
Hadamard Difference Sets

Dylan Peifer

April 26, 2016

1 Definitions

A difference set is a subset of a group that has a nice combinatorial property.

Definition 1. A 〈v, k, λ〉-difference set is a nonempty proper subset D of a finite group G
such that |G| = v, |D| = k, and each nonidentity element of G can be written as did

−1
j for

di, dj ∈ D in exactly λ different ways.

Example 1. Let C7 = 〈x|x7 = 1〉 and D = {x, x2, x4}. Then D is a 〈7, 3, 1〉-difference set.
We can see this most easily by organizing all the differences in a table.

x−1 x−2 x−4

x 1 x6 x4

x2 x 1 x5

x4 x3 x2 1

It is sometimes useful to think of D as an element of the group ring Z[G]. We will abuse
notation to write

G =
∑
g∈G

g D =
∑
d∈D

d D(−1) =
∑
d∈D

d−1

and then the statement that D is a difference set is equivalent to the equation

DD(−1) = (k − λ)1G + λG.

The 1G is sometimes dropped so that isolated coefficients are assumed to be coefficients of
the identity element. This notation compactly and algebraically expresses the definition of
a difference set.

Example 2. We’ve already seen that D = {x, x2, x4} is a 〈7, 3, 1〉-difference set in C7. This
can also be shown as

(x+ x2 + x4)(x+ x2 + x4)(−1) = (x+ x2 + x4)(x−1 + x−2 + x−4)

= 1 + x6 + x4 + x+ 1 + x5 + x3 + x2 + 1

= 2 + C7.

There are several basic examples that are always difference sets.
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Example 3. Any one element proper subset is a 〈v, 1, 0〉-difference set. These are trivial
difference sets and are usually not counted as difference sets.

Example 4. The complement of a 〈v, k, λ〉-difference set is a 〈v, v−k, λ+v−2k〉-difference
set. This is because

(G−D)(G−D)(−1) = (G−D)(G−D(−1))

= GG−GD(−1) −DG+DD(−1)

= (v − 2k)G+ (k − λ) + λG

= ((v − k)− (λ+ v − 2k)) + (λ+ v − 2k)G

and as a result we typically only consider difference sets where k ≤ v
2
.

In enumerating difference sets we usually only consider up to an equivalence that allows
the structure of the difference set to be translated by group multiplication and moved by
automorphism.

Lemma 1. If D is a difference set in G and we have g ∈ G and φ ∈ Aut(G), then gφ(D) is
also a difference set.

Definition 2. Let D1, D2 be difference sets in G and let g ∈ G and φ ∈ Aut(G). Then D1

and D2 are equivalent difference sets if D1 = gφ(D2).

Example 5. In C7 the difference set {x2, x3, x5} is equivalent to the difference set {x, x2, x4}
since x2 + x3 + x5 = x(x+ x2 + x4).

Finally, we define the Hadamard adjective that appears in the title.

Definition 3. A Hadamard difference set is a difference set with parameters 〈v, k, λ〉 such
that v = 4(k − λ).

Theorem 1. Hadamard difference sets have parameters 〈4m2, 2m2 −m,m2 −m〉 for some
positive integer m.

The Hadamard parameters are interesting because they provide a large number of exam-
ples of difference sets.

Example 6. Consider the first few values of the Hadamard parameters.
For m = 1 the Hadamard parameters are 〈4, 1, 0〉 and thus describe trivial difference sets.

Each of the 2 groups of order 4 contains 1 trivial difference set up to equivalence.
For m = 2 the Hadamard parameters are 〈16, 6, 2〉. There are 14 groups of order 16.

Two of these groups contain no difference sets and the remaining 12 have between 1 and 4
difference sets for a total of 27 〈16, 6, 2〉-difference sets.

