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1 Grobner Bases

Let R = k[zy,...,x,] be a polynomial ring over some field k. A Grdbner basis of an ideal
I C R is a special set of generators of the ideal I. Instead of a precise definition, let’s start
with a question.

Question 1. Consider the ideal I = (x* — y3 xy* + z) in the ring Qlz,y]. Is 2° + x an
element of 17

This seems like a very simple question that should have a very simple answer. Elements
of I look like a;(2? — y*) + az(zy® + z) for a;,as € Q[z,y]. But we have no limits in size or
degree of a; and a9, and it is possible that some complex cancellation takes place across the
terms of a;(z* — y?) and as(zy* + z) to get z° + z. How can we handle this?

Maybe a simpler question would help.

Question 2. Consider the ideal I = (x?+x—2) in the ring Q[z]. Is h(x) = x°+ 32>+ 5z +4
an element of I¢

Now elements of I look like a(z? + x — 2) for a € Q[z]. In other words, every element
of I is divisible by 22 + z — 2, and we can test divisibility with the division algorithm. In
particular, we can compute via polynomial long division
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that h(z) = (x + 2)(2* + * — 2) + (5= + 8) and thus h(z) is not divisible by 2% + z — 2.
Therefore h(x) & I.

The division algorithm gave us a simple way to answer Question 2. With this as inspi-
ration, we’d like to apply the division algorithm to Question 1. There are, however, two
problems with directly applying the division algorithm to Question 1.

First, in Question 1 we have two generators of the ideal I, but the division algorithm
requires one divisor. This is not actually a problem. With several divisors we simply choose
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one appropriate divisor in each step of the division algorithm and keep track of a quotient
for each divisor. If there are multiple choices for which divisor to use in a step we choose
the first one in some predetermined ordering of the divisors. The end goal of the original
division algorithm is an expression of the form f = aq + r with quotient ¢ and remainder 7.
Using multiple divisors will lead to an expression of the form f = a1q; +asgo+- - -+ asqs + 7.

The second problem is more subtle. In each step of the division algorithm we divide the
leading term of our divisor into the leading term of the dividend. Then we subtract away
this multiple of the divisor from the dividend to remove the dividend’s leading term. All of
this depends upon the concept of a leading term, which in the single variable case is simply
the term with highest exponent. But in the general multivariable case how do we decide if
x >y or if zy? > 2?y? In the end we just need to make some choice and be consistent. The
choice we make is called a monomial order.

Definition 3. Let z denote an arbitrary term where « is the vector of exponents. A
monomial order on R = k[z1,...,x,] is a relation > on the monomials of R such that > is
a total ordering, > is a well-ordering, and if x* > 2° then 72 > 272° for any 27 (i.e., >
respects multiplication).

These conditions are chosen precisely to guarantee that the steps of the division algo-
rithm will still work. In particular, we need a total order so we can find the lead term of
any polynomial, we need > to respect multiplication so that when multiplying a divisor
polynomial by a monomial the lead term remains the lead term, and we need a well-ordering
so that the division algorithm terminates. There are several standard monomial orders.

Example 4. Lezicographic order (lex) is defined by o > B if the leftmost nonzero component
of a — f3 is positive. For example, v >y > z, vy > y*, and vz > y>.

Example 5. Graded reverse lexicographic order (grevlez) is defined by o > (3 if || > |B] or
la| = |B| and the rightmost nonzero entry of o — [ is negative. For example, x > y > z,
Yy >, and y? > xz.

Now let’s apply the multivariate division algorithm to Question 1. Using lex order we
can compute
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so that 2° + z = (2* — xy)(2* — v3) + (z%y — y* + 1)(2y® + x). This means z° + x € I, and
we’'ve answered Question 1.

Definition 6. When F is an ordered set of polynomials and dividing h by the f; € F' using
the division algorithm leads to the remainder r we write hY — r and say h reduces to r.

