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Chapter 1

Preliminaries on Differential
Equations

1.1 A two-point boundary value problem

During this course, we shall study the numerical analysis of the two-point boundary value problem
(or TPBVP)

—(a(z)u' ()’
u(0)

58)) iog)all z € (0,1), (11)

where we assume that Ag > a(z) > ag > 0. Actually, we will consider a number of variations on this
problem, including problems with variable coefficients multiplying u" and u, problems with different
boundary conditions at z = 0 and = = 1, time-dependent problems such as the heat equation, and
nonlinear versions of (1.1). For the present, however, we shall concentrate on (1.1) as we begin
our investigation of numerical methods for approximating solutions to different types of differential
equations.

The boundary-value problem (1.1) may (under some simplifying assumptions) be used to model
the deflection of a string with material properties a under a load f. However, for our purposes, its
main interest lies in its ability to serve as a model problem for types of partial differential equations
which arise in many applications such as structural engineering (what are the stresses in an airplane
wing?) or stationary heat conduction (what is the equilibrium distribution of heat in a body?).
The actual differential equations arising in applications are often much more complicated than (1.1),
but they share many features with this simple model problem. Our goal, then, is to understand in
detail how numerical methods for approximating solutions to our simple two-point boundary value
problem and some of its cousins work, with the hope being that the salient features of numerical
methods for this problem will translate to more complicated problems. (One should also note that
it is possible to solve (1.1) exactly by simply integrating, so it isn’t really necessary to develop
high-powered numerical techniques to approximate its solutions!)
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4 CHAPTER 1. PRELIMINARIES ON DIFFERENTIAL EQUATIONS

1.2 Three forms of a TPBVP

Before beginning our discussion of numerical methods for approximating solutions to a two-point
boundary value problem, we first need to discuss different ways of representing differential equations.
We begin by noting that (1.1) is called the strong form of the differential equation. We also remark
here that we shall assume, unless otherwise noted, that all functions in our arguments (u, a, f,
etc.) are continuous and have enough continuous derivatives to write any quantities of interest. It is
interesting and physically important to consider what happens when certain quantities of interest are
not continuous or not smooth. However, technicalities become more burdensome when analyzing this
case, so we shall generally assume we can differentiate or use the properties of continuous functions
whenever we wish.

1.2.1 The Weak Form
Let v be a smooth function such that v(0) = v(1) = 0. We then multiply both sides of (1.1) by v,
integrate by parts, and use the fact that v(0) = v(1) = 0 to find that

- fol(a(a:)u’(a:))'v(a:) dr = —a(z)u'(z)v(z)|} + fol a(z)u'(z)v'(z) dz
= [T a(@)u'(2)v'(z) do (1.2)

We denote by A the set of all functions which are smooth enough and which are zero at the
boundary points 0 and 1. We also define the bilinear form £(:,-) by

1
L(u,v) :/ au'v' dx
0

and the inner product (-,-) by
(f,v) = /01 fvdzx.
Then we may rewrite (1.1) as: Find a function u € Ag such that
L(u,v) = (f,v) for all v € A4,. (1.3)

We shall call (1.3) the weak form of the differential equation (1.2). We have already shown that if
u satisfies the strong form equation (1.1), then it satisfies the weak form equation above. But what
about the converse? That is, if u solves the weak form equations, does it also satisfy the strong form
equations? The answer is yes, it does.

Proposition 1.2.1 u satisfies the weak form differential equation (1.8) if and only if u also satisfies
the strong form differential equation (1.1).

Proof. 'We have already shown that if u satisfies (1.1), then u also satisfies (1.3). To show the
converse, we proceed with a proof by contradiction. Thus we assume that u satisfies the weak
form (1.3) but does not satisfy the strong form (1.1). Then there is a point zo € (0,1) such that
—(a(mo)u'(x9))" # f(mo), or, without loss of generality, —(a(zo)u'(z0))' — f(z0) > 0. (The argument
would proceed in precisely the same fashion if instead —(a(zo)u'(xo))’ — f(zo) < 0.) Since we
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0 —(au’)y—f

Figure 1.1: A “bump” function

have assumed all functions of interest are continuous, —(au')’ — f is continuous, and in particular
—(a(z)u'(z))" — f(z) > 0 in some interval (a,b) containing xo. We next let v(z) € Ag be a "bump”
function which is positive on (a,b) and 0 elsewhere, as pictured in Figure 1.1.