For m = 3 the Hadamard parameters are 〈36, 15, 6〉. There are 14 group of order 36.
Five of these groups contain no difference sets and the remaining 9 have between 1 and 6
difference sets for a total of 35 〈36, 15, 6〉-difference sets.
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2 Existence

The fundamental question in studying difference sets is determining whether a difference set
exists in a given group or with a given value of parameters.

First consider the parameters. Basic counting gives the following simple lemma.

Lemma 2. If D is a 〈v, k, λ〉-difference set then λ(v − 1) = k(k − 1).

Proof. There are k(k− 1) pairs di, dj ∈ D such that did
−1
j 6= 1, and by definition these pairs

must give a total of λ copies of each of the v − 1 nonidentity elements.

Stronger results can be stated, such as the following.

Theorem 2 (Bruck-Ryser-Chowla). Assume there exists a 〈v, k, λ〉-difference set. If v is
even then k − λ is a perfect square. If v is odd then the diophantine equation x2 = (k −
λ)y2 + (−1)(v−1)/2λz2 has a nonzero solution in integers x, y, z.

Theorem 1 above follows quickly from Lemma 2 and Theorem 2.

Instead of looking at parameters, we can focus on the group. Showing that a group
contains a difference set is typically done by constructing an explicit difference set or showing
that a construction will work in the group. The following two constructions and their proofs
are from [1].

Theorem 3 (Product Construction). Suppose that G = H1H2 for disjoint subgroups H1, H2 ⊆
G and that H1 and H2 contain Hadamard difference sets. Then G contains a Hadamard dif-
ference set.

Proof. Consider the Hadamard transform D̂ of a difference set defined by D̂ = G − 2D.
Assuming that D is a Hadamard difference set we can compute

D̂D̂(−1) = (G− 2D)(G− 2D)(−1)

= (G− 2D)(G− 2D(−1))

= GG− 2GD(−1) − 2DG+ 4DD(−1)

= |G|G− 2|D|G− 2|D|G+ 4((k − λ) + λG)

= (|G| − 4|D|+ 4λ)G+ 4(k − λ)

= (4m2 − 4(2m2 −m) + 4(m2 −m))G+ 4((2m2 −m)− (m2 −m))

= 0 + 4m2

= |G|.

It is straightforward to do this in the other direction to establish that D̂D̂(−1) = |G| iff D is
a Hadamard difference set in G.

Now consider the situation in the theorem. Let D1 and D2 denote the given difference
sets in H1 and H2. Then D̂1D̂

(−1)
1 = |H1| and D̂2D̂

(−1)
2 = |H2|. Because G is a product of the

trivially intersecting H1 and H2 we know that D̂1D̂2 has the form of a Hadamard transform
of a set in G. Then note that

(D̂1D̂2)(D̂1D̂2)
(−1) = D̂1D̂2D̂

(−1)
2 D̂

(−1)
1 = D̂1|H2|D̂(−1)

1 = |H1||H2| = |G|

so that D̂1D̂2 is the Hadamard transform of a difference set in G.
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Example 7. Consider C4 × C4 = 〈x, y|x4 = y4 = [x, y] = 1〉. This group is the product of
the two groups H1 = 〈x|x4 = 1〉 and H2 = 〈y|y4 = 1〉 which have (trivial) difference sets {x}
and {y} respectively. These give Hadamard transforms 1− x+ x2 + x3 and 1− y + y2 + y3

which we multiply together to get

(1− x+ x2 + x3)(1− y + y2 + y3)

= 1− y + y2 + y3 − x+ xy − xy2 − xy3 + x2 − x2y + x2y2 + x2y3 + x3 − x3y + x3y2 + x3y3

which is the Hadamard transform of the set {y, x, xy2, xy3, x2y, x3y}. It can be checked that
this is a difference set.

Theorem 4 (Dihedral Trick). Let H be any abelian group and G = 〈H, q|qhq−1 = h−1∀h ∈
H〉 the generalized dihedral group of H. If G contains a difference set then so does every
abelian group which contains H as a subgroup of index 2.

