
Learning Selection Strategies in
Buchberger’s Algorithm

Dylan Peifer

Cornell University

23 October 2020

Outline

The efficiency of Buchberger’s algorithm, a fundamental tool in
computer algebra, strongly depends on a choice of selection
strategy. By phrasing Buchberger’s algorithm as a reinforcement
learning problem and applying standard reinforcement learning
techniques we can learn new selection strategies that beat the
existing state-of-the-art.

1. Gröbner Bases and Buchberger’s Algorithm

2. Reinforcement Learning and Policy Gradient

3. Results

1. Gröbner Bases and Buchberger’s Algorithm

R = K [x1, . . . , xn] a polynomial ring over some field K

I = 〈f1, . . . , fk〉 ⊆ R an ideal generated by f1, . . . , fk ∈ R

Example

R = Q[x , y]

= {polynomials in x and y with rational coefficients}

I = 〈x2 − y3, xy2 + x〉
= {a(x2 − y3) + b(xy2 + x) : a, b ∈ R}

Question
In the above example, is x5 + x an element of I ?

R = K [x1, . . . , xn] a polynomial ring over some field K

I = 〈f1, . . . , fk〉 ⊆ R an ideal generated by f1, . . . , fk ∈ R

Example

R = Q[x , y]

= {polynomials in x and y with rational coefficients}

I = 〈x2 − y3, xy2 + x〉
= {a(x2 − y3) + b(xy2 + x) : a, b ∈ R}

Question
In the above example, is x5 + x an element of I ?

R = K [x1, . . . , xn] a polynomial ring over some field K

I = 〈f1, . . . , fk〉 ⊆ R an ideal generated by f1, . . . , fk ∈ R

Example

R = Q[x , y]

= {polynomials in x and y with rational coefficients}

I = 〈x2 − y3, xy2 + x〉
= {a(x2 − y3) + b(xy2 + x) : a, b ∈ R}

Question
In the above example, is x5 + x an element of I ?

Question
Consider the ideal I = 〈x2 + x − 2〉 in the ring Q[x]. Is
x3 + 3x2 + 5x + 4 an element of I ?

x + 2
x2 + x − 2

)
x3 + 3x2 + 5x + 4

− (x3 + x2 − 2x)
2x2 + 7x + 4

− (2x2 + 2x − 4)
5x + 8

x3 + 3x2 + 5x + 4 = (x + 2)(x2 + x − 2) + (5x + 8)

=⇒ x3 + 3x2 + 5x + 4 6∈ 〈x2 + x − 2〉

Question
Consider the ideal I = 〈x2 + x − 2〉 in the ring Q[x]. Is
x3 + 3x2 + 5x + 4 an element of I ?

x + 2
x2 + x − 2

)
x3 + 3x2 + 5x + 4

− (x3 + x2 − 2x)
2x2 + 7x + 4

− (2x2 + 2x − 4)
5x + 8

x3 + 3x2 + 5x + 4 = (x + 2)(x2 + x − 2) + (5x + 8)

=⇒ x3 + 3x2 + 5x + 4 6∈ 〈x2 + x − 2〉

Question
Consider the ideal I = 〈x2 + x − 2〉 in the ring Q[x]. Is
x3 + 3x2 + 5x + 4 an element of I ?

x + 2
x2 + x − 2

)
x3 + 3x2 + 5x + 4

− (x3 + x2 − 2x)
2x2 + 7x + 4

− (2x2 + 2x − 4)
5x + 8

x3 + 3x2 + 5x + 4 = (x + 2)(x2 + x − 2) + (5x + 8)

=⇒ x3 + 3x2 + 5x + 4 6∈ 〈x2 + x − 2〉

Question
Consider the ideal I = 〈x2 + x − 2〉 in the ring Q[x]. Is
x3 + 3x2 + 5x + 4 an element of I ?

x + 2
x2 + x − 2

)
x3 + 3x2 + 5x + 4

− (x3 + x2 − 2x)
2x2 + 7x + 4

− (2x2 + 2x − 4)
5x + 8

x3 + 3x2 + 5x + 4 = (x + 2)(x2 + x − 2) + (5x + 8)

=⇒ x3 + 3x2 + 5x + 4 6∈ 〈x2 + x − 2〉

Definition
Let xα denote an arbitrary monomial where α is the vector of
exponents. A monomial order on R = k[x1, . . . , xn] is a relation >
on the monomials of R such that

1. > is a total ordering

2. > is a well-ordering

3. if xα > xβ then xγxα > xγxβ for any xγ (i.e., > respects
multiplication).

