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Gröbner Bases – History

I Gröbner bases were introduced in 1965 in the PhD thesis of
Bruno Buchberger under Wolfgang Gröbner.

I Buchberger’s algorithm computes Gröbner bases, and is the
standard in most computer algebra systems.

I F4 was introduced in 1999 by Jean-Charles Faugère as an
improved Gröbner basis algorithm.

I F4 is based on Buchberger, but gains efficiency by using fast
matrix algorithms to quickly row reduce large sparse matrices
that represent many steps of Buchberger’s algorithm.



Polynomials

A Gröbner basis is a set of polynomials with a special property.

Definition
Let R = k[x1, . . . , xn] denote the ring of polynomials in variables
x1, . . . , xn with coefficients from a field k .

Example

Let R = Q[x , y ]. Then x2 − x + 2 and 1
2x

3y + xy2 + xy − y + 1
are elements of R. R contains all polynomials in variables x and y
with rational coefficients.

Definition
Given a set of polynomials {f1, . . . , fk} ⊆ R, the ideal I ⊆ R
generated by f1, . . . , fk is

I = 〈f1, . . . , fk〉 = {a1f1 + · · ·+ ak fk | ai ∈ R}.



Univariate Division Algorithm

x2 + 2x + 2
x2 + x − 2 x4 + 3x3 + 2x2 + 5x + 1

− (x4 + x3 − 2x2)
2x3 + 4x2 + 5x + 1

− (2x3 + 2x2 − 4x)
2x2 + 9x + 1

− (2x2 + 2x − 4)
7x + 5

Given input dividend f and divisor a, the division algorithm
computes an expression of the form f = aq + r . In our example,

x4 + 3x3 + 2x2 + 5x + 1 = (x2 + 2x + 2)(x2 + x − 2) + (7x + 5).



Multivariate Division Algorithm

q1 : x3 − xy

q2 : x2y − y2 + 1

x2 − y3

xy2 + x x5 + x

− (x5 − x3y3)

x3y3 + x

− (x3y3 + x3y)

−x3y + x

− (−x3y + xy4)

−xy4 + x

− (−xy4 − xy2)

xy2 + x

− (xy2 + x)
0

Given input dividend f and divisors a1, . . . , ak , the multivariate
division algorithm computes an expression of the form
f = a1q1 + · · ·+ akqk + r . In our example,

x5 + x = (x3 − xy)(x2 − y3) + (x2y − y2 + 1)(xy2 + x).



Gröbner Bases – Definition

A Gröbner basis of an ideal I is a generating set with a nice
property.

Definition
Given a monomial order, a Gröbner basis G of a nonzero ideal I is
a generating set {g1, g2, . . . , gk} ⊆ I such that for all f ∈ R, f
leaves remainder 0 when divided by G if and only if f ∈ I .

Many questions about an ideal are easy to answer with a Gröbner
basis, so a key question in computational algebra is how to
compute a Gröbner basis for a given ideal.



Analogy to Linear Algebra

polynomials ⇐⇒ vectors
ring R = k[x1, . . . , xn] ⇐⇒ vector space V

ideal I ⊆ R ⇐⇒ subspace W ⊆ V
generating set {f1, . . . , fk} of I ⇐⇒ basis {v1, . . . , vk} of W

Gröbner basis ⇐⇒ orthonormal basis
{g1, . . . , gm} ⊆ I {u1, . . . , uk} ⊆W

useful for computing: ⇐⇒ useful for computing:
ideal membership, projections,
ideal intersections, decompositions,

solutions of systems, norms,
implicitizations, adjoints,

. . . . . .



Buchberger’s Criterion

It is very difficult to show that a generating set is a Gröbner basis
by definition. Buchberger proved that we can instead check that a
certain property holds for each pair of generators.

Definition
Let S(f , g) = lcm(LM(f ),LM(g))

LT(f ) f − lcm(LM(f ),LM(g))
LT(g) g where lcm is

the least common multiple, LT is the leading term, and LM is the
leading monomial. This is the S-polynomial of f and g , where S
stands for subtraction or syzygy.

Theorem (Buchberger’s Criterion)

Let G = {g1, g2, . . . , gk} ⊆ I for some ideal I . If S(gi , gj) leaves
remainder 0 when divided by G for all pairs gi , gj ∈ G then G is a
Gröbner basis of I .



Buchberger’s Algorithm

1. Start with any generating set F = {f1, . . . , fk} of I .

2. Select a pair of generators fi , fj from F .

3. Compute the remainder r when S(fi , fj) is divided by F .

4. If r = 0 then continue, otherwise add r to the generating set
F .

5. Repeat from step 2 until all possible pairs from F have been
processed. Note that any time we add generators to F we
suddenly have many more pairs to consider.



Outline of F4

1. Start with any generating set F = {f1, . . . , fk} of I .

2. Select a set of pairs P = {(fi1 , fj1), . . . , (fim , fjm)} from F .

3. Produce a matrix M with rows corresponding to polynomials
associated to the pairs in P. Compute the reduced row
echelon form of M.

4. If any rows in rref(M) have a leading term that does not
appear as a leading term in rows of M, add the polynomials
corresponding to these rows to F .

5. Repeat from step 2 until all possible pairs from F have been
processed. Note that any time we add generators to F we
suddenly have many more pairs to consider.



Reduction and Symbolic Preprocessing
The goal of F4 is to mimic multivariate division with row reduction.

q1 : x3

q2 : x2y

x2 − y3

xy2 + x x5 + x

− (x5 − x3y3)

x3y3 + x

− (x3y3 + x3y)

−x3y + x
. . .

1. Start set L with both halves of the S-polynomial for each pair
in P.

2. For every term in L that is divisible by a lead term of some
generator fi , add a multiple of fi with that lead term to L.

3. Repeat 2 until every term in L has been considered.

4. Make a matrix with columns corresponding to the terms in L
in decreasing order, and rows the coefficients of the
polynomials in L.

5. Put the matrix in reduced row echelon form.



Matrices from F4



Results

Timings in seconds for several examples.

Macaulay2 Magma
example Buchberger F4 Buchberger F4

hcyclic8 320 4 111.6 1.12
jason210 16 6 5.65 2.79
katsura10 68 1 21.46 0.13
katsura11 955 4 272.01 0.64

mayr42 71 66 165.14 28.61
yang1 28 503 92.27 13.22
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