Thus (—(a(z)u'(x)) — f(x))v(x) is strictly positive on (a,b) and 0 elsewhere. Thus

/0 (~(ale)u @)Y - f@))o(z)dz >0,

and integrating by parts gives us

/1(a(w)u'(w)v'(w) — f(z)v(z)) dz > 0.
0

(Recall that since v € Ap, the boundary terms in the integration by parts disappear.) In particular,

1 1
/ au'v' dz # / fodez.
0 0

But we have assumed that u satisfies (1.3), so this is a contradiction.

1.2.2 A Minimization Problem

A guiding principal in much of physics, chemistry, and engineering is the principal of minimization
of energy. In general, physical systems seek a configuration which minimizes their potential energy.
This principal leads us to our third form of the two-point boundary value problem (1.1). If we
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assume that (1.1) is modelling the deflection of a string as previously described, then we may define
the “energy” of the string with deflection v as

Ew) = %/0 a(v')? da:—/o fodz. (1.4)

We let Ag be the same admissible set of functions we have described previously, that is, functions v
which satisfy the boundary conditions v(0) = v(1) = 0 and which are “smooth enough”. Then our
minimization problem is: Find a function u € Ay such that

E(u) = minge4,€v). (1.5)

As in the case of the weak form, we may ask whether the minimization problem (1.5) is equivalent
to our original two-point boundary value problem (1.1). The answer is yes.

Proposition 1.2.2 The strong form, weak form, and minimization form of the two-point boundary
value problem are equivalent. That is, if u is a “smooth enough” function which solves any one of
the problems, then u also solves the other two.

Proof. We shall proceed by showing that the weak form and the minimization form are equivalent.
Since we have already shown equivalence between the weak and strong forms, this will complete our
proof.

We note at the outset that we shall be a little bit sloppy at a few points in our proof, that is,
we shall give the flavor of the correct proof while neglecting some technical details. We begin by
assuming that u satisfies the minimization problem (1.5). We then let v € A4y and ¢ € R and notice
that then u + tv € Ag. We then may compute that

E(u+tv) = 2f0 a(u’ + tv') fo u+tv
=3 fo au' dz +tf au'v' dz +5 [ a(v')? dz (1.6)
—fo fudz tfo fvdz.

Since u and v are fixed, we may think of £(u + tv) as a function of t—in fact, it’s a differentiable
function of t. But we have assumed that £ is minimal at u, that is, £(u) < &(u + tv). Thus by
Fermat’s theorem, 4£&(u + tv)|;—o = 0. Using our expression for £(u + tv) from (1.6), we find the
Euler-Lagrange equations for the problem (1.5):

L‘iitg(u+tv)\t 0=/, au’v'dm+tf0 fo fvdz)|i=o
f au'v' fo fvdx—O

/ au'v d;c—/ fudx

for any v € Ap. This is precisely the weak form (1.3), so we have proven that if 4 minimizes £, then
it also solves the weak form.

We now assume that u solves the weak form, and show that it also minimizes £. The proof may
appear to be unmotivated. We will seemingly pull an expression out of thin air, then manipulate it

or rewriting,
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using the weak form to reach the statement we wish to prove. The statement we pull out of thin air

is: L
——/ a(u' —v")?dr <0,
2Jo

which is true because a > 0 and (u' — v')? > 0, so the integral of the product of these two things
must be nonnegative as well. Expanding this expression, we find that

1t 1 1
——/ a(u')? da:+/ au'v' dx——/ a(v)?dzx <0. (1.7)
2 /o 0 2 Jo

Manipulating (1.7) and using the weak form (1.3), we find

-1 Ola(u')2 dr < —fol au'v' dz +%f01 a(v')? dx
=- fol fodz +1 fol a(v')?dzx = E(v).

Again using the weak form (1.3), we find that

-1 fol a(u)?de =1 fol a(u')?dz — fol a(u')? dz
1 1
=1 [y aW)dz— [; fvdz = E(u).
Combining the last two expressions above yields
E(u) < E(v),

which is what we were seeking to prove.

We finally note that that we haven’t shown that any solutions to our differential equations exist,
or that if they do exist that they are unique. It is not that difficult to show in this simple case that
exactly one solution to our differential equation does indeed exist; one may simply integrate (1.1).
However, this is considered to be “cheating” because it doesn’t work for most partial differential
equations, so we shall leave this as an exercise to the reader.

1.3 Essential and natural boundary conditions

In writing down the differential equation (1.1), we specified that the value of u at the boundary points
0 and 1 of the interval (0,1) be 0. In the weak and minimization forms of the two-point boundary
value problem, we likewise specified explicitly that «(0) = u(1) = 0 by requiring that « come from
the class Ag of admissible functions with %(0) = w(1) = 0. There are, however, many other possible
boundary conditions we could specify, and they are not all treated the same, especially in the weak
form. We shall not discuss here the treatment of boundary conditions in the minimization form of
the problem.

