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Difference Sets

Definition
A (v , k , λ)-difference set is a subset D of a group G such that

|G| = v
|D| = k
each nonidentity element g ∈ G, can be represented as a
"difference" g = d1d−1

2 for exactly λ pairs (d1,d2) ∈ D2.

Small Example: G = C7 = 〈x | x7 = 1〉, D = {x , x2, x4}.
Difference Table:

d2
d1

x x2 x4

x 1 x6 x4

x2 x 1 x5

x4 x3 x2 1

D is a (7,3,1)-difference set
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Hadamard Difference Sets

Definition
A Hadamard Difference Set (HDS) is a (v , k , λ)-difference set
such that v = 4(k − λ).

Theorem

For any (v , k , λ)-HDS, (v , k , λ) = (4m2,2m2 ±m,m2 ±m) for
some m ∈ Z>0.

Because (4m2,2m2 −m,m2 −m)-difference sets and
(4m2,2m2 +m,m2 +m)-difference sets are complementary, we
will assume throughout that

(v , k , λ) = (4m2,2m2 −m,m2 −m).
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Hadamard Difference Sets

Why study Hadamard Difference Sets?
“The Hadamard parameters provide the richest source of
known examples of difference sets."
HDS’s are deeply connected to design theory, coding
theory, and digital communications.

Why the name “Hadamard"?
The (+1,−1) incidence matrix of the block design
corresponding to an HDS is a regular Hadamard matrix.
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The Group Ring
Let G = {g1, ...,gn} be a group, and D ⊂ G a difference set.

We often work with the group ring Z[G] of formal sums
n∑

i=1

ci · gi c1, ..., cn ∈ Z,

with addition and multiplication defined naturally.

We often abuse notation to define elements D,G ∈ Z[G] by

G :=
∑
g∈G

g D :=
∑
d∈D

d .

Define
D(−1) :=

∑
d∈D

d−1.

Under this notation, the condition for D to be a difference set is
equivalent to D satisfying the equation

DD(−1) = (k − λ) · 1G + λ ·G.
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Example

G = C7 = 〈x | x7 = 1〉, D = {x , x2, x4} is a (7,3,1)-difference
set

In the group ring Z[G], we have D = x + x2 + x4, and
D(−1) = x6 + x5 + x3. Thus

DD(−1) = (x + x2 + x4)(x6 + x5 + x3)

= (1 + x6 + x4) + (x + 1 + x5) + (x3 + x2 + 1)
= 3 + x + x2 + x3 + x4 + x5 + x6

= 2 + G.

Notice the relationship to the difference table from earlier:
d2

d1
x x2 x4

x 1 x6 x4

x2 x 1 x5

x4 x3 x2 1
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Equivalence

Theorem
Let D ∈ Z[G] be a (v , k , λ)-difference set. If g0 ∈ G and
φ ∈ Aut(G), then g0φ(D) is also a (v , k , λ)-difference set.

Definition
Two (v , k , λ)-difference sets D1,D2 ∈ Z[G] are equivalent if
there exists g0 ∈ G and φ ∈ Aut(G) such that D1 = g0φ(D2).
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Central Question

Existence: Which groups contain a difference set and
which do not.
Enumeration: Find all difference sets up to equivalence in
a group or set of groups.

known results for Hadamard difference sets:
m = 1 =⇒ 2 out of 2 groups of size 4 have HDS, 2 total
difference sets (trivial)
m = 2 =⇒ 12 out of 14 groups of size 16 have HDS, 27
total difference sets (Kibler)
m = 3 =⇒ 9 out of 14 groups of size 36 have HDS, 35
total difference sets (Kibler/Smith)
m = 4 =⇒ 259 out of 267 groups of size 64 have HDS
(unpublished Davis/Smith)
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GAP

In our research we made extensive use of the computer
algebra system GAP. In GAP you can

enumerate over all groups of a given size
program algorithms and techniques
construct cyclic groups, dihedral groups, elementary
abelian groups, direct products, semidirect products, ...
list all elements, subgroups, normal subgroups,
automorphisms, quotient groups, irreducible
representations, etc. of a given group
construct homomorphisms, isomorphisms, ...
unambiguously refer to certain groups and group elements
much much much more
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Our Results

During our 8 weeks in San Diego we
1 Programmed the construction techniques and special

cases involved in determining the existence of difference
sets in groups of order 64.