Example

Lexicographic order (lex) is defined by xα > xβ if the leftmost
nonzero component of α− β is positive. For example, x > y > z,
xy > y4, and xz > y2.

Definition
Let xα denote an arbitrary monomial where α is the vector of
exponents. A monomial order on R = k[x1, . . . , xn] is a relation >
on the monomials of R such that

1. > is a total ordering

2. > is a well-ordering

3. if xα > xβ then xγxα > xγxβ for any xγ (i.e., > respects
multiplication).

Example

Lexicographic order (lex) is defined by xα > xβ if the leftmost
nonzero component of α− β is positive. For example, x > y > z,
xy > y4, and xz > y2.

Divide x5 + x by the generators x2 − y3 and xy2 + x

q1 : x3 − xy

q2 : x2y − y2 + 1

x2 − y3

xy2 + x x5 + x

− (x5 − x3y3)

x3y3 + x

− (x3y3 + x3y)

−x3y + x

− (−x3y + xy4)

−xy4 + x

− (−xy4 − xy2)

xy2 + x

− (xy2 + x)
0

x5 + x = (x3 − xy)(x2 − y3) + (x2y − y2 + 1)(xy2 + x) + 0

=⇒ x5 + x ∈ 〈x2 − y3, xy2 + x〉

Divide x5 + x by the generators x2 − y3 and xy2 + x

q1 : x3 − xy

q2 : x2y − y2 + 1

x2 − y3

xy2 + x x5 + x

− (x5 − x3y3)

x3y3 + x

− (x3y3 + x3y)

−x3y + x

− (−x3y + xy4)

−xy4 + x

− (−xy4 − xy2)

xy2 + x

− (xy2 + x)
0

x5 + x = (x3 − xy)(x2 − y3) + (x2y − y2 + 1)(xy2 + x) + 0

=⇒ x5 + x ∈ 〈x2 − y3, xy2 + x〉

Divide x5 + x by the generators x2 − y3 and xy2 + x

q1 : x3 − xy

q2 : x2y − y2 + 1

x2 − y3

xy2 + x x5 + x

− (x5 − x3y3)

x3y3 + x

− (x3y3 + x3y)

−x3y + x

− (−x3y + xy4)

−xy4 + x

− (−xy4 − xy2)

xy2 + x

− (xy2 + x)
0

x5 + x = (x3 − xy)(x2 − y3) + (x2y − y2 + 1)(xy2 + x) + 0

=⇒ x5 + x ∈ 〈x2 − y3, xy2 + x〉

Definition
When F is set of polynomials and dividing h by the fi ∈ F using
the division algorithm leads to the remainder r we write hF → r or
say h reduces to r .

Lemma
If hF → 0 then h is in the ideal generated by F .

Unfortunately, the converse is false.

Example

Using the same ideal I = 〈x2 − y3, xy2 + x〉, note that

y2(x2 − y3)− x(xy2 + x) = −x2 − y5 ∈ I

However, multivariate division produces the nonzero remainder
−y5 − y3.

Definition
When F is set of polynomials and dividing h by the fi ∈ F using
the division algorithm leads to the remainder r we write hF → r or
say h reduces to r .

Lemma
If hF → 0 then h is in the ideal generated by F .

Unfortunately, the converse is false.

Example

Using the same ideal I = 〈x2 − y3, xy2 + x〉, note that

y2(x2 − y3)− x(xy2 + x) = −x2 − y5 ∈ I

However, multivariate division produces the nonzero remainder
−y5 − y3.

Definition
When F is set of polynomials and dividing h by the fi ∈ F using
the division algorithm leads to the remainder r we write hF → r or
say h reduces to r .

Lemma
If hF → 0 then h is in the ideal generated by F .

Unfortunately, the converse is false.

Example

Using the same ideal I = 〈x2 − y3, xy2 + x〉, note that

y2(x2 − y3)− x(xy2 + x) = −x2 − y5 ∈ I

However, multivariate division produces the nonzero remainder
−y5 − y3.

Definition
Given a monomial order, a Gröbner basis G of a nonzero ideal I is
a set of generators {g1, g2, . . . , gs} of I such that any of the
following equivalent conditions hold:

(i) f G → 0 ⇐⇒ f ∈ I

(ii) f G is unique for all f ∈ R

(iii) 〈LT(g1), LT(g2), . . . , LT(gs)〉 = 〈LT(I)〉

where LT(f) is the leading term of f and 〈LT(I)〉 = 〈LT(f) | f ∈ I 〉
is the ideal generated by all leading terms of I .