In the strong form problem, there are three main types of boundary conditions we may impose:
Dirichlet, Neumann, and Robin. When speaking about boundary conditions in the context of the
weak form, we also make a distinction between essential and natural boundary conditions, which we
define below. Letting xgp be a boundary point (in our case, 0 or 1), we may summarize these types
of boundary conditions in Table 1.1.

If we are modelling the deflection u of a string under a load, then Dirichlet conditions correspond
to pinning down the ends of the string, Neumann conditions correspond to applying a fixed tension
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Table 1.1:
Proper Name Boundary Condition Weak Type
Dirichlet u(zpp) = upp essential
Neumann u'(zpp) = UBp natural
Robin u'(xgp) + TBPU(ZBP) = gBP natural

at the ends, and Robin conditions correspond to requiring a sort of equilibrium between the tension
and position at the end of the string. If we are modelling the temperature distribution in a body at
thermal equilibrium (say, in a very thin rod in our present case), then Dirichlet conditions correspond
to fixing the temperature at the ends of the body, Neumann conditions correspond to requiring that
a certain amount of heat escapes or is pumped into the body, and Robin conditions correspond to
a combination of the two. We note that we may require different boundary conditions at each end
of the rod, e.g., we may require that 4(0) = 2 and v'(1) = —1.

Notice that Dirichlet boundary conditions must be imposed in both the strong and weak formu-
lations. In the strong case, we require that 4(0) = u(1) = 0, and in the weak case we require that u
be chosen from the class A of functions which all are zero at the boundary points. (In the case of
nonzero Dirichlet boundary conditions, say u(0) = ug and u(1) = u1, we would similarly take Ap;,
to be the class of functions satisfying these boundary conditions, then choose u from Ap;..) We
say that Dirichlet boundary conditions are essential because we must explicitly impose them in the
the weak form: we restrict our class Ap;. to contain only those functions which satisfy the desired
boundary conditions.

Neumann and Robin boundary conditions, on the other hand, are natural because they do not
have to be imposed in the weak form; they are satisfied automatically, almost as if by magic. We do
not further discuss Robin conditions here; we shall only consider the following Neumann problem.

_(aul)l = f in (071)7

a(0)u'(0) =1, a()u'(1) =v;. (1.8)

Note that our Neumann conditions here look a little different that in Table 1.1. There we required
u'(0) = Py, whereas here we require a(0)u’(0) = vy. Since a > 0, however, we may simply take
Do = v9/a(0), so these are simply two ways of stating the same boundary condition.

We now let A be the class of functions which are sufficiently smooth but with no boundary
conditions imposed. Multiplying (1.8) by any v € A and integrating by parts, we find that

fol fode=— fol(au')'v de = fol fvdz
= fol au'v' dz —a(0)u'(0)v(0) + a(1)u'(1)v(1)
= fol au'v' dz —vv(0) + v1v(1).

The following, then, is the weak form of the Neumann problem (1.8): Find u € A such that
1 1
/ au'v' dz —vv(0) + v1v(1) = / fvdz for allv € A. (1.9)
0 0

We have shown that if u satisfies the strong form, it satisfies the weak form. Now we wish to show
the converse. We may argue exactly as in the Dirichlet problem that —(au')’ = f in (0,1) (we must
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only be careful to take our bump function v € Ag so that boundary terms disappear). Thus we
must only show that if u satisfies (1.9), then a(0)u'(0) = v and a(1)u'(1) = v1. Assuming that u
satisfies (1.9), let us take v € A such that v(0) =1 and v(1) = 0 (v(z) = 1 — = certainly does the
trick). Then integrating by parts and collecting terms, we find that

0= foi au'v' dz —vv(0) + v1v(1) — fol fvdz
= Jo (=(au')" = flvdz +(a(0)u'(0) — 1)v(0) — (a(1)u'(1) — v1)v(1).

We have already established that —(au')’ = f, so —(au’)’ — f = 0, and we chose v so that v(0) =1
and v(0) = 0. Continuing from the previous equation, we thus find that

a(0)u'(0) —vo =0

a(0)u'(0) = vo,

which is what we sought to show. We may similarly argue that a(1)u'(1) = v1, so that the weak
and strong forms of the Neumann problem are equivalent.