2 Developed an algorithm to exhaustively search groups of
order 64 and enumerate all difference sets up to
equivalence.

3 Discovered and explored the use of "difference set
transfers" for groups of order 16, 36, 64, and 144.

Dylan Peifer Difference Set Transfers



Existence of Difference Sets in Groups of Order 64

GAP has a catalog containing every group of order 64.
Each group has a distinct entry, which allows us to
unambiguously refer to any group and its elements.

In our first project, we determined that groups had a
difference set by finding a construction that would produce
a difference set.
It is convenient to store these found difference sets as lists
of GAP indices. For example, SmallGroup(64, 12) has the
difference set [ 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 17, 18, 20,
26, 27, 31, 32, 33, 34, 35, 38, 39, 44, 50, 56, 60, 63 ] .
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Finding Voodoo in Groups of Size 64

After applying several different constructions and
techniques to groups of order 64, we were left with four
groups in which we could not produce a difference set.

We were able to find difference sets in these last four
groups by simply trying GAP indices for difference sets
from other groups.
It is very surprising that this works, and it doesn’t only work
occasionally. Many groups of order 64 “share" difference
sets, and the same behavior can be found in some other
orders.
NEW PROJECT: Explain this voodoo!

Dylan Peifer Difference Set Transfers



Finding Voodoo in Groups of Size 64

After applying several different constructions and
techniques to groups of order 64, we were left with four
groups in which we could not produce a difference set.
We were able to find difference sets in these last four
groups by simply trying GAP indices for difference sets
from other groups.

It is very surprising that this works, and it doesn’t only work
occasionally. Many groups of order 64 “share" difference
sets, and the same behavior can be found in some other
orders.
NEW PROJECT: Explain this voodoo!

Dylan Peifer Difference Set Transfers



Finding Voodoo in Groups of Size 64

After applying several different constructions and
techniques to groups of order 64, we were left with four
groups in which we could not produce a difference set.
We were able to find difference sets in these last four
groups by simply trying GAP indices for difference sets
from other groups.
It is very surprising that this works, and it doesn’t only work
occasionally. Many groups of order 64 “share" difference
sets, and the same behavior can be found in some other
orders.

NEW PROJECT: Explain this voodoo!

Dylan Peifer Difference Set Transfers



Finding Voodoo in Groups of Size 64

After applying several different constructions and
techniques to groups of order 64, we were left with four
groups in which we could not produce a difference set.
We were able to find difference sets in these last four
groups by simply trying GAP indices for difference sets
from other groups.
It is very surprising that this works, and it doesn’t only work
occasionally. Many groups of order 64 “share" difference
sets, and the same behavior can be found in some other
orders.
NEW PROJECT: Explain this voodoo!