Proof. By construction we have G = H + qH, so we can write the difference set D in G as
D = X + qY for X, Y subsets of H. Then since D is a difference set we have

(k − λ) + λG = DD(−1)

= (X + qY )(X + qY )(−1)

= (X + qY )(X(−1) + Y (−1)q)

= XX(−1) +XY (−1)q + qY X(−1) + qY Y (−1)q

= XX(−1) + Y Y (−1) + 2qY X(−1)

so that since X, Y ⊆ H we must have XX(−1) +Y Y (−1) = (k−λ)+λH and Y X(−1) = 1
2
λH.

Now suppose K is abelian and contains H with index 2. Then K = H + rH and we can
then define C = X + rY . Since

CC(−1) = (X + rY )(X + rY )(−1)

= (X + rY )(X(−1) + Y (−1)r−1)

= XX(−1) +XY (−1)r−1 + rY X(−1) + rY Y (−1)r−1

= XX(−1) + Y Y (−1) + (Y X(−1))(−1)r−1 + rY X(−1)

= (k − λ) + λH +

(
1

2
λH

)(−1)

r−1 + r

(
1

2
λH

)
= (k − λ) + λH + rλH

= (k − λ) + λK

we have that C is a difference set in K.

While the Dihedral Trick seems to provide a way to construct difference sets, it is typically
used in its contrapositive form with the following theorem to show the nonexistence of
difference sets.

Theorem 5 (Turyn’s Bound). If G is an abelian group of order 22s+2 containing a difference
set then G has exponent at most 2s+2.

4



Example 8. Consider groups of order 16 = 22(1)+2. Turyn’s Bound gives that groups con-
taining a difference set can have exponent at most 21+2 = 8. Thus C16 does not contain a
difference set. The Dihedral Trick then gives the D8 cannot contain a difference set either.

For abelian 2-groups Turyn’s Bound is necessary and sufficient. For non-abelian 2-groups
it is conjectured that Turyn’s Bound and the Dihedral Trick combined are necessary and
sufficient. There are many, many more constructions and theorems along these lines.

3 Enumeration

Another natural question to ask is if we can find all difference sets in a group or set of groups.
This is a more computational than theoretical question, and I’m not sure what is currently
known. In [3], Kibler finds all Hadamard difference sets in order 16 and order 36 groups.
Order 64, the next place to find Hadamard difference sets, will be our benchmark. Past
Lemma 3 these results are my own, with influence from Jason Steinberg during our time at
the SDSU REU, where he worked on a similar method for Hadamard difference sets in the
order 64 groups.

This is a hard problem. On my computer I can do a completely unoptimized brute force
search of order 16 in 85 seconds. At this rate we have roughly

order subsets to check time/group

16
(
16
6

)
= 8008 6 seconds

36
(
36
15

)
= 5567902560 48 days

64
(
64
28

)
= 1118770292985239888 27 million years

so brute force will clearly not work.
The foundation of a good approach is this key lemma.

Lemma 3. Suppose D is a difference set in G and θ is a homomorphism of G with |ker(θ)| =
w. Let S = θ(D) and H = θ(G). Then

SS(−1) = (k − λ) + λwH.

Proof. Since D is a difference set we have

DD(−1) = (k − λ) + λG.

Applying θ to both sides and using that θ is a homomorphism with kernel of size w and
image H yields

θ(D)θ(D)(−1) = SS(−1) = (k − λ) + λθ(G) = (k − λ) + λwH.

The idea is that we can search for these S objects in an image of G and then pullback
to G. This motivates the following definition.
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Definition 4. Given a finite group G and normal subgroup N , a (v, k, λ)-difference sum is
an element S of Z[G/N ] such that SS(−1) = (k − λ) + λ|N |G/N and the coefficients of S
have values in {0, 1, . . . , |N |}.