It is certainly the case that if F' generates an ideal and applying our new method yields
hf¥ — 0 then h is an element of the ideal, since the division algorithm has given us an
expression for h in terms of the generators. But what if we produce a nonzero remainder?
Does this mean that the element is not in the ideal? Unfortunately, this is not the case.

Example 7. Using the ideal from Question 1, note that y*(x®—1y®) —x(xy*+2) = —2*—y° €
I. However, multivariate division in lex order produces the nonzero remainder —y° — v°.

To fix this, consider starting the multivariate division algorithm with a dividend that is
an element of I. Then in each step of the division algorithm we subtract an element of I and
the remaining dividend is then also an element of I. If it is the case that every leading term
of an element of I is divisible by some leading term of our divisors, then we can take a step
at any nonzero dividend, and the division algorithm must then lead to a zero remainder.
Thus what we need is a generating set of I such that every element of I has leading term
divisible by some leading term of the generating set. This is exactly one way to define a
Grobner basis.

Definition 8. Given a monomial order, let LT(f) be the leading term of f. Similarly, let
(LT(I)) = (LT(f) | f € I) be the ideal generated by all leading terms of I.

Definition 9. Given a monomial order, a Grobner basis G' of a nonzero ideal I is a set of
generators {g1, g2, - - -, gs} C I such that any of the following equivalent conditions hold:

(i) f¢ =0« feI
(i) £ is unique for all f € R
(1ir) (LT (g1),LT(g2), ..., LT(gs)) = (LT(I))

Property (i) gives a definitive answer to Question 1. In general, Grobner bases are useful
for computing a wide variety of information in commutative algebra and algebraic geometry.

2 Buchberger’s Algorithm

We’ve established that Grobner bases have useful properties for computation, but we haven’t
shown how to find them or even demonstrated that they always exist. Buchberger first
presented an algorithm to compute Grébner bases in [2]. The start of the algorithm is the
following definition.

Definition 10. Let S(f,g) = #(Wf)f — %g where x7 is the least common multiple of the
leading monomials of f and g. This is the S-polynomial of f and g, where S stands for
subtraction or syzygy.



S-polynomials provide a natural way to cancel leading terms, which seems likely to reveal
lead terms in the ideal that our current generating set can’t divide (note that Example 7
was an S-polynomial). The surprising fact is that the S-polynomials reveal all the potential
problems with a generating set.

Theorem 11 (Buchberger’s Criterion). Let G = {g1,92,...,9s} generate some ideal I. If
S(gi, 9,)¢ — 0 for all pairs g;, g; then G is a Grébner basis of I.

Proof. We give a brief sketch of the detailed proof from [3]. Suppose f € I. Then f has an

expression
S
f= E aigi
i=1

in terms of the g;. We want to show that LT(f) is divisible by some LT(g;). Since each
term in the sum has a lead term which is a multiple of some LT(g;), the only way that f
has a lead term which is not a multiple of a LT(g;) is if lead terms in the above sum cancel.
We can rewrite any complex cancellation of lead terms in the sum in terms of pairwise
cancellations from S-polynomials, and then since S(g;, g;)¢ — 0 the division algorithm gives
us a way to rewrite these expressions without cancellation. With cancellations removed, the
new expression for f must then have lead term a multiple of some LT(g;), so G satisfies
condition (iii) of Definition 9. O

This theorem leads naturally to a basic algorithm, known as Buchberger’s algorithm,
which computes a Grobner basis of / from any starting generating set of /. The idea is to
check all S-polynomials of our current generating set. If any S-polynomials do not reduce
to 0, we force them to reduce to 0 by adding their reduction to our generating set. Of
course adding new terms to our generating set means we have many more S-polynomials to
consider, but eventually this process will terminate. Once it does, the current generating set
is a Grobner basis.