Dylan Peifer Difference Set Transfers



Voodoo in Groups of Order 16

To approach the voodoo we moved back to groups of order 16,
as in order 16

we are still dealing with 2-groups,
there are fewer total groups (14 compared to 267),
similar voodoo behavior can be found (order 36 has some
voodoo, but not as much),
and we can easily find all difference sets and perform
computations.
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Chart - Voodoo in Groups of Order 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 192 192 192 64 64 0 64 128 192 192 192 128 192
3 0 192 192 192 64 64 0 64 128 192 192 192 128 192
4 0 192 192 192 64 64 0 64 128 192 192 192 128 192
5 0 64 64 64 192 64 0 0 64 192 64 192 64 192
6 0 64 64 64 64 64 0 0 64 64 64 64 64 64
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 64 64 64 0 0 0 128 128 64 64 64 64 64
9 0 128 128 128 64 64 0 128 256 128 128 128 128 128
10 0 192 192 192 192 64 0 64 128 448 192 448 192 448
11 0 192 192 192 64 64 0 64 128 192 192 192 128 192
12 0 192 192 192 192 64 0 64 128 448 192 704 256 448
13 0 128 128 128 64 64 0 64 128 192 128 256 320 192
14 0 192 192 192 192 64 0 64 128 448 192 448 192 448
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Chart - Voodoo in Groups of Order 16
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Power Commutator Presentations - The Voodoo
Source

GAP stores p-groups using power-commutator presentations.

Definition
Given a group G of order pn, a power-commutator presentation
of G consists of a set of generators {f1, f2, . . . , fn} with defining
relations f p

i =
∏n

k=i+1 f β(i,k)k and [fj , fi ] =
∏n

k=j+1 f β(i,j,k)k , where
the value of β is in {1, . . . ,p − 1} and 1 ≤ i < j ≤ n.

The following theorem is due to Sylow.

Theorem
Every group of order pn has a power-commutator presentation
on n generators.
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Power Commutator Presentations - The Voodoo
Source

Example
We will look at a power-commutator presentation for D8, the
dihedral group of order 8. D8 = 〈f1, f2, f3| f 2

1 = f 2
2 = f 2

3 = 1,
[f2, f1] = f3, [f3, f1] = [f3, f2] = 1〉 Note that D8 is generated by
just f1 and f2, but these are not the traditional two generators of
D8. If we present D8 = 〈r , s|r4 = s2 = 1, [r , s] = r2〉, then
r = f1f2 and s = f2.
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Power Commutator Presentations - The Voodoo
Source

Observation
If a group G of order 2n has a power-commutator presentation
over the set {f1, . . . , fn}, then every element of G can be written
as a product of fis in increasing order, e.g. f1f3f4.

gap:>Elements(G); returns a list containing the elements of
a group G ordered lexicographically as words on the basis of
the power-commutator presentation. So, our equivalent lists of
numbers are nothing more than equivalent words over
power-commutator presentations.
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Difference Set Transfers

Definition
Suppose we have two groups G and H with |G| = |H| = pn and
their power commutator-presentations on generators
g1,g2, . . .gn and h1,h2, . . .hn. A difference set transfer occurs
when a difference set in G can be converted to a difference set
in H by writing the terms expressed on generators gi as
equivalently formed words on generators hi .

We want to find conditions on groups and their presentations so
that difference set transfers occur. The hope is that studying
transfers will lead to new construction techniques and existence
results.
First we would like to catalogue and prove difference set
transfers in order 16.
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The Spread Construction

Definition

Let G be a group of order 22s+2 containing a normal
elementary abelian subgroup E = Cs+1

2 . E has 2s+1 − 1
subgroups Hi of order 2s (these subgroups are hyperplanes
when viewing E as a vector space over F2) and E partitions G
into 2s+1 cosets with coset representatives gi . The set
D = g1H1 + · · ·+ g2s+1−1H2s+1−1 is a difference set iff giHig−1

i is
a permutation of the Hi .

Key points:
We need an elementary abelian subgroup of the
appropriate size normal in G.
The construction does not work for every set of coset
representatives.
However, if E is in the center of G then every set of coset
representatives does work.
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The Spread Construction - Example

G = C4 × C4 = 〈x , y | x4 = y4 = [x , y ] = 1〉

1 y y2 y3

x xy xy2 xy3

x2 x2y x2y2 x2y3

x3 x3y x3y2 x3y3

E = C2 × C2 = 〈x2, y2〉 = {1, y2, x2, x2y2}

G = 1E + xE + yE + xyE

H1 = {1, y2}, H2 = {1, x2}, H3 = {1, x2y2}

D = 1H1 + xH2 + yH3 = {1, y2, x , x3, y , x2y3}
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Counting Spread Constructions

Most people study difference sets up to equivalence. Our
question requires us to consider all possible difference sets.