To emphasize the main points of this section, we quickly sum up our main definitions and findings.
Boundary conditions are said to be essential if they must be imposed in the weak form, that is, if one
must impose boundary conditions on members of the class A of admissible functions. Thus Dirichlet
conditions are essential. Boundary conditions are natural if they are enforced automatically in the
weak form, that is, if they need not be imposed on members of the class A of admissible functions.
Neumann conditions are natural.

1.4 Inner products and norms of functions

In the mathematical analysis of numerical methods, it is handy to have a way to measure the size
of a given function and the angle between two functions. Before discussing what these ideas might
mean in the context of function spaces, we quickly recall from linear algebra the corresponding
elementary concepts in Euclidean spaces. Let @ and b be two vectors in R”, i.e., @ = (a1, as, ..., an)
and b = (b1,ba, ..., b,). The inner product (sometimes called a dot product in the context of Euclidean

spaces) of @ and b is then
n

(a, b) = Z a,bz

i=1
The size of a vector is then the Euclidean norm

@l Bue = V/(a, a),

and the distance between any two vectors in R™ is given by the familiar Euclidean distance

1

=

)

lla = bllpuc =

QL

dist(

)

Our intuition that the shortest distance between two points is a straight line is confirmed by the
triangle inequality

lla + bllEue < llallzuc + (1Dl Zuc,
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which tells us that . .
dist(a,b) < dist(d,c) + dist(é,b)

for any vector c. Finally, we may measure the angle § between two vectors by
__ (@b
=— 2 ,
||| Eucl bl £uc

and we say that two vectors are orthogonal (or perpendicular) if their inner product is zero.

The concepts of size and angle are as important in function spaces as they are in the Euclidean
spaces we are so familiar with, but the definitions of these concepts is not so intuitive in the context
of function spaces (and in fact there are many different possible definitions that might prove to be
useful). We begin by discussing the bilinear form £ which we defined when discussing the weak form
(1.3) of our TPBVP. It turns out that £ functions as an inner product in the space Ay of admissible
functions for the weak form. While one does not generally care if the angle between two functions
in Ag is § or 7, it turns out that the concept of orthogonality in A is very important. That is,
two functions u,v € Ag are orthogonal if £(u,v) = 0. The size of functions (and the corresponding
distance between functions) in Ag is also important. A consistent way of assigning a size to an
object in a space is called a norm, and here we shall employ the energy norm

l[elleng = v L(u,0).

We note that the energy norm is very intimately connected with the TPBVP that we are considering;:
it depends on the coefficient a in our problem. At least for the time being, however, this norm will
be a convenient way for us to measure the size of a function.

It is also possible to devise other ways to measure the size of a function, some corresonding to
an inner product and some not. For example, we can consider the mazimum (or Lo,) norm

lull. = gmas u(z)],

1
lulle, = [ lulds,
0
or the Ly (or root-mean-square) norm

1
lulles = [0 do = /).
0

There is no natural concept of angle (i.e., no natural inner product) corresponding to the L, and

the L; norm

L; norms; the natural inner product corresponding to the L, norm is the form (u,v) = fol uv dz
which we previously defined.

1.5 Exercises

(Problems marked with an asterisk (*) are optional, but you should know how to do them. Problems
marked with a double asterisk (**) are included for extra interest, and you need not complete them.
All others are to be handed in.)
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1. Here we consider a problem with mixed boundary conditions: Find a function u such that

—(a(z)u/(2))' = f(z) in (0,1),
u'(0) =0, wu(l)=0. (1.10)

a. Show that (1.10) has precisely one solution. (Hint: Integrate to show that a solution exists.
To show that only one solution exists, assume that two solutions exist and show that they are equal,
which is a standard “trick of the trade”.)

b. Find the weak form of (1.10). (Hint: Consider the ways in which essential and natural
boundary conditions are handled in the weak form.)

c.* Show that the weak form of (1.10) that you found above and the strong form (1.10) are
equivalent.
2. An inner product on a vector space X is a function (-,-) which associates a real number to each
pair of vectors {z,y} € X x X and which satisfies the following five requirements:

(a) (2,y) = (y,2);

() (z+y,2) = (2,2) + (y, 2);
(¢) (az,y) = a(z,y) if « € K;
(d) (z,z) > 0 for all x € X;
(e) (z,z) = 0 only if z = 0.

a.* Verify that the standard dot product on R” is an inner product.

b. Verify that £(-,-) is an inner product on X = Ay.
3. a. Find a function which has finite size when measured in the L; norm but not when measured
in either the Ly norm or in the L, norm.

b. Is it possible to find a function which has finite size in the Lo, norm but not in the L; norm?

c.** How about a function in Ag which has finite size in the norm ||ully; = fol |u| + fol |u'| but
not in the Lo, norm?