Example

Using the same ideal I = 〈x2 − y3, xy2 + x〉, the set
{x2 − y3, xy2 + x} is not a Gröbner basis of I .

Definition
Given a monomial order, a Gröbner basis G of a nonzero ideal I is
a set of generators {g1, g2, . . . , gs} of I such that any of the
following equivalent conditions hold:

(i) f G → 0 ⇐⇒ f ∈ I

(ii) f G is unique for all f ∈ R

(iii) 〈LT(g1), LT(g2), . . . , LT(gs)〉 = 〈LT(I)〉

where LT(f) is the leading term of f and 〈LT(I)〉 = 〈LT(f) | f ∈ I 〉
is the ideal generated by all leading terms of I .

Example

Using the same ideal I = 〈x2 − y3, xy2 + x〉, the set
{x2 − y3, xy2 + x} is not a Gröbner basis of I .

Definition
Let S(f , g) = xγ

LT(f) f −
xγ

LT(g)g where xγ is the least common
multiple of the leading monomials of f and g. This is the
s-polynomial of f and g, where s stands for subtraction or syzygy.

Example

S(x2 − y3, xy2 + x) =
x2y2

x2
(x2 − y3)− x2y2

xy2
(xy2 + x)

= y2(x2 − y3)− x(xy2 + x)

= −x2 − y5

Theorem (Buchberger’s Criterion)

Let G = {g1, g2, . . . , gs} generate the ideal I . If S(gi , gj)
G → 0 for

all pairs gi , gj then G is a Gröbner basis of I .

Definition
Let S(f , g) = xγ

LT(f) f −
xγ

LT(g)g where xγ is the least common
multiple of the leading monomials of f and g. This is the
s-polynomial of f and g, where s stands for subtraction or syzygy.

Example

S(x2 − y3, xy2 + x) =
x2y2

x2
(x2 − y3)− x2y2

xy2
(xy2 + x)

= y2(x2 − y3)− x(xy2 + x)

= −x2 − y5

Theorem (Buchberger’s Criterion)

Let G = {g1, g2, . . . , gs} generate the ideal I . If S(gi , gj)
G → 0 for

all pairs gi , gj then G is a Gröbner basis of I .

Definition
Let S(f , g) = xγ

LT(f) f −
xγ

LT(g)g where xγ is the least common
multiple of the leading monomials of f and g. This is the
s-polynomial of f and g, where s stands for subtraction or syzygy.

Example

S(x2 − y3, xy2 + x) =
x2y2

x2
(x2 − y3)− x2y2

xy2
(xy2 + x)

= y2(x2 − y3)− x(xy2 + x)

= −x2 − y5

Theorem (Buchberger’s Criterion)

Let G = {g1, g2, . . . , gs} generate the ideal I . If S(gi , gj)
G → 0 for

all pairs gi , gj then G is a Gröbner basis of I .

Algorithm Buchberger’s Algorithm

input a set of polynomials {f1, . . . , fk}
output a Gröbner basis G of I = 〈f1, . . . , fk〉
procedure Buchberger({f1, . . . , fk})

G ← {f1, . . . , fk} . the current basis
P ← {(fi , fj) | 1 ≤ i < j ≤ k} . the remaining pairs
while |P| > 0 do

(fi , fj)← select(P)
P ← P \ {(fi , fj)}
r ← S(fi , fj)

G

if r 6= 0 then
P ← P ∪ {(f , r) : f ∈ G}
G ← G ∪ {r}

end if
end while
return G

end procedure

Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}

Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}

Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}

Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}

Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}

Example
I = 〈x2 − y3, xy2 + x〉

initialize G to {x2 − y3, xy2 + x}
initialize P to {(x2 − y3, xy2 + x)}

select (x2 − y3, xy2 + x) and compute S(x2 − y3, xy2 + x)G → −y5 − y3

update G to {x2 − y3, xy2 + x ,−y5 − y3}
update P to {(x2 − y3,−y5 − y3), (xy2 + x ,−y5 − y3)}

select (x2 − y3,−y5 − y3) and compute S(x2 − y3,−y5 − y3)G → 0

select (xy2 + x ,−y5 − y3) and compute S(xy2 + x ,−y5 − y3)G → 0

return G = {x2 − y3, xy2 + x ,−y5 − y3}

Algorithm Buchberger’s Algorithm

input a set of polynomials {f1, . . . , fk}
output a Gröbner basis G of I = 〈f1, . . . , fk〉
procedure Buchberger({f1, . . . , fk})

G ← {f1, . . . , fk} . the current basis
P ← {(fi , fj) | 1 ≤ i < j ≤ k} . the remaining pairs
while |P| > 0 do

(fi , fj)← select(P)
P ← P \ {(fi , fj)}
r ← S(fi , fj)

G

if r 6= 0 then
P ← P ∪ {(f , r) : f ∈ G}
G ← G ∪ {r}

end if
end while
return G

end procedure

In general, we should select “small” pairs (fi , fj) first.