Lemma 4. Suppose G is a finite group with normal subgroup N . Then any difference set in
G induces a difference sum in G/N .

Proof. This follows directly from Definition 4 and Lemma 3. Counting elements in each
coset of N ensures that the coefficients of S have appropriate values.

But we don’t need to pullback from the quotient group to the group. We can pullback
from quotient group to quotient group so that the full pullback to difference sets in the group
can be done in multiple stages.

Lemma 5. Suppose G is a finite group with normal subgroups N1, N2 such that N2 ⊆ N1.
Then any difference sum in G/N2 induces a difference sum in G/N1.

Proof. Let S2 be the difference sum in G/N2. Then by definition

S2S
(−1)
2 = (k − λ) + λ|N2|G/N2.

Using the third isomorphism theorem, let φ : G/N2 → G/N1 be the homomorphism obtained
by composing the quotient map φ1 : G/N2 → (G/N2)/(N1/N2) with the isomorphism φ2 :
(G/N2)/(N1/N2)→ G/N1. Then applying φ to both sides of the above equality yields

φ(S2)φ(S2)
(−1) = (k − λ) + λ|N2|φ(G/N2)

= (k − λ) + λ|N2||ker(φ)|G/N1

= (k − λ) + λ|N2||N1/N2|G/N1

= (k − λ) + λ|N1|G/N1

so that φ(S2) is a difference sum in G/N1.

We only care about difference sets up to equivalence. We can define a corresponding
equivalence of difference sums.

Definition 5. Let S1 and S2 be difference sums in G/N . Then S1 is equivalent to S2 if
S1 = gφ(S2) where g ∈ G/N and φ is an automorphism of G/N induced by an automorphism
of G.

Lemma 6. Suppose S1, S2 are equivalent difference sums in G/N . Then if D1 is any differ-
ence set in G that induces S1, there exists a difference set D2 that induces S2 such that D1

and D2 are equivalent.

Proof. Let θ : G → G/N . We have S1 = gφ(S2) for some g ∈ G/N and φ an induced
automorphism from some ρ ∈ Aut(G). Then g = θ(h) for some h ∈ G, S1 = θ(D1), and
φ ◦ θ = θ ◦ ρ. Thus

S2 = φ−1(g−1θ(D1)) = θ ◦ ρ−1 ◦ θ−1(θ(h−1D1)) = θ(ρ−1(h−1D1))

so that ρ−1(h−1D1) is an equivalent difference set to D1 that induces S2.
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These ideas lead to a simple algorithm. The algorithm starts at G/G = {1}, where the
only difference sum is k, the size of the desired difference set. Then we proceed up a sequence
of larger and larger quotient groups G/Ni. Since we need Ni+1 ⊆ Ni and both to be normal
in G so that both give quotient groups, the maximum number of stages we can use is given
by a chief series of G. At each stage we (1) enumerate pre-images of our current difference
sums, (2) filter out non-difference sums, and (3) filter out equivalent difference sums. At the
final stage we pullback to difference sets and filter as before.

Implemented in GAP, the search for all Hadamard difference sets in a group of order 36
takes on the order of minutes, while the search for all Hadamard difference sets in a group of
order 64 takes on the order of hours. My code has successfully searched 264 of the 267 groups
of order 64. The remaining three groups have exceptionally large automorphism groups and
the search in each was cut off after 12 hours.

Questions for the future:

• Given a specific g ∈ G, any difference set is equivalent to a difference set containing 1
and g. Can this force picking of elements be used in the algorithm?

• There are multiple chief series of a group. Is it possible to determine which is best to
use or use the information from multiple chief series together?

• The algorithm depends on the automorphism group of the group we are searching in,
which can be much larger and more complicated than the group. Is there any way to
handle large automorphism groups better, perhaps by force picking or ignoring some
of the automorphisms?

• Irreducible representations and characters can also be used to check that group ring
elements are equal. Could using representations give a faster implementation?

• Other ideas?
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