A simple form of Buchberger’s algorithm is written here as Algorithm 1. A detailed proof
of the correctness and termination of this form of Buchberger’s algorithm can be found in
[3]. In the algorithm we assume we have a function select that will select a pair from the
set of pairs P. A simple implementation of select could treat P as a list and select the first
pair in the list. More detailed strategies can improve performance and will be addressed in
Section 3.2.

The existence of Buchberger’s algorithm guarantees that a Grobner basis exists for any
ideal I, and the algorithm even shows us how to find it. This Grobner basis can be much
larger and more complicated than the original generating set.

Example 12. Consider the ideal I = (xy?+ z, vz + 3y, 2> +yz). Using grevlex, Buchberger’s
algorithm produces the Grobner basis

G={oy*+2z wx2+3y, z*+yz, -3+ “3y—-23 —LP+2}

where the pairs (1,2),(1,3),(1,5) did not reduce to zero.

The Grobner basis produced by Buchberger’s algorithm may contain redundant elements.
We can remove these elements to obtain minimal and reduced Grobner bases.



Algorithm 1 Buchberger’s Algorithm

input a set of polynomials {fi,..., fs}
output a Grobner basis of I = (fy,..., fs)

procedure BUCHBERGER({ f1,..., fs})
G+ {fi, ..., fs} > the current basis
m<—s > the size of the current basis
P+ {(i,5)|1<i<j<m} > the remaining pairs to process

while |P| > 0 do
(1,7) < select(P)
P+ P\{(i,j)}
r < S(fi, [;)¢
if » # 0 then
Jmy1 <1
G+ GU {fm-l—l}
m+—m-+1
P+ PU{(i,m)|1<i<m}
end if
end while
return GG
end procedure

Definition 13. A minimal Grébner basis is a Grébner basis G = {g1,...,9s} such that
LT(g;) does not divide LT(g;) for any i # j.

Example 14. The basis in Fxample 12 is not minimal, but we can remove redundant poly-
nomials to produce the minimal basis

1 1
2 e, +.3 1 .8
rz+ 3y, z°+yz, 3y 32, 243,2 + z.
Definition 15. A reduced Grébner basis is a minimal Grébner basis G = {qg1,...,gs} such

that each g; is monic and LT(g;) does not divide any term in g; for any i # j.

Example 16. The basis in Example 1/ is not reduced, but we can divide each polynomial by
its lead coefficient and reduce with respect to the others to produce the reduced basis
1 4 2 1y

1
a:z—gz, x—gz, y+§z3, 28 4+ 243z.

Like reduced echelon form in linear algebra, the reduced Groébner basis of an ideal is
actually unique, which is another useful property of Grobner bases. Most implementations of
Buchberger’s algorithm will automatically return this reduced Grébner basis by minimalizing
and interreducing as we did in Example 14 and Example 16.

3 Improving Buchberger’s Algorithm

There are many ways to improve the basic outline of Buchberger’s algorithm presented in
Section 2. Two major directions for improvement are pair elimination and pair selection.
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3.1 Pair Elimination

In Algorithm 1 we reduce all S-polynomials S(g;, g;) for the eventual Grébner basis G =
{g1,--.,9s}. These reductions are the most expensive part of the algorithm, and care-
ful examination of a full proof of Theorem 11 shows that not all reductions are actually
necessary to guarantee a Grobner basis. Pair elimination is the process of removing some S-
polynomials from consideration without actually reducing them. There are two main criteria
for eliminating pairs.

Lemma 17 (LCM Criterion). If the lead monomials of g;, g; are relatively prime (i.e., their
product is their least common multiple) then S(g;,g;) has standard representation and thus
can be ignored in Buchberger’s algorithm.

Lemma 18 (Chain Criterion). Let LM(g) denote the lead monomial of g. If LM(gx) divides
lem(LM(g;), LM(g;)) then

lem(LM(g;), LM(g;))
lem(LM(g;, gx))

lem(LM(g;), LM(g;))
lem(LM(g;, %))

S(Qian) = S(Qiagk) - S(Qjan)

and thus S(gi, g;) can be ignored as long as S(gi, gr) and S(g;, gx) are considered (or otherwise
eliminated) in Buchberger’s algorithm.