I First:
among the pairs with minimal j , pick the pair with smallest i

I Degree:
pick the pair with smallest degree of lcm(LT(fi), LT(fj))

I Normal:
pick the pair with smallest lcm(LT(fi), LT(fj)) in the
monomial order

I Sugar:
pick the pair with smallest sugar degree of lcm(LT(fi), LT(fj)),
which is the degree it would have had if we had homogenized
at the beginning

In general, we should select “small” pairs (fi , fj) first.

I First:
among the pairs with minimal j , pick the pair with smallest i

I Degree:
pick the pair with smallest degree of lcm(LT(fi), LT(fj))

I Normal:
pick the pair with smallest lcm(LT(fi), LT(fj)) in the
monomial order

I Sugar:
pick the pair with smallest sugar degree of lcm(LT(fi), LT(fj)),
which is the degree it would have had if we had homogenized
at the beginning

The number of pair reductions performed is a rough estimate of
how much time was spent. Smaller numbers are better.

example First Degree Normal Sugar Random

cyclic6 371 655 620 343 793
cyclic7 2217 5664 5781 2070 -

katsura7 164 164 164 164 285
eco6 67 72 61 64 97

reimer5 552 212 211 301 -
noon4 71 71 71 71 100

cyclic5 (lex) 112 132 1602 108 -
katsura5 (lex) 231 1631 769 67 -

eco5 (lex) 30 34 22 26 28
eco6 (lex) 104 147 96 68 175

Summary

I A Gröbner basis of an ideal in a polynomial ring is a special
generating set that is useful for many computational problems.

I Buchberger’s algorithm produces a Gröbner basis from any
initial generating set of an ideal by repeatedly choosing pairs
(fi , fj) of the current generating set and adding the reduction
of the s-polynomial of fi and fj to the generating set if it is
not zero.

I The selection strategy used to pick which pair to choose next
can make a big difference in the efficiency of Buchberger’s
algorithm.

2. Reinforcement Learning and Policy Gradient

Reinforcement learning tries to understand and optimize
goal-directed behavior driven by interaction with the world.

I playing games (backgammon, chess, Go, StarCraft, ...)

I flying a helicopter or driving a car

I controlling a power station or data center

I managing a portfolio of stocks or other financial assets

I allocating resources to research projects

Reinforcement learning tries to understand and optimize
goal-directed behavior driven by interaction with the world.

I playing games (backgammon, chess, Go, StarCraft, ...)

I flying a helicopter or driving a car

I controlling a power station or data center

I managing a portfolio of stocks or other financial assets

I allocating resources to research projects

Reinforcement learning problems can be phrased as the interaction
of an agent and an environment.

The agent chooses actions and the environment processes actions
and gives back the updated state and a reward. The agent wants
to maximize its return, which is the amount of reward it gets in the
long run.

Definition
A Markov Decision Process (MDP) is a collection of states S and
actions A with transition dynamics given by

p : S × R× S ×A → [0, 1]

where

p(s ′, r |s, a) = Pr[St+1 = s ′,Rt+1 = r |St = s,At = a]

returns the probability that the next state is s ′ and the next reward
is r given that the current state is s and the chosen action is a.

An environment implements an MDP by computing p(·, ·|s, a) for
the current state s and action a provided by the agent and then
sampling from the resulting distribution to return a new state s ′

and reward r .

Definition
A Markov Decision Process (MDP) is a collection of states S and
actions A with transition dynamics given by

p : S × R× S ×A → [0, 1]

where

p(s ′, r |s, a) = Pr[St+1 = s ′,Rt+1 = r |St = s,At = a]

returns the probability that the next state is s ′ and the next reward
is r given that the current state is s and the chosen action is a.

An environment implements an MDP by computing p(·, ·|s, a) for
the current state s and action a provided by the agent and then
sampling from the resulting distribution to return a new state s ′

and reward r .

