
The Arc Algebra of a Surface

Martin Bobb Dylan Peifer

Carleton College

22 May 2014



Outline

1. A crash course in knot theory

2. An introduction to the Kauffman bracket

3. Generalizing the Kauffman bracket to an algebraic structure

4. Our project



Outline

1. A crash course in knot theory

2. An introduction to the Kauffman bracket

3. Generalizing the Kauffman bracket to an algebraic structure

4. Our project



Outline

1. A crash course in knot theory

2. An introduction to the Kauffman bracket

3. Generalizing the Kauffman bracket to an algebraic structure

4. Our project



Outline

1. A crash course in knot theory

2. An introduction to the Kauffman bracket

3. Generalizing the Kauffman bracket to an algebraic structure

4. Our project



Outline

1. A crash course in knot theory

2. An introduction to the Kauffman bracket

3. Generalizing the Kauffman bracket to an algebraic structure

4. Our project



Section I
What is a knot?



Knots

Let’s play with some knots...
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Some Examples

Unknot
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Hopf Link



Some Examples

Trefoil



Some Examples

Figure-Eight Knot



Some Examples
Whitehead Link



The Fundamental Problem of Knot Theory

The main problem in knot theory is determining when two knots
are equivalent. This is nontrivial! Example:

?
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These are different diagrams of the same knot.



Invariants

So how do you tell things apart?
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I height is a pretty good people invariant

I Dylan is six feet tall, all day every day.

I Dr. Helen Wong is not six feet tall.

I Thus Dylan and Helen are different people.

I but Martin and Dylan are both six feet tall...

I and we are not the same person!

I other common people invariants are hair color, eye color, and
DNA sequence
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Knot Invariants

We need knot invariants:

I should help us tell knots apart

I will probably involve characteristics of knots

I should not depend on a particular representation



Connected Components

One simple invariant of links is the number of connected
components.

→ 1



Connected Components

→ 1

→ 2

These two links have a different value for this invariant, so they are
different links.



Connected Components

Two different links may have the same number of connected
components, e.g.:

→ 1

→ 1

The trefoil and the unknot both have 1 connected component.



Completeness and Computability of Invariants

Invariants have varying degrees of completeness and computability.

I complete: let’s us differentiate every knot from every other
knot

I computable: is a value that we can find and compare easily

For people:
Height is very computable but laughably incomplete.
DNA sequence is very complete but difficult to compute.

For knots:
Connected components is very computable but terribly
incomplete.
The knot complement and the Kontsevich integral are very
complete but incredibly difficult to compute.
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Kontsevich Integral is Scary

Z (K ) =
∞∑

m=0

1

(2πi)m

∫
tmin<t1<···<tm<tmax

tj noncritical

∑
P={(zj ,z ′j )}

(−1)↓Dp

m∧
j=1

dzj − dz ′j
zj − z ′j



The Great Tragedy of Knot Theory

There is no known knot invariant that is both complete and
computable.

(bummer)

We can, however, split the difference.
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The Kauffman Bracket Polynomial
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2. We can “break crossings” one by one while storing
information about those crossings in a polynomial equation.

3. After breaking all crossings of a complicated knot we are left
with unknots, and then we recursively build up.
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The Trefoil is not an Unknot!

→ −A2 − A−2

→ −A9 + A + A−3 + A−7

As the Kauffman bracket polynomial is different, these are actually
different knots!
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I we would like to understand three-dimensional spaces
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“This is not your grandfather’s multiplication sign.”
–Joe Silverman, Ph.D.
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–Joe Silverman, Ph.D.
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In order to better understand thickened surfaces we have created a
module with multiplication, which is an algebra.

This algebra stores geometric information about the thickened
surface in a more computationally approachable structure.
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since around 1990.

Our project involved a generalization of this algebra to punctured
surfaces developed by Julien Roger and Tian Yang in 2011.
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Algebra of the Twice-Punctured Sphere

1. Consider any diagram on a twice-punctured sphere.

2. We can remove all crossings with a relation to get a sum of
diagrams with coefficients.

3. If two arcs meet at a puncture, we can remove them from the
puncture with a relation.

4. We can remove all unknots (around punctures and not) with a
relation and put them in the coefficients.

5. What is left?
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1. There’s no crossings (we removed them).
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3. If there is an arc, it starts at one puncture and ends at the
other...

So we are left with:

and

With polynomial coefficients in A
1
2 , v , v .
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Generators of the Arc Algebra

Every element k of the arc algebra for the twice-punctured sphere
can be written:

k = p0(A
1
2 , v , v) + p1(A

1
2 , v , v)

We say that the two diagrams in this sum generate this arc algebra.
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Our Project

Our project was to find generators (and relations) for the arc
algebras of various surfaces.

We found complete presentations for:

I The sphere (with no punctures)

I The twice-punctured sphere

I The thrice-punctured sphere

We found generators for:

I The torus (with no punctures)

I The once-punctured torus

We are still working on:

I The four-punctured sphere

I The twice-punctured torus

and we hope to achieve a general description.
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Questions

We are prepared to answer any and all of your questions to the
best of our ability.