These are listed as criteria 2 and criteria 1 in [1]. As usual, detailed proofs can be found
in [3]. The Gebauer-Moller rules [6] give a way to efficiently use these two criteria during an
actual run of Buchberger’s algorithm, and they are a key part of all major implementations.

A theoretical way to understand the two criteria is that we only need to check the S-
polynomials corresponding to a minimal set of generators for the syzygy module on lead terms
of g1,...,9s. Following the Gebauer-Moller rules does not guarantee that only a minimal
generating set is checked, but in practice the difference is small, and trying to eliminate all
unneeded pairs is typically more computationally expensive than the eliminated reductions.
Storing even more information about generators during the algorithm in order to eliminate
even more pairs is one way to understand recent developments in signature based algorithms
like F5 [5, 4], so research still continues in pair elimination.

3.2 Pair Selection

In Algorithm 1 we assumed we had a function select that will select a pair (i,7j) from
the set of pairs P. For correctness, it does not matter how select is implemented, and a
simple implementation such as treating the pair set as a list and selecting the first pair
is sufficient. The efficiency of Buchberger’s algorithm, however, strongly depends on the
selection strategy, as poor selection can generate many additional redundant generators
during the computation.

Our general intuition is that Buchberger’s algorithm is a reduction algorithm like LLL
or the Euclidean algorithm. With that in mind we would like to choose small things first,
as this is likely to reveal small generators that are more likely to quickly reduce terms in
subsequent steps. In selecting pairs, “small” typically means that the lead monomials of
the pair have small least common multiple in the monomial order or in total degree. As



generators tend to get larger and more complicated in later steps of the algorithm, our naive
method of selecting the first pair is also in some ways selecting on smallness. There are four
major strategies along these lines.

e First: among pairs with minimal j, select the pair with minimal ¢ (i.e., treat the pair
set as a queue)

e Degree: select a pair with minimal degree of lem(LM( f;), LM(f;))
e Normal: select a pair with smallest lem(LM(f;), LM(f;)) in the monomial order

e Sugar: select a pair with smallest sugar degree, which is the total degree S(f;, f;) would
have had if we homogenized at the beginning

First is the only strategy above that uniquely determines a pair. Other strategies may
need to break ties, and for this purpose we will have Sugar break ties with Normal, and
Normal and Degree break ties with First.

Normal selection was proposed by Buchberger in his initial presentation of the algorithm
[2] and is very common in implementations. Sugar is presented in [8], tends to have similar
or better performance in worst case examples, and is likely being used in some form in most
serious implementations. For comparison with these good strategies, we can also consider
strategies that select pairs at random or do the opposite of the above strategies. This gives
an additional five strategies.

e Random: select a pair uniformly at random

e Last: among pairs with maximal j, select the pair with maximal i (i.e., treat the pair
set as a stack)

Codegree: select a pair with maximal degree of lem(LM(f;), LM(f;))

Strange: select a pair with largest lem(LM(f;), LM(f;)) in the monomial order

Spice: select a pair with largest sugar degree, which is the total degree S(f;, f;) would
have had if we homogenized at the beginning

For breaking ties we will have Spice break ties with Strange, and Strange and Codegree
break ties with Last. Note that Last, Codegree, Strange, and Spice are cute names I made
up for the strategies that do the opposite of First, Degree, Normal, and Sugar. As we will
see, they have very poor performance and are not even listed or considered elsewhere.

