

aisi +
∑

bjtj = 0,

rearranging we get (
∑
aisi) = −(

∑
bjtj); since

∑
aisi ∈ S and

∑
bjtj ∈ T , if they’re equal their common

value is in S ∩ T and thus is zero. So
∑
aisi =

∑
bjtj = 0, and linear independence of both sets implies all

of the coefficients are zero.

(b) This time, let u1, . . . , ur be a basis for S ∩ T , and then use the basis extension theorem to extend it to
bases {u1, . . . , ur, s1, . . . , sm} of S and {u1, . . . , ur, t1, . . . , tn} of T . We claim

{u1, . . . , ur, s1, . . . , sm, t1, . . . , tn}

is a basis of S + T ; looking at the sizes of these sets we conclude

dim(S + T ) = r +m+ n = (m+ r) + (n+ r)− r = dim(S) + dim(T )− dim(S ∩ T ).

Again, it’s easy to see this set spans S+T : it contains sets that span both S and T . For linear independence,
suppose that we have a dependence relation∑

aisi +
∑

bjtj +
∑

ckuk = 0.

Rearranging gives ∑
aisi +

∑
ckuk = −

∑
bjtj ,

with the LHS in S and the RHS in T and thus both sides in S ∩ T . Then the RHS −
∑
bjtj is a linear

combination of {t1, . . . , tn} that lies in the span of {u1, . . . , ur}; but L(t1, . . . , tn)∩L(u1, . . . , ur) = 0 because
these sets are disjoint and combine to form a basis. So −

∑
bjtj = 0 and thus each bj individually is zero.

Looking at the LHS we get
∑
aisi +

∑
ckuk = 0, and thus each ai and ck is zero because the set of all sj

and uk is linearly independent.

(c) As suggested, take V = R2, and take S, T, U to be three distinct lines through the origin. (You’re almost
forced to choose this if you want anything interesting to happen - if you want to get into a “bad” situation
that doesn’t reduce to the previous part, you need S, T, U to all be different and also you don’t want to
choose the “trivial” subspaces 0 or R2). Any two distinct lines span R2, so certainly three distinct lines do,
so S + T + U = R2 and dim(S + T + U) = 2. On the other hand, since they’re distinct lines all of the
intersections are trivial: S ∩ T = S ∩ U = T ∩ U = S ∩ T ∩ U = 0. Then we compute

dim(S) + dim(T ) + dim(U)− dim(S ∩ T )− dim(S ∩ U)− dim(T ∩ U) + dim(S ∩ T ∩ U)

= 1 + 1 + 1− 0− 0− 0 + 0 = 3,

which is different from dim(S + T + U).
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