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Difference Sets

Definition
A 〈v , k , λ〉-difference set is a proper subset D of a group G such
that |G | = v , |D| = k , and each nonidentity element g ∈ G , can
be represented as a “difference” g = d1d

−1
2 for exactly λ pairs

(d1, d2) ∈ D2.

Example

G = 〈x | x7 = 1〉, D = {x , x2, x4}.

x x2 x4

x 1 x6 x4

x2 x 1 x5

x4 x3 x2 1

D is a 〈7, 3, 1〉-difference set.
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Some Quick Lemmas

Lemma
Every one element subset of any group is a difference set.

Lemma
The complement of a difference set is a difference set.

Lemma
If D ⊂ G is a difference set then

gD = {gd | d ∈ D}

and
φ(D) = {φ(d) | d ∈ D}

are both difference sets for any g ∈ G and any φ ∈ Aut(G ).
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Equivalent Difference Sets

Because of the first two lemmas, we typically only consider
difference sets with 2 ≤ k ≤ v

2 , which means we ignore trivial one
element sets and always choose the smaller of any complementary
pair. In addition, the last lemma gives a notion of equivalence.

Definition
Two difference sets D1,D2 in a group G are equivalent if

D1 = gφ(D2) = {gφ(d) | d ∈ D2}

for some g ∈ G and φ ∈ Aut(G ).

Example

D1 = {x , x2, x4} and D2 = {1, x , x3} are equivalent difference sets
in G = 〈x | x7 = 1〉, since D1 = xD2.



Enumeration

Question
Let G be a group. How many difference sets does G contain up to
equivalence? Can we produce a collection of representatives for the
equivalence classes?

Answering this question will require some level of exhaustive search.
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Exhaustive Search

By a simple counting argument, we can show that difference sets
in groups of order 16 must have 6 elements. My computer can
search through all such subsets in all fourteen groups in roughly
3.2 seconds. Similarly, groups of order 36, 64, and 96 only have
one possible size for difference sets. At this rate we have

order subsets to check time/group total time

16
(16
6

)
= 8.0× 103 0.21 seconds 3.2 seconds

36
(36
15

)
= 5.6× 109 1.8 days 3.7 weeks

64
(64
28

)
= 1.1× 1018 1.0 million years 270 million years

96
(96
20

)
= 2.2× 1020 200 million years 45 billion years.

In 1978, Robert Kibler completed searches in order 36. In 2016,
Ken W. Smith and Omar A. AbuGhneim almost completed
searches in order 64 and 96.
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Difference Sets Induce Difference Sums

Let G be group with 〈16, 6, 2〉-difference set D and normal
subgroup N of order 2. D induces a difference sum in G/N.

1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 G

2 0 0 0 1 1 1 1 G/N

Every difference set induces a difference sum, so the only place to
look for difference sets is preimages of difference sums.

Note that difference sums (or similar objects) are sometimes
referred to as intersection numbers, signatures, or difference lists.



Difference Sums Induce Difference Sums

Let G be group with 〈16, 6, 2〉-difference set D and normal series

G = N1 . N2 . N3 . N4 . N5 = {1}

D induces difference sums in the G/Ni .

1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 G/N5

2 0 0 0 1 1 1 1 G/N4

2 0 2 2 G/N3

2 4 G/N2

6 G/N1

The difference sum in G/N1 will always be 6 for any
〈16, 6, 2〉-difference set in G , since the size of the set is 6. The
idea is to reverse this process, starting with 6 and refining upwards.



The Algorithm

1. Starting with a given group G , we first compute a list of
possible k values and a chief series (maximal length normal
series) {Ni} of G . Each value of k will be handled separately.

2. The algorithm starts at G/G = {1}, where the only difference
sum is k , the size of the desired difference set.

3. Then we proceed up a sequence of larger and larger quotient
groups G/Ni . For each i we

(a) enumerate preimages of our current difference sums and filter
out non-difference sums,

(b) remove all but one representative of each equivalence class.

4. At the final stage we enumerate difference sets and filter and
remove as before.



Results

The algorithm is implemented in the DifSets Package for the
computer algebra system GAP. Source code, documentation, and
full results can be found at

https://github.com/dylanpeifer/difsets

The algorithm has successfully computed results for 1008 of the
1032 groups of order less than 100. Some highlights include

order number of groups median time mean time total time

36 14 0.44 seconds 43 seconds 5 minutes
64 267 21 minutes 43 minutes 8 days
96 231 3 hours 6.4 hours 61 days

(results for order 64 do not include SmallGroup(64, 267)).

https://github.com/dylanpeifer/difsets
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Results

The algorithm does well when:

1. There are many (small) normal subgroups and a long chief
series.
(For example, the five groups of order 96 taking the longest
computation time are five of the six groups with fewest
normal subgroups in this order.)

2. The possible sizes of k are small. (For example, order 96 is
much easier than other groups of similar order.)

3. The final list of difference sets is small. (For example, the
eight groups of order 64 with no difference sets were
computed the fastest, beating the next fastest groups of order
64 by an order of magnitude.)

4. The automorphism group is small. (For example, four of the
five groups of order 64 taking the largest amount of time are
the four groups with the largest automorphism groups in this
order.)



Future Projects

1. Improve the implementation of the refining step, which
currently recomputes previous information as it iterates
through the preimages and tests them.

2. Implement parts of the algorithm in C and integrate with GAP.

3. Try to expand the algorithm to use all normal subgroups of
the group, rather than just a single chief series.

4. Add more outside results to the package, such as methods to
construct difference sets, more tests that guarantee
nonexistence of difference sets, or additional libraries of known
difference sets.

If you are interested in any of these projects, please let me know!

https://github.com/dylanpeifer/difsets

https://github.com/dylanpeifer/difsets