To evaluate these strategies we will use them in Buchberger’s algorithm and count the
total number of S-polynomial reductions performed (i.e., the number of times we go through
the while loop) before the algorithm terminates on several example ideals. This is a rough
measure of the computational cost, with smaller numbers better, that is independent of
hardware or implementation details. The example ideals we will consider are listed in Table 1,
and consist of the small example from Question 1 and several instances of five standard
parametrized families of benchmarking ideals. Results are listed in Table 2. None of the



example ge nerators

ex1 | (z?
cyclic3 |
eco3 | (
katsura3 | (
noon3 | (
reimer3 | (

—y3 zy® + 1)
r+y+z,oy+rz+yz,axyz — 1)
zyz+xz —1,yz —

22

— 2% + 227 —

2x+y+1)
r+2y+22— 1,224+ 2% + 222 —x 2:Ey+2yz—y>
10zy? + 10222 — 11z + 10, 102%y + 10y2% — 11y + 10,1022z + 10y*z — 11z + 10)

1,223 — 2y3 + 223

— 1,22 — 2yt +22* — 1)

Table 1: A collection of example ideals. A single example using parameter value 3 is listed
for each of the five parametrized families. Increasing the parameter increases the number of

variables, degrees, and generators. Larger examples are listed in [7].

First Degree Normal Sugar Random Last Codegree Strange Spice
exl | 2 2 2 2 2.00[0.00] 2 2 2 2
cyclic3 | 2 2 2 2 2.47]0.50] 3 3 3 3
ecod | 2 2 2 2 2.00[0.00] 2 2 2 2
katsura3 | 4 4 4 4 4.00[0.00] 4 4 4 4
noond | 17 17 17 17 18.67[1.86] 23 27 18 18
reimer3 | 22 21 23 24 24.34[2.17] 25 29 29 29
cyclicd | 11 11 11 11 13.53[2.34] 19 19 19 19
ecod | 10 10 10 10 11.05[1.23] 12 12 12 12
katsurad | 10 10 10 10 12.39[1.79] 17 17 18 18
noond | 71 71 71 71 92.19[12.46] 138 242 546 546
reimer4 | 154 95 91 101 228.73[84.32] - - - -
cyclich | 121 110 107 114 179.01[56.14] - - - -
ecob | 28 27 24 24 33.84[6.10] 51 48 53 53
katsurad | 28 28 28 28 43.41[10.92] 70 73 86 86
noond | 262 262 262 262 353.88[42.24] - - - -
reimerd | 757 212 211 411 - - - - -
cyclic6 | 439 660 620 412 - - - - -
eco6 | 69 72 61 64 94.76[15.23] 177 244 315 315
katsura6 | 66 66 66 66 122.35[32.80] 754 768 797 797
noon6 | 887 887 887 887 - - - - -
reimer6 | - 687 589 2505 - - - - -
cyclic7 | 2552 5882 5781 2750 - - - - -
eco’7 | 164 158 144 156 270.63[63.08] - - - -
katsura7 | 164 164 164 164 318.33[104.94] - - - -
noon7 | 2885 2885 2885 2885 - - - - -
reimer7 | - 1726 1504 - - - - - -

Table 2: Reductions per strategy on the example ideals. All computations were performed in
grevlex with coefficient field Z/32003Z. For Random we report mean and standard deviation

over 100 trials. Blank entries indicate that the computation did not finish after 1 hour.



ideals we use have Grobner bases computations that are difficult on modern hardware, though
with large enough parameters these ideal families do become infeasible.

Overall, we see the expected result that Normal and Sugar are consistently better strate-
gies than the others. Last, Codegree, Stange, and Spice quickly make even these small
examples infeasible to compute, and First, Degree, Normal, and Sugar are always better
than Random. For noon and katsura, the four good strategies have the same performance,
but they differ, sometimes dramatically, on many other examples. It is notable that no
strategy is best on all examples, and each of First, Degree, Normal, and Sugar is best on at
least one example. This suggests that trying different strategies when faced with a difficult
ideal could be useful. Optimal performance, which is the minimal number of reductions to
compute a Grobner basis for these examples is, as far as I know, unknown, and there does
not appear to be much modern research on selection strategies.
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