Chess

State: the positions of all pieces on the board
Action: a valid move of one of your pieces
Reward: 1 if you win immediately after the transition, otherwise 0

Definition
A policy π is a function

π : A× S → [0, 1]

where
π(a|s) = Pr(At = a|St = s)

returns the probability that the next action is a given that the
current state is s.

An agent follows a policy by computing π(·|s) for the current state
s and sampling from the resulting probability distribution to choose
the next action.

Definition
A policy π is a function

π : A× S → [0, 1]

where
π(a|s) = Pr(At = a|St = s)

returns the probability that the next action is a given that the
current state is s.

An agent follows a policy by computing π(·|s) for the current state
s and sampling from the resulting probability distribution to choose
the next action.

Definition
A trajectory, episode, or rollout τ of a policy π is a series of states,
actions, and rewards (S0,A0,R1, S1,A1,R2,S2,A2, . . . ,RT , ST)
obtained by following the policy π one time through the
environment.

Definition
The return of a trajectory is the sum of rewards

T∑
t=1

Rt

along the trajectory.

The Reinforcement Learning Problem

Given an MDP, determine a policy π that maximizes the expected
return

E
τ∼π

[
T∑
t=1

Rt

]
over full trajectories sampled by following the policy π.

If we know the exact transition dynamics of the MDP this is a
planning problem. In the full learning problem the dynamics are
either unknown or infeasible to compute. All we can do is sample
from the environment.

The Reinforcement Learning Problem

Given an MDP, determine a policy π that maximizes the expected
return

E
τ∼π

[
T∑
t=1

Rt

]
over full trajectories sampled by following the policy π.

If we know the exact transition dynamics of the MDP this is a
planning problem. In the full learning problem the dynamics are
either unknown or infeasible to compute. All we can do is sample
from the environment.

Consider a parametrized policy function πθ which maps states to
probability distributions on actions. The expected return is now a
function

J(θ) = E
τ∼πθ

[
T∑
t=1

Rt

]
of the parameters θ of the policy.

Starting from any value of the parameters θ1, we can improve the
policy by repeatedly moving the parameters in the direction of
∇θJ(θ)

θk+1 = θk + α∇θJ(θ)|θk
where α is some small learning rate.

Consider a parametrized policy function πθ which maps states to
probability distributions on actions. The expected return is now a
function

J(θ) = E
τ∼πθ

[
T∑
t=1

Rt

]
of the parameters θ of the policy.

Starting from any value of the parameters θ1, we can improve the
policy by repeatedly moving the parameters in the direction of
∇θJ(θ)

θk+1 = θk + α∇θJ(θ)|θk
where α is some small learning rate.

Theorem (Policy Gradient Theorem)

Suppose πθ is a parametrized policy that is differentiable with
respect to its parameters θ. Then the gradient of

J(θ) = E
τ∼πθ

[
T∑
t=1

Rt

]

is

∇θJ(θ) = E
τ∼πθ

[
T−1∑
t=0

∇θ log πθ(At |St)
T∑

t′=t+1

Rt′

]
.

Intuitively, we should increase the probability of taking the action
we chose proportional to the future reward we received and the
derivative of the log probability of choosing that action again.

Theorem (Policy Gradient Theorem)

Suppose πθ is a parametrized policy that is differentiable with
respect to its parameters θ. Then the gradient of

J(θ) = E
τ∼πθ

[
T∑
t=1

Rt

]

is

∇θJ(θ) = E
τ∼πθ

[
T−1∑
t=0

∇θ log πθ(At |St)
T∑

t′=t+1

Rt′

]
.

Intuitively, we should increase the probability of taking the action
we chose proportional to the future reward we received and the
derivative of the log probability of choosing that action again.

Summary

I Reinforcement learning can be phrased as the interaction of
an agent and an environment, where an agent picks actions
and is trying to maximize the total reward it receives from the
environment over a full trajectory.

I A policy is a function that takes in a state and returns a
probability distribution on actions.

I Policy gradient methods improve a parametrized policy by
moving the parameters in the direction of the gradient of
expected return.

3. Results

Algorithm Buchberger’s Algorithm

input a set of polynomials {f1, . . . , fk}
output a Gröbner basis G of I = 〈f1, . . . , fk〉
procedure Buchberger({f1, . . . , fk})

G ← {f1, . . . , fk} . the current basis
P ← {(fi , fj) | 1 ≤ i < j ≤ k} . the remaining pairs
while |P| > 0 do

(fi , fj)← select(P)
P ← P \ {(fi , fj)}
r ← S(fi , fj)

G

if r 6= 0 then
P ← P ∪ {(f , r) : f ∈ G}
G ← G ∪ {r}

end if
end while
return G

end procedure

Choosing a Distribution of Ideals

Starting generators are binomials with no constant terms in 3
variables and a fixed maximum degree.

Example

{x3z + y2, x2z2 − xyz , x2y − 3z}

I We avoid uninteresting generic behavior.

I All new generators are also binomial.

I Some of the hardest known examples are binomial ideals.

I By adjusting the degree and number of initial generators, we
can adjust the difficulty of the problem.

Choosing a Distribution of Ideals

Starting generators are binomials with no constant terms in 3
variables and a fixed maximum degree.

Example

{x3z + y2, x2z2 − xyz , x2y − 3z}

I We avoid uninteresting generic behavior.

I All new generators are also binomial.

I Some of the hardest known examples are binomial ideals.

I By adjusting the degree and number of initial generators, we
can adjust the difficulty of the problem.

Expressing the State to the Model

The state (G ,P) is mapped to a |P| × 12 matrix with each row
given by the

(2 binomials)(2 terms)(3 variables) = 12 exponents

involved in each pair.

This matrix is passed into a policy network

|P| × 12

1D conv
relu

// |P| × 128

1D conv
linear

// |P| × 1
softmax

// |P| × 1

and a value model which computes the future return from
following Degree selection.

Expressing the State to the Model

The state (G ,P) is mapped to a |P| × 12 matrix with each row
given by the

(2 binomials)(2 terms)(3 variables) = 12 exponents

involved in each pair.

This matrix is passed into a policy network

|P| × 12

1D conv
relu

// |P| × 128

1D conv
linear

// |P| × 1
softmax

// |P| × 1

and a value model which computes the future return from
following Degree selection.

The network weights are initialized randomly. Training then
proceeds through epochs. In each epoch:

1. Perform 100 rollouts using the current policy network.

2. Compute future rewards for each action on each trajectory,
use generalized advantage estimation with a Degree model
baseline, and normalize these scores across the epoch.

3. Update the policy network using gradient ascent and the
policy gradient theorem.

The network weights are initialized randomly. Training then
proceeds through epochs. In each epoch:

1. Perform 100 rollouts using the current policy network.

2. Compute future rewards for each action on each trajectory,
use generalized advantage estimation with a Degree model
baseline, and normalize these scores across the epoch.

3. Update the policy network using gradient ascent and the
policy gradient theorem.

The network weights are initialized randomly. Training then
proceeds through epochs. In each epoch:

1. Perform 100 rollouts using the current policy network.

2. Compute future rewards for each action on each trajectory,
use generalized advantage estimation with a Degree model
baseline, and normalize these scores across the epoch.

3. Update the policy network using gradient ascent and the
policy gradient theorem.

The network weights are initialized randomly. Training then
proceeds through epochs. In each epoch:

1. Perform 100 rollouts using the current policy network.

2. Compute future rewards for each action on each trajectory,
use generalized advantage estimation with a Degree model
baseline, and normalize these scores across the epoch.

3. Update the policy network using gradient ascent and the
policy gradient theorem.

Training

Testing

s dist Random Normal Agent Improvement
10 w 178.[68.3] 136.[51.2] 85.6[27.3] 37% [46%]
4 w 203.[97.8] 160.[66.6] 101.[44.9] 37% [30%]
10 u 318.[103.] 198.[57.1] 141.[42.8] 28% [23%]
4 u 303.[122.] 194.[70.0] 151.[56.4] 22% [19%]

Agent performance in 3 variables and degree 20. Each line is a
unique agent trained on the given distribution. Performance is
mean[stddev] of polynomial additions on 10000 random samples.

Summary

I Pair selection, a key choice in Buchberger’s algorithm, can be
expressed as a reinforcement learning problem.

I Passing the state to a neural network is challenging since the
state is unbounded in several directions, and training and
testing requires choosing some distribution of ideals.

I In several distributions of random binomial ideals, our trained
model outperforms state-of-the-art human-designed selection
strategies by 20% to 40%.

Dylan Peifer djp282@cornell.edu
Michael Stillman mes15@cornell.edu
Daniel Halpern-Leistner daniel.hl@cornell.edu

[1] Learning selection strategies in Buchberger’s algorithm. In
Proceedings of the 37th International Conference on Machine
Learning (ICML 2020).

[2] https://github.com/dylanpeifer/deepgroebner

https://github.com/dylanpeifer/deepgroebner