Theorem

For a group G of order 22s+2, the spread construction generates
2s+1!(22s+1−1) sets over any subgroup E isomorphic to Cs+1

2 .

Theorem
Given |G| = 16, if for E /G, E ∼= C2 × C2, but E 6⊂ Z (G) then a
spread construction over E generates at least 64 difference
sets.

If |G| = 16, we can build 22!(23) = 192 sets over a normal
C2 × C2. If our C2 × C2 is in Z (G), these are all difference sets.
If our C2 × C2 is not in Z (G), 64 of these will be difference sets.
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2 .

Theorem
Given |G| = 16, if for E /G, E ∼= C2 × C2, but E 6⊂ Z (G) then a
spread construction over E generates at least 64 difference
sets.

If |G| = 16, we can build 22!(23) = 192 sets over a normal
C2 × C2. If our C2 × C2 is in Z (G), these are all difference sets.
If our C2 × C2 is not in Z (G), 64 of these will be difference sets.
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Counting Spread Constructions

Theorem
Let G be a group of order 16 that does not contain a subgroup
isomorphic to the quaternion group. If the socle of G has order
4, then every difference set in G can be generated via a spread
construction over soc(G).

A generalized version of this theorem would be very powerful,
as it would reduce the search for all difference sets in a group
to a search through all spread constructions. However, our
proof relies to heavily on properties of difference sets in order
16 groups, and we have not been able to generalize it.
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The Spread Construction - Explaining Transfers

Let Gi denote the group with GAP ID [16, i]
G2,G3,G4, and G11 all have a socle of order 4, and do not
contain a subgroup isomorphic to the quaternion group.
In all of these groups soc(G) = 〈f3, f4〉.
Therefore, every single difference set in each of these
groups is one of the 192 spread constructions over 〈f3, f4〉,
and we then see why all of them have the same difference
sets.
Furthermore, in G10,G12, and G14, 〈f3, f4〉 ⊂ Z (G), so
every spread over 〈f3, f4〉 is a difference set in all of these
groups. Thus, we see why all of the difference sets in
G2,G3,G4, and G11 are difference sets in G10,G12, and
G14.
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The Spread Construction - Explaining Transfers

G5 also has a socle of order 4 and no subgroups
isomorphic to the quaternion group.
However, soc(G5) = 〈f2, f4〉.
So, the difference sets in G5 are exactly the spread
constructions over 〈f2, f4〉.
Because G10 and G14 all also have 〈f2, f4〉 in their center,
every difference set in G5 is also a difference set in these
two groups.
Also, we can show using other methods that every
difference set in G6 is a spread over 〈f2, f4〉, so every
difference set in G6 is a difference set over G5.
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Other Results

We used basic algebra to explain why G10 and G14 share
all of their difference sets. This proof can then be
generalized to show that all difference sets in C2s+2

2 are
difference sets in C4 × C2s

2 , and vice versa.
As alluded to above, we used basic group theory to show
that all difference sets in G6 can be built with a spread
construction over the unique normal C2 × C2.
We have found a way to classify every difference set in G8
using subgroups isomorphic to the quaternions, and show
that all of these difference sets are also difference sets in
G9.
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Final Remarks

There are still some unexplained transfers in groups of
order 16.
More data from order 64 would be useful for forming
conjectures about transfers.
Some of our results on transfers were used to answer
existence questions in order 64 and order 144 groups.

Thanks to the National Science Foundation (DMS 1061366),
San Diego State University (SDSU), SDSU Math Department,
REU Director Dr. Vadim Ponomarenko, consultant Dr. Ken
Smith, and my fellow REU peers Alec Biehl, Kevin Halasz,
Marina Longnickel, Rachael Keller, and Jason Steinberg.
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