
Math 4310 Homework 9 Solutions

Problem 1. We want to produce an orthogonal basis {f1, f2, f3} via Gram-Schmidt. We can take f1 = x,
the first vector in our initial list. Then we have to take

f2 = ex − 〈x, e
x〉

〈x, x〉
x = ex − 1

1/3
x = ex − 3x,

and finally

f3 = cos(πx)− 〈x, cos(πx)〉
〈x, x〉

x− 〈e
x − 3x, cos(πx)〉
〈ex − 3x, ex − 3x〉

(ex − 3x).

Computing these integrals gives that this is

f3 = cos(πx)− −2/π
2

1/3
x− 6/π2 − (1 + e)/(1 + π2)

(e2 − 7)/2
(ex − 3x).

This ends up being a bit more of a mess than I was intending, so at this point you can try to normalize
things but the length of f3 ends up being something horrible.

Problem 2. (a) We start by using the definition and expanding out the LHS:

‖v − w‖2 = 〈v − w, v − w〉 = 〈v, v〉 − 〈w, v〉 − 〈v, w〉+ 〈w,w〉.

The first and last terms are ‖v‖2 and ‖w‖2, respectively. The middle two terms become −2〈v, w〉 by
symmetry, and finally we use that the angle θ is defined by cos(θ) = 〈v, w〉/(‖v‖‖w‖).

(b) Again, we just expand out the two terms on the LHS as in the previous part:

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2.

Adding these equations together gives what we want.

Problem 3. (a) The key here is we want to define T : Pk(R) → Pk(R) so that
∫ 4

0
T (p)(x)T (q)(x)dx is

equal to
∫ 1

−1 p(u)q(u)du by integration-by-substitution. There’s a lot of flexibility for how to define T (p),
but it’s enough to look for parameters A,B,C ∈ R such that T (p) = Ap(Bx+C) works. (Note that for any
choice of A,B,C this T (p) is a polynomial, and is pretty straightforwardly linear in p; also as long as A and
B are nonzero it’s fairly easy to see we can do another linear transformation to invert it).

So consider ∫ 4

0

(
Ap(Bx+ C)

)(
Ap(Bx+ C)

)
dx = A2

∫ 4

0

p(Bx+ C)q(Bx+ C)dx.

We want to do the change-of-variables u = Bx + C, and we want this to satisfy u(0) = −1 and u(4) = 1.
This forces us to take the parameters C = −1 and B = 1/2; then du = 1/2dx and∫ 4

0

(
Ap(12x− 1)

)(
Ap(12x− 1)

)
dx = A2

∫ 1

−1
p(u)q(u)2du.

Since we want this to equal
∫ q

−1 p(u)q(u)du we need A22 = 1, or A = 1/
√
2.

We conclude that if we define a linear transformation T : Pk(R)→ Pk(R) by

T (p) =
1√
2
p( 12x− 1)

then 〈〈T (p), T (q)〉〉 = 〈p, q〉. So this T is an isometry from V to V ′, and thus is an isometric isomorphism
because V and V ′ have the same dimension (since their underlying spaces are the same).

(b) Since isometries preserve orthonormality, T (L0), . . . , T (Lk) is an orthonormal basis of V ′, i.e.
1√
2
L0(

1
2x− 1), . . . ,

1√
2
Lk(

1
2x− 1).
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Problem 4. Let {w1, . . . , wn−1} be an orthonormal basis ofW . Then {w1, . . . , wn−1, v} is also orthonormal
(since v is perpendicular to each wi, and is normalized by our assumption) and thus an orthonormal basis
for V . So we know we can write any vector u in terms of this orthonormal basis as

u = 〈u,w1〉w1 + · · ·+ 〈u,wn−1〉wn−1 + 〈u, v〉v.

Then, since we know T acts on the basis by T (wi) = wi and T (v) = −v we get

T (u) = 〈u,w1〉w1 + · · ·+ 〈u,wn−1〉wn−1 − 〈u, v〉v.

But this is just u− 2〈u, v〉v.

Problem 5. (a) Linearity in each coordinate is an easy consequence of matrix multiplication (and the fact
that taking transposes is a linear operator):

B(ax+ bx′, y) = (ax+ bx′)>Ay = (ax> + b(x′)>)Ay = ax>Ay + b(x>)Ay = aB(x, y) + bB(x′, y),

B(x, ay + by′) = xA(ay + by′) = axAy + bxAy′ = aB(x, y) + bB(x, y′).

Moreover note that x>Ay is a 1× 1 matrix so is trivially equal to its own transpose, i.e.

B(x, y) = x>Ay = (x>Ay)> = y>A>x;

if A is symmetric, i.e. A = A>, then this is B(y, x) by definition so B is symmetric.

(b) Note that if A is any matrix and x =
∑
xiei and y =

∑
yjej we have

x>Ay = x>


∑

j a1jyj
...∑

j anjyj

 =
∑
i,j

xiaijyj .

On the other hand, if B is any bilinear form we have

B(x, y) = B
(∑

xiei,
∑

yjej

)
=
∑
i,j

xiyjB(ei, ej).

So if we start with B and define A by aij = B(ei, ej) we conclude x>Ay = B(x, y). Moreover, if B is
symmetric then aij = B(ei, ej) = B(ej , ei) = aji so A is symmetric too.

(c) If V is an n-dimensional vector space and B is a basis, we know x 7→ [x]B gives an isomorphism V ∼= Fn.
Using this isomorphism we get a bijective correspondence between bilinear forms B′ on Fn and B on V
by B(x, y) = B′([x]B, [y]B). Then applying (a) and (b) we know bilinear forms B′ on Fn are in bijective
correspondence with matrices A by B′(v, w) = v>Aw, so combining these bijections gives what we want.

Problem 6. (a) Linearity in the first coordinate is straightforward, as is additivity in the second coordinate.
For the rest of antilinearity we see that

z · aw =

n∑
i=1

ziawi = a

n∑
i=1

ziwi = az · w.

Similarly, for Hermitian-ness we have

z · w =

n∑
i=1

ziwi =

n∑
i=1

ziwi =

n∑
i=1

wizi = w · z.
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Finally, positive-definiteness is because

z · z =
n∑

i=1

zizi =

n∑
i=1

|zi|2

is always a nonnegative real number, and is positive if some zi is nonzero.

(b) First of all, since 〈x, y〉C is sesquilinear, it’s in particular R-bilinear since if a ∈ R then a = a; and
composing an R-bilinear map with the R-linear map Re : C → R gives that 〈 , 〉R is bilinear. Also since
〈x, y〉C is Hermitian, 〈x, y〉C and 〈y, x〉C are complex conjugates and thus their real parts are the same, giving
symmetry of 〈 , 〉R. Finally, since 〈x, x〉C is always a positive real number if x 6= 0, we get 〈x, x〉R = 〈x, x〉C
is always a positive real number if x 6= 0.

(c) Since 〈x, x〉C is real, its real part 〈x, x〉R is equal to it, and thus
√
〈x, x〉C =

√
〈x, x〉R. However, note

that 〈x, y〉R is zero whenever 〈x, y〉C is purely imaginary, so any two vectors with 〈x, y〉C = i, say, will be not
orthogonal with respect to 〈 , 〉C but will be orthogonal with respect to 〈 , 〉R. A simple example is x = ie1
and y = e1 for e1 ∈ Cn the first standard basis vector